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Figure 1 Schematic model of a crystal of sodium metal. The atomic cores are Na* ions: they are
immersed in a sea of conduction electrons. The conduction electrons are derived from the 3s
valence electrons of the free atoms. The atomic cores contain 10 electrons in the configuration
1322322;05. In an alkali metal the atomic cores occupy a relatively small part (~15 percent) of the
total volume of the crystal, but in a noble metal (Cu, Ag, Au) the atomic cores are relatively larger
and may be in contact with each other. The common crystal structure at room temperature is
bee for the alkali metals and fec for the noble metals.



CHAPTER 6: FREE ELECTRON FERMI GAS
o S e ]

In a theory which has given results like these,
there must certainly be a great deal of truth.
H. A. Lorentz

We can understand many physical properties of metals, and not only of the
simple metals, in terms of the free electron model. According to this model, the
valence electrons of the constituent atoms become conduction electrons and
move about freely through the volume of the metal. Even in metals for which
the free electron model works best, the charge distribution of the conduction
electrons reflects the strong electrostatic potential of the ion cores. The utility
of the free electron model is greatest for properties that depend essentially on
the kinetic properties of the conduction electrons. The interaction of the
conduction clectrons with the ions of the lattice is treated in the next chapter.

The simplest metals are the alkali metals—Ilithium, sodium, potassium,
cesium, and rubidium. In a free atom of sodium the valence electron is in a
3s state; in the metal this electron becomes a conduction electron in the 3s
conduction band.

A monovalent crystal which contains N atoms will have N conduction
electrons and N positive ion cores. The Na* ion core contains 10 electrons that
occupy the 1s, 25, and 2p shells of the free ion, with a spatial distribution that
is cssentially the same when in the metal as in the free ion. The ion cores fill
only about 15 percent of the volume of a sodium crystal, as in Fig. 1. The
radius of the free Na™ ion is 0.98 A, whereas one-half of the nearest-neighbor
distance of the metal is 1.83 A.

The interpretation of metallic propertics in terms of the motion of free
electrons was developed long before the invention of quantum mechanics. The
classical theory had several conspicuous successes, notably the derivation of the
form of Ohm’s law and the relation between the electrical and thermal conduc-
tivity. The classical theory fails to explain the heat capacity and the magnetic
susceptibility of the conduction electrons. (These are not failures of the free
electron model, but failures of the classical Maxwell distribution function.)

There is a further difficulty with the classical model. From many types of
experiments it is clcar that a conduction electron in a metal can move freely in
a straight path over many atomic distances, undeflected by collisions with
other conduction electrons or by collisions with the atom cores. In a very pure
specimen at low temperatures, the mean free path may be as long as 10% inter-
atomic spacings (more than 1 cm).

Why is condensed matter so transparent to conduction electrons? The
answer to the question contains two parts: (a) A conduction electron is not
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deflected by ion cores arranged on a periodic lattice because matter waves can
propagate freely in a periodic structure, as 4 consequence of the mathematics
treated in the following chapter. (b) A conduction elcctron is scattered only in-
frequently by other conduction electrons. This property is a consequence of
the Pauli exclusion principle. By a free electron Fermi gas, we shall mean a
gas of free electrons subject to the Pauli principle.

ENERGY LEVELS IN ONE DIMENSION

Consider a free electron gas in one dimension, taking account of quantum
theory and of the Pauli principle. An electron of mass m is confined to a length L
by infinite barriers (Fig. 2). The wavefunction ¢,(x) of the electron is a solu-
tion of the Schrédinger equation ¥y = ey; with the neglect of potential energy
we have ¥ = p%2m, where p is the momentum. In quantum theory p may be
represented by the operator —ifi d/dx, so that

G
2m dxa

o, = =&, (1)
where €, is the energy of the electron in the orbital.

We use the term orbital to denote a solution of the wave equation for a
system of only one electron. The term allows us to distinguish between an
exact quantum state of the wave equation of a system of N interacting elec-
trons and an approximate quantum state which we construct by assigning the
N electrons to N different orbitals, where each orbital is a solution of a wave
equation for one electron. The orhital model is exact only if there are no inter-
actions between electrons.

The boundary conditions are ¥,(0) = 0; ,(L) = 0, as imposed by the infi-
nite potential energy barriers. They are satisfied if the wavefunction is sinelike
with an integral number n of half-wavelengths between 0 and L:

l/}n =Asin (?\Ix) ; ;Mn =L 3 (2)

n

where A is a constant. We see that (2) is a solution of (1), because

dp, _ (o nwr | i, _ o fnm Y . [nw
I _A(T) coS (Tx ; P =—-A T sin T x),
whence the energy €, is given by
2 f, 2
e, =2 (”L—”) : 3

We want to accommodate N electrons on the line. According to the Pauli
exclusion principle, no two electrons can have all their quantum numbers
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———Energy levels
‘Wavefunctions,
> -2 relative scale
2 A=3L g
g9 3.2
\Ll,‘f“ ; Figure 2 First three energy levels and wave-
‘g a functions of a free electron of mass m confined
; E to a line of length L. The energy levels arc la-
= 5  beled according to the quantum number n
) &  which gives thc number of half wavelengths in
= the wavefunction. The wavelengths are indi-
cated on the wavefunctions. The energy ¢, of
the level of quantum number n is equal to

(h¥2m)(n/2L).

identical. That is, each orbital can be occupied by at most one electron. This
applies to clectrons in atoms, molecules, or solids.

In a linear solid the quantum numbers of a conduction electron orbital are
n and m,, where n is any positive integer and the magnetic quantum number
m, = *3, according to spin orientation. A pair of orbitals labeled by the quan-
tum number n can accommodate two electrons, one with spin up and one with
spin down.

If there are six electrons, then in the ground state of the system the filled
orbitals are thosc given in the table:

Electron Electron
n m, occupancy n m, uccup H.ll(.'y
1 T 1 3 T 1
1 1 1 3 $ 1
2 T 1 4 T 0
2 l 1 4 L 0

More than one orbital may have the same energy. The number of orbitals with
the same energy is called the degeneracy.

Let ny denote the topmost filled energy level, where we start filling the
levels from the bottom (n = 1) and continue filling higher levels with elec-
trons until all N electrons are accommodated. It is convenient to suppose that
N is an even number. The condition 2n; = N determines ng, the value of n for
the uppermost filled level.

The Fermi energy ¢, is defined as the energy of the topmost filled level
in the ground state of the N electron system. By (3) with n = n, we have in one

dimension:
_ A (7Y _ A (Nw)’
EF_Zm(L) _2m(2L) ' “)
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EFFECT OF TEMPERATURE ON THE FERMI-DIRAC DISTRIBUTION

The ground state is the state of the N electron system at absolute zero.
What happens as the temperature is increased? This is a standard problem in
elementary statistical mechanics, and the solution is given by the Fermi-Dirac
distribution function (Appendix D and TP, Chapter 7).

The kinetic cnergy of the electron gas increases as the temperature is in-
creascd: some energy levels are occupied which were vacant at absolute zero,
and some levels are vacant which were occupied at absolute zero (Fig. 3). The
Fermi-Dirac distribution gives the probability that an orbital at energy €
will be occupied in an ideal electron gas in thermal equilibrinm:

_ 1
B expl(e — p)kgll+ 1~

fle) (5)

The quantity u is a function of the temperature; p is to be chosen for the
particular problem in such a way that the total number of particles in the system
comes out correctly—that is, equal to N. At absolute zero u = €, because in the
limit T — 0 the function f(€) changes discontinuously from the value 1 (filled) to
the value 0 (empty) at € = e = p. At all temperatures f(e€) is equal to 3 when
€ = u, for then the denominator of (5) has the value 2.

12
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1 %\000\1(\ 500K
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T
P \\\

fle) 0.6 S \\\
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Figure 3 Fermi-Dirac distribution function (3) at the various labelled temperatures, for
T, = €,/ky = 50,000 K. The results apply to a gas in three dimensions. The total number of parti-
cles is constant, independent of temperature. The chemical potential p at each temperaturc may
be read off the graph as the energy at which f/ = 0.5.



6 Free Electron Fermi Gas

The quantity p is the chemical potential (TP, Chapter 5), and we see
that at absolute zero the chemical potential is equal to the Fermi energy, de-
fined as the energy of the topmost filled orbital at absolute zero.

The high energy tail of the distribution is that part for which € — u > kpT;
here the exponential term is dominant in the denominator of (5), so
that f(e) = exp[(x — €)/kgT]. This limit is called the Boltzmann or Maxwell
distribution.

FREE ELECTRON GAS IN THREE DIMENSIONS

The free-particle Schrédinger equation in three dimensions is

#(o*, 9, & _
om (axg + ayz + 822 (llk(r> = € d’k(r) . (6)
If the electrons are confined to a cube of edge I., the wavefunction is the
standing wave

,(r) = A sin (7nx/L) sin (mny/L) sin (mnz/L) | (7

where n,, n,

It is convenient to introduce wavefunctions that satisfy periodic boundary
conditions, as we did for phonons in Chapter 5. We now require the wavefunc-
tions to be periodic in x, ¢, z with period L. Thus

Plx + Ly, z) = ¢lx, y,7) , (8)

and similarly for the y and z coordinates. Wavefunctions satisfying the free-
particle Schrodinger equation and the periodicity condition are of the form of
a traveling plane wave:

, 1, are positive integers. The origin is at one corner of the cube.

Ya(r) = exp (ik - 1) , (9)

provided that the components of the wavevector k satisfy

2 4
k=0 ; if; tf;"" (10)
and similarly for k, and k..

Any component of k of the form 2nw/L will satisfy the periodicity
condition over a length L, where n is a positive or negative integer. The com-
ponents of k are the quantum numbers of the problem, along with the
quantum number m, for the spin direction. We confirm that these values of k,
satisty (8), for

explik,(x + L)] = expli2nm(x + L)/L]
= exp(i2nmy/L) exp(i2n1r) = exp(i2nm/L) = exp(ik.x) . (11)
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On substituting (9) in (6) we have the energy €, of the orbital with
wavevector k:

_ﬁ_2 2_.ﬁ_2 2 2 2 (12)
E“_zmk —2m(kx+ky+k:).

The magnitude k of the wavevector is related to the wavelength A by k = 2/A.
The linear momentum p may be represented in quantum mechanics by
the operator p = —iAV, whence for the orbital (9)

piilr) = —ihViy(r) = fikis(r) , (13)

so that the plane wave . is an eigenfunction of the linear momentum with the
eigenvalue 7ik. The particle velocity in the orbital k is given by v = fik/m.

In the ground state of a system of N free electrons, the occupied orbitals
may be represented as points inside a sphere in k space. The energy at the sur-
face of the sphere is the Fermi energy; the wavevectors at the Fermi surface
have a magnitude kg such that (Fig. 4):

2
eF=2ﬁ—mk% . (14)

From (10) we see that there is one allowed wavevector—that is, one dis-
tinct triplet of quantum numbers k,, k,, k.—for the volume element (27/L)* of
k space. Thus in the sphere of volume 47k}/3 the total number of orbitals is

AT Vs
Qm/L} 3w '

N, (15)

where the factor 2 on the left comes from the two allowed values of the spin
quantum number for each allowed value of k. Then (15) gives

m
ke = (WTN> : e

which depends only on the particle concentration.

k;

Figure 4 In the ground state of a system of N free
electrons the occupied orbitals of the system fill a
sphere of radius kr, where €; = £%#2m is the energy of
an electron having a wavevector kj.
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Table 1 Calculated free electron Fermi surface parameters for metals at room temperature

(Except for Na, K, Rb, Cs at 3 K and Li at 78 X)

Fermi

Elcetron Radius* Fermi Fermi Fermi temperature
cancentration, parameter wavevector, velocity, energy, Tr = e5/kp.
Valency Metal inem™® r, inem™! inems ! in eV in deg K
1 Li 4.70 X 10* 3.25 1.11 x 108 1.29 X 108 4,72 5.48 X 10*
Na 2.65 3.93 0.92 1.07 3.23 3.75
K 1.40 4.86 0.75 0.86 212 2.46
Rb 1.15 5.20 0.70 0.81 1.85 2.15
Cs 0.91 5.63 0.64 0.75 1.58 1.83
Cu 8.45 2.67 1.36 1.57 7.00 §.12
Ag 5.85 3.02 1.20 1.39 5.48 6.36
An 5.90 3.01 1.20 1.39 5.51 6.3¢
2 Be 24.2 1.58 1.93 2.23 14.14 16.41
Mg 8.60 2.65 1.37 1.58 7.13 8.27
Ca 4.60 3.27 1.11 1.28 4.68 5.43
Sr 3.56 3.56 1.02 1.18 3.95 4,58
Ba 3.20 3.69 0.98 1.13 3.65 4.24
Zn 13.10 2.31 1.57 1.82 9.39 10.90
cd 9.28 2.59 1.40 1.62 7.46 8.66
3 Al 18.06 2.07 1.75 2.02 11.63 13.49
Ga 15.30 2.19 1.65 1.91 10.35 12.01
In 11.49 2.41 1.50 1.74 8.60 9.98
4 Fb 13.20 2.30 1.57 1.82 9.37 10.87
Snlw) 14.48 2.23 1.62 1.88 10.03 11.64

e O S S A A S SR Rae}
*The dimensionless radius parameter is defined as r, = ry/a,, where ay is the first Bohr radius and ry is the radius of a sphere that contains one electron.
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D(e)

Density of orbitals, relative scale

Figure 5 Density of single-particle states as a func-
tion of energy, for a free electron gas in three dimen-
sions. The dashed curve represents the density
f (e, T)D(e) of filled orbitals at a finite temperature,
but such that kT is small in comparison with 5. The
shaded area represents the filled orbitals at absolute
zero. The average energy is increased when the tem-
perature is increased from 0 to T, for electrons are
Energy, e —> thermally excited from region 1 to region 2.

Using (14) and (16),

FTom\ TV

ﬁQ
A (W_N)” , amn

This relates the Fermi energy to the electron concentration N/V. The electron
velocity vy at the Fermi surface is

ﬁk 1/3
e

Calculated values of kg, vy, and €5 are given in Table 1 for selected metals; also
given are values of the quantity Tr which is defined as ez/kp. (The quantity T
has nothing to do with the temperature of the electron gas!)

We now find an expression for the number of orbitals per unit energy
range, D(e), called the density of states.' We use (17) to obtain the total
number of orbitals of energy <e:

ome \32 (19)
NV (E) ,
3m\ A2
so that the density of states (Fig. 5) is
32
Die)=2N = . (%) e (20)

lStrictly, D(e) is the density of one-particle states, or density of orbitals.
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This result may be expressed more simply by comparing (19) and (20) to obtain
at e

De)=%8Y =22 | (21)

Within a factor ol the order of unity, the number of orbitals per unit energy
range at the Fermi energy is the total number of conduction electrons divided
by the Fermi energy, just as we would expect.

HEAT CAPACITY OF THE ELECTRON GAS

The question that caused the greatest difficulty in the early development
of the electron theory of metals concerns the heat capacity of the conduction
electrons. Classical statistical mechanics predicts that a free particle should
have a heat capacity of kg, where kg is the Boltzmann constant. If N atoms
each give one valence electron to the electron gas, and the electrons are freely
mobile, then the electronic contribution to the heat capacity should be 2 Nk,
just as for the atoms of a monatomic gas. But the observed electronic contribu-
tion at room temperature is usually less than 0.01 of this value.

This important discrepancy distracted the early workers, such as Lorentz:
How can the electrons participate in electrical conduction processes as if they
were mobile, while not contributing to the heat capacity? The question was
answered only upon the discovery of the Pauli exclusion principle and the
Fermi distribution function. Fermi found the correct result and he wrote,
“One recognizes that the specific heat vanishes at absolute zero and that at low
temperatures it is proportional to the absolute temperature.”

When we heat the specimen from absolute zero, not every electron gains
an energy ~kpT as expected classically, but only those electrons in orbitals
within an energy range kpT of the Fermi level are excited thermally, as in
Fig. 5. This gives an immediate qualitative solution to the problem of the heat
capacity of the conduction electron gas. If N is the total number of electrons,
only a fraction of the order of T/T% can be excited thermally at temperature T,
because only these lie within an energy range of the order of k5T of the top of
the energy distribution.

Each of these NT/T} clectrons has a thermal energy of the order of k;T.
The total electronic thermal kinetic energy U is of the order of

The electronic heat capacity is given by
C, = 3U/AT =~ Nkn(T/T) (23)

and is directly proportional to T, in agrecment with the experimental
results discussed in the following section. At room temperature C,; is smaller
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than the classical value ; Nk, by a factor of the order of 0.01 or less, for
T, ~5 X 10*K.

We now derive a quantitative expression for the electronic heat capacity
valid at low temperatures kT < €. The increase AU = U(T) — U(0) in the
total energy (Fig. 5) of a system of N clectrons when heated from 0 to T'is

AU = fm de eD(e) fle) — fer de eD(e) . (24)
0 0

Here f{e) is the Fermi-Dirac function (5):

1
expl(e — u)/kgT + 1]

fle, T, u) = (24a)

and D(e) is the number of orbitals per unit energy range. We multiply the
identity

N= f: de D(€) fle) = j: de D(e) (25)

by €z to obtain

(J-GF + Jm) de €y fle)D(e) = J"F de e:D(e) . (26)
0 € 0

We use (26) to rewrite (24) as
AU = fmde(e — &) fle)D(e) + J:Fde(ep — &)1 —fle)IDle) . (27)

The first integral on the right-hand side of (27) gives the energy needed to
take electrons from € to the orbitals of energy € > €g, and the second integral
gives the energy needed to bring the electrons to €y from orbitals below €.
Both contributions to the energy are positive.

The product fle)D(e)de in the first integral of (27) is the number of
clectrons clevated to orbitals in the energy range de at an energy €. The factor
[1 — fle)] in the second integral is the probability that an electron has been
removed from an orbital €. The function AU is plotted in Fig. 6.

The heat capacity of the electron gas is found on differentiating AU with
respect to T. The only temperature-dependent term in (27) is f(€), whence we
can group terms to obtain

df

dU f‘”
C,=% = | dele — e
@ 0 ele EF)dT

T D(e) . (28)

At the temperatures of interest in metals, 7/e; < 0.01, and we see from
Fig. 3 that (€ — &) df/dT has large positive peaks at energies near €p. It is a
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Figure 6 Temperature dependence of the
energy of a noninteracting fermion gas in three
dimensions. The energy is plotted in normal-
ized form as AU/Neg, where N is the number of
electrons. The temperature is plotted as kgT/ep.

Region of classical gas —

B

T

kBT_—>

Figure 7 Plot of the chemical potential u versus temperature as k,T for a gas of noninteracting
fermions in three dimensions. For convenience in plotting, the units of x and k5T are 0.763¢p.

good approximation to evaluate the density of states D(e) at €z and take it

outside of the integral:

] d
C,=Dlep) fo de(e—eF)Zl—ff i

(29)

Examination of the graphs in Figs. 7 and 8 of the variation of the chemical
potential p with T suggests that when kT < €, we ignore the temperature
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1.05

One dimension -\

Three dimensions—/

Figure 8 Variation with temperature of the chemical
potential u, for free electron Fermi gases in one and
three dimensions. In common metals 7/e; =~ 0.01 at

room temperature, so that p is closely equal to &g 095 | |
These curves were calculated from series expansions 0 0.1 0.2
of the integral for the number of particles in the I _ 5

system. €F

dependence of the chemical potential w in the Fermi-Dirac distribution func-
tion and replace u by the constant ;. We have then, with 7 = kT,

df _e—ep  explle — &)

= . (30
dr 7 |expl(e — ep)/r] + 1) )
We set
x=(€— €Y7, (31)
and it follows from (29) and (30) that
- ® e
Cel = k%T D(EF) e dx xgm . (32)

We may safely replace the lower limit by —o because the factor ¢ in the inte-
grand is already negligible at x = —e&y/7 if we are concerned with low tempera-
tures such that €z/7 ~ 100 or more. The integral in (32) then becomes

o & _ﬁ
Imdxfm— 3 (33)

whence the heat capacity of an electron gas is
C,=3smD(e KT . (34)
From (21) we have
Dley) = 3N/2e; = 3N/2k, T (35)
for a free electron gas, with kzTr = €. Thus (34) becomes

Cel = %#NkBT/TF . (36)
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Recall that although T is called the Fermi temperature, it is not the electron
temperature, but only a convenient reference notation.

Experimental Heat Capacity of Metals

At temperatures much below both the Debye temperature 6 and the
Fermi temperature Ty, the heat capacity of metals may be written as the sum
of elcetron and phonon contributions: C = yT + AT®, where y and A are con-
stants characteristic of the material. The electronic term is linear in T and is
dominant at sufficiently low temperatures. It is convenient to exhibit the ex-
perimental values of C as a plot of C/T versus T

C/IT=vy+AT? | 37

for then the points should lie on a straight line with slope A and intercept y.
Such a plot for potassium is shown in Fig. 9. Observed values of vy, called the
Sommerfeld parameter, are given in Table 2.

The observed values of the coefficient 7y are of the expected magnitude,
but often do not agree very closely with the value calculated for free electrons
of mass m by use of (17) and (34). It is common practice to express the ratio of
the observed to the free electron values of the electronic heat capacity as a
ratio of a thermal effective mass my, to the electron mass m, where my, is de-
fined by the relation

m observed
My _ yloserved) (38)
y(free)
This form arises in a natural way because €y is inversely proportional to the
mass of the electron, whence y o« m. Values of the ratio are given in Table 2.

The departure from unity involves three scparate effects:

* The interaction of the conduction electrons with the periodic potential of
the rigid crystal lattice. The effective mass of an electron in this potential is
called the band effective mass.

(=]

g | CIT =208 + 257 T2 /o/'T
3 r Potassium - /."
\E r .,o/ b
T 25— oo—**
Ei [ './.'C‘.
& B ..'0'.'
° /

20 | \

0 0.1 0.2 0.3

T2, in K2
Figure 9 Kxperimental heat capacity values for potassium, plotted as C/T versus T2, (Aftcr
W. H. Licn and N. E. Phillips.)
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6 Free Eleciron Fermi Gas

* The interaction of the conduction clectrons with phonons. An electron
tends to polarize or distort the lattice in its neighborhood, so that the mov-
ing electron tries to drag nearby ions along, thereby increasing the effective
mass of the electron.

e The interaction of the conduction electrons with themselves. A moving elec-
tron causes an inertial reaction in the surrounding electron gas, therehy in-
creasing the effective mass of the electron.

Heavy Fermions. Several metallic compounds have been discovered that have
enormous values, two or three orders of magnitude higher than usual, of the elec-
tronic heat capacity constant y. The heavy fermion compounds include UBe,;,
CeAl,, and CeCu,Si;,. It has been suggested that f electrons in these compounds
may have inertial masses as high as 1000 m, because of the weak overlap of wave-
functions of f electrons on neighboring ions (see Chapter 9, “tight binding”).

ELECTRICAL CONDUCTIVITY AND OHM’S LAW

The momentum of a free electron is related to the wavevector by mv = k.
In an electric field E and magnetic field B the force F on an electron of charge
—eis —e[E + (1/c)v X B], so that Newton’s second law of motion becomes

(CGS) F=m‘é—:=ﬁ%=—e(E+%va) . (39)

In the absence of collisions the Fermi sphere (Fig. 10) moves in k space at a
uniform rate by a constant applied electric field. We integrate (39) with B = 0
to obtain

k(t) — k(0) = —eEt/h . (40)

If the force F = —¢E is applied at time ¢ = 0 to an electron gas that fills
the Fermi sphere centered at the origin of k space, then at a later time ¢ the
sphere will be displaced to a new center at

o6k = —cEi/h . (41)

Notice that the Fermi sphere is displaced as a whole because every electron is
displaced by the same 8k.

Because of collisions of electrons with impurities, lattice imperfections, and
phonons, the displaced sphere may be maintained in a steady state in an electric
field. If the collision time is 7, the displacement of the Fermi sphere in the
steady state is given by (41) with ¢ = 7. The incremental velocity is v =fok/m =
—eE7/m. I{ in a constant clectric field E there are n electrons of charge g = —¢
per unit volume, the electric current density is

j=ngv=ne*rE/m . : (42)
This is Ohm’s law.

147



148

- Fermi sphere k k Fermi sphere
attimet =0 4 Y at t
2 ¢ ke
(a) (b)

Figure 10 (a) The Fermi sphere encloses the occupied electron orbitals in k space in the ground
state of the electron gas. The net momentum is zero, because for every orbital k there is an occu-
pied orbital at —k. (b) Under the influcnce of a coustant force F acting for a time interval ¢ every
orbital has its k vector increased by 8k = Fi/&. This is equivalent to a displacement of the whole
Fermi sphere by 8k. The total momentum is N#8k, if there are N electrons present. The applica-
tion of the force increases the energy of the system by N (#8k)2m.

The electrical conductivity o is defined by j = o'E, so by (42)

2

o=12T (43)

The electrical resistivity p is defined as the reciprocal of the conductivity,
so that

p =myme’r . (44)

Values of the electrical conductivity and resistivity of the elements are given in
Table 3. In Gaussian units o has the dimensions of frequency.

It is easy to understand the result (43) for the conductivity of a Fermi gas.
We expect the charge transported to be proportional to the charge density ne;
the factor e/m enters (43) because the acceleration in a given electric field is
proportional to ¢ and inversely proportional to the mass m. The time 7 describes
the free time during which the field acts on the carrier. Closely the same result
for the electrical conductivity is obtained for a classical (Maxwellian) gas of elec-
trons, as realized at low carrier concentration in many semiconductor problems.

Experimental Electrical Resistivity of Metals

The electrical resistivity of most metals is dominated at room temperature
(300 K) by collisions of the conduction electrons with lattice phonons and at
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(a) (b)

Figure 11 Electrical resistivity in most metals arises from collisions of electrons with irregulari-
ties in the lattice, as in (a) by phonons and in (b) by impurities and vacant lattice sites.

liquid helium temperature (4 K) by collisions with impurity atoms and me-
chanical imperfections in the lattice (Fig. 11). The rates of these collisions
are often independent to a good approximation, so that if the electric field
were switched off the momentum distribution would relax back to its ground
state with the net relaxation rate

1
T

=

1
==tz (45)

[l
R

i

where 1, and 7, are the collision times for scattering by phonons and by imper-
fections, respectively.
The net resistivity is given by

p=pLtp . (46)

where p;, is the resistivity caused by the thermal phonons, and p; is the resistiv-
ity caused by scattering of the electron waves by static defects that disturb the
periodicity of the lattice. Often p;, is independent of the number of defects
when their concentration is small, and often p; is independent of temperature.
This empirical observation expresses Matthiessen’s rule, which is convenient
in analyzing experimental data (Fig. 12).

The residual resistivity, p,(0), is the extrapolated resistivity at 0 K because
pr, vanishes as T — 0. The lattice resistivity, p;(T) = p — p,(0), is the same for
different specimens of a metal, even though p,(0) may itself vary widely. The
resistivity ratio of a specimen is usually defined as the ratio of its resistivity at
room temperature to its residual resistivity. It is a convenient approximate in-
dicator of sample purity: for many materials an impurity in solid solution cre-
ates a residual resistivity of about 1 pohm-cm (1 X 107% ohm-cm) per atomic
percent of impurity. A copper specimen with a resistivity ratio of 1000
will have a residual resistivity of 1.7 X 107 uohm-cm, corresponding to an
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M= D. MacDonald and K. Mendelssohn. The
10 ! ] ! ! different intercepts at 0 K are attributed to
0 5 10 15 20 different concentrations of impurities and

Temperatare, K static imperfections in the two specimens.

impurity concentration of about 20 ppm. In exceptionally pure specimens the
resistivity ratio may be as high as 10°, whereas in some alloys (e.g., manganin)
it is as low as 1.1.

It is possible to obtain crystals of copper so pure that their conductivity at
liquid helium temperatures (4 K) is nearly 10° times that at room temperature;
for these conditions T = 2 X 107° s at 4 K. The mean free path £ of a conduc-
tion electron is defined as

£ =uvpT , (47)

where vy is the velocity at the Fermi surface, because all collisions involve only
electrons near the Fermi surface. From Table 1 we have v = 1.57 X 10° em s 7!
for Cu, thus the mean free path is £(4 K) = 0.3 cm. Mean free paths as long as
10 cm have been observed in very pure metals in the liquid helium tempera-
ture range.

The temperature-dependent part of the electrical resistivity is proportional
to the rate at which an electron collides with thermal phonons and thermal elec-
trons. The collision rate with phonons is proportional to the concentration of
thermal phonons. One simple limit is at temperatures over the Debye tempera-
ture 8: here the phonon concentration is proportional to the temperature T, so
that p & T for T > 6. A sketch of the theory is given in Appendix J.

Umklapp Scattering

Umklapp scattering of electrons by phonons (Chapter 5) accounts for
most of the electrical resistivity of metals at low temperatures. These are
electron-phonon scattering processes in which a reciprocal lattice vector G is
involved, so that electron momentum change in the process may be much larger
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Figure 13 Two Fermi spheres in adjacent
zones: a construction to show the role of phonon
umklapp processes in electrical resistivity.

than in a normal electron-phonon scattering process at low temperatures. (In an
umbklapp process the wavevector of one particle may be “flipped over.”)

Consider a section perpendicular to [100] through two adjacent Brillouin
zones in bee potassium, with the equivalent Fermi spheres inscribed within
each (Fig. 13). The lower half of the figure shows the normal electron-phonon
collision k’ = k + q, while the upper half shows a possible scattering process
k' =k + q + G involving the same phonon and terminating outside the first
Brillouin zone, at the point A. This point is exactly equivalent to the point A’
inside the original zone, where AA’ is a reciprocal lattice vector G. This scat-
tering is an umklapp process, in analogy to phonons. Such collisions are strong
scatterers because the scattering angle can be close to .

When the Fermi surface does not intersect the zone boundary, there is
some minimum phonon wavevector g, for umklapp scattering. At low enough
temperatures the number of phonons available for umklapp scattering falls
as exp(—6y/T), where 8y is a characteristic temperature calculable from the
geometry of the Fermi surface inside the Brillouin zone. For a spherical Fermi
surface with one electron orbital per atom inside the bee Brillouin zone, one
shows by geometry that g, = 0.267 kp.

The experimental data (Fig. 12) for potassium have the expected exponen-
tial form with 8, = 23 K compared with the Debye 8 = 91 K. At the very low-
est temperatures (below about 2 K in potassium) the number of umklapp
processes is negligible and the lattice resistivity is then caused only by small
angle scattering, which is the normal (not umklapp) scattering.

MOTION IN MAGNETIC FIELDS

By the arguments of (39) and (41) we are led to the equation of motion for
the displacement 8k of a Fermi sphere of particles acted on by a force F and
by friction as represented by collisions at a rate 1/7:

d_ 1
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The free particle acceleration term is (fd/dt) 5k and the effect of collisions
(the friction) is represented by #8k/7, where 7 is the collision time.

Consider now the motion of the system in a uniform magnetic field B. The
Lorentz force on an electron is

(CGS) F = —e(E . B) ; (49)

(8T)

If mv = #i8k, then the equation of motion is

(CGS) m(% + ,lr)v = —e(E + %v X B) . (50)
An important situation is the following: let a static magnetic field B lie
along the z axis. Then the component equations of motion are

(CGS) m(%Jr%)ox = —¢ (Ex+%vy) ,

m(%+%)vy=—e(}2y—%vx) ; (51)

d 1
m(g-i—?)t&: —eE; .

The results in SI are obtained by replacing ¢ by 1.
In the steady state in a static electric field the time derivatives are zero, so

that the drift velocity is

et _ _eT _ _eT
v, =~ E. — om0 =—E, +om, v, == B, (52)

. v,

y > y

where w, = ¢B/mc is the cyclotron frequency, as discussed in Chapter 8 for
cyclotron resonance in semiconductors.

Hall Effect

The Hall field is the electric field developed across two faces of a conduc-
tor, in the direction j X B, when a current j flows across a magnetic field B.
Consider a rod-shaped specimen in a longitudinal electric field E, and a trans-
verse magnetic field, as in Fig. 14. If current cannot flow out of the rod in the
y direction we must have v, = 0. From (52) this is possible only if there is a
transverse electric field

(CGS) E,= —wgE, =~ BTE, (53)
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Magnetic field B, y
x

Section
perpendicular
to £ axis;
just starting up.

Section
perpendicular
to £ axis 5
drift velocity

in steady state.

{c)
Figure 14 The standard geometry for the Hall effect: a rod-shaped specimen of rectangular
cross-section is placed in a magnetic field B, as in (a). An electric field E, applied across the end
electrodes causes an electric current density j. to flow down the rod. The drift velocity of the
negatively-charged electrons immediately after the electric field is applied as shown in (b). The
deflection in the —y direction is caused by the magnetic field. Electrons accumulate on one face
of the rod and a positive ion excess is established on the opposite face until, as in (c), the trans-
verse electric field (Hall field) just cancels the Lorentz force due to the magnetic field.

The quantity defined by

Ry=— (54)

is called the Hall coefficient. To evaluate it on our simple model we use j, =
ne’tE /m and obtain

eBTE /mc 1
R,= — 7% 2, 55
(CGS) H ne®rE_B/m nec > (55)

(SI)

This is negative for free electrons, for e is positive by definition.
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Table 4 Comparison of ohserved Hall coefficients with free electron theory

[The experimental values of Ry as obtained by conventional methods are summarized from data at
room temperature presented in the Landolt-Bornstein tables. The values obtained by thc helicon
wave method at 4 K are by J. M. Goodman. The values of the carrier concentration n are from
Table 1.4 except for Na, K, Al, In, where Goodman’s valnes are used. To convert the valuc of Ry in
CGS units to the value in volt-cin/amp-gauss, multiply by 9 X 10''; to convert Ry in CGS to
m?*/coulomb, multiply by 9 X 10%%.]

Experimental Assumed Calculated

Ry, carriers - 1/nec,

Metal Method in 107 CGS units per atom in 107* CGS units
Li conv. —1.89 1 electron —1.48
Na helicon —2.619 1 electron —2.603

conv. —-2.3
K helicon —4.946 1 electron —4.944

conv. —4.7
Rb conv. -5.6 1 electron —6.04
Cu conv. -0.6 1 electron —0.82
Ag conv. -1.0 1 electron -1.19
Au conv. -0.8 1 electron —1.18
Be conv. +2.7 — —
Mg conv. —0.92 — —
Al helicon +1.136 1 hole +1.135
In helicon +1.774 1 hole +1.780
As conv. +50. _ —
Sh conv. —22. — —
Bi conv. —6000. — —

The lower the carrier concentration, the greater the magnitude of the
Hall coefficient. Measuring Ry, is an important way of measuring the carrier
concentration. Note: The symbol Ry denotes the Hall coefficient (54), but the
same symbol is sometimes used with a different meaning, that of Hall resis-
tance in two-dimensional problems.

The simple result (55) follows from the assumption that all relaxation
times are equal, independent of the velocity of the electron. A numerical fac-

tor of order unity enters if the relaxation time is a function of the velocity. The
expression becomes somewhat more complicated if both electrons and holes
contribute to the conductivity.

In Table 4 observed values of the Iall coefficient are compared with val-
ues calculated from the carrier concentration. The most accurate measure-
ments are made by the method of helicon resonance which is treated as a
problem in Chapter 14. ,

The accurate values for sodium and potassium arc in excellent agreement
with values calculated for one conduction electron per atom, using (55).
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Notice, however, the experimental values for the trivalent elements aluminum
and indium: these agree with values calculated for one positive charge carrier
per atom and thus disagree in magnitude and sign with values calculated for
the expected three negative charge carriers.

The problem of an apparent positive sign for the charge carriers arises
also for Be and As, as seen in the table. The anomaly of the sign was explained
by Peierls (1928). The motion of carriers of apparent positive sign, which
Heisenberg later called “holes,” cannot be explained by a free electron gas, but
finds a natural explanation in terms of the energy band theory to be developed
in Chapters 7-9. Band theory also accounts for the occurrence of very large
values of the Hall coefficient, as for As, Sh, and Bi.

THERMAL CONDUCTIVITY OF METALS

In Chapter 5 we found an expression K = 5Cv¢ for the thermal conductiv-
ity of particles of velocity v, heat capacity C per unit volume, and mean free
path €. The thermal conductivity of a Fermi gas follows from (36) for the heat
capacity, and with €, = ; moj:

o nkiT _ wnkyTr
3 = 5m (56)
Here € = vg7; the electron concentration is n, and 7 is the collision time.

Do the electrons or the phonons carry the greater part of the heat current
in a metal? In pure metals the electronic contribution is dominant at all tem-
peratures. In impure metals or in disordered alloys, the electron mean free
path is reduced by collisions with impurities, and the phonon contribution may
be comparable with the electronic contribution.

Ratio of Thermal to Electrical Conductivity

The Wiedemann-Franz law states that for metals at not too low temper-
atures the ratio of the thermal conductivity to the electrical conductivity is
directly proportional to the temperature, with the value of the constant of
proportionality independent of the particular metal. This result was important
in the history of the theory of metals, for it supported the picture of an
electron gas as the carrier of charge and energy. It can be explained by using
(43) for o and (56) for K:

2 2
K_ k3 TnT/3m _ ? (%) T 57

netm

)
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Table 5 Experimental Lorenz numbers

L % 10* watt-ohm/deg” L X 10* watt-ohm/deg”
Metal 0°C 100°C Metal 0°C 100°C
253 SRS
Ag 2.31 2.37 Ph 2.47 2.56
Au 2.35 2.40 Pt 2.51 2.60
Cd 2.42 2.43 Su 2.52 2.49
Cu 2.23 2.33 w 3.04 3.20
Mo 2.61 2.79 Zn 2.31 2.33

The Lorenz number L is defined as

L=K/oT , (58)
and according to (57) should have the value

; 2
L= ﬁ(ﬁ) =2.72 X 107" (erg/esu-deg)”

3 e
= 2.45 X 10~® watt-ohm/deg® . (59)

This remarkable result involves neither n nor m. Experimental values of L at
0°C and at 100°C as given in Table 5 are in good agreement with (59).

Problems

1. Kinetic energy of electron gas. Show that the kinetic energy of a three-dimensional
gas of N free electrons at 0 K is

U():gNEF . (60)

2. Pressure and bulk modulus of an electron gas. (a) Derive a relation connecting
the pressure and volume of an electron gas at 0 K. Hint: Use the result of Problem
1 and the relation between €p and electron concentration. The result may be writ-
ten as p = 5(Uy/V). (b) Show that the bulk modulus B = —V(8p/aV) of an electron
gas at 0 K is B = 5p/3 = 10Uy9V. (c) Estimate for potassium, using Table 1, the
value of the electron gas contribution to B.

3. Chemical potential in two dimensions. Show that the chemical potential of a
Fermi gas in two dimensions is given by:
w(T)=kzTIn [exp(*imﬁ%nk,,T) -1], (61)

for n electrons per unit area. Note: The density of orbitals of a free electron gas in
two dimensions is independent of energy: D(€) = myh?, per unit area of specimen.
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4. Fermi gases in astrophysics. (1) Given My = 2 X 10% g for the mass of the Sun,

estimate the number of electrons in the Sun. In a white dwarf star this number of
electrons may be ionized and coutained in a sphere of radius 2 X 10° em; find the
Fermi energy of the clectrons in electron volts. (b) The energy of an electron in the
relativistic limit € > mc® is related to the wavevector as € = pc¢ = fike. Show that the
Fermi energy in this limit is €, =~ fic (N/V)'*, roughly. (c) If the abovc number of
electrons were contained within a pulsar of radius 10 km, show that thc Fermi en-
ergy would be =10% eV. This value explains why pulsars are believed to be composed
largely of neutrons rather than of protons and electrons, for the energy rclease in the
reaction n = p + ¢~ is only 0.8 X 108 eV, which is not large enough to cnable many
electrons to form a Fermi sea. The neutron decay proceeds only until the electron
concentration huilds up enough to create a Fermi level of 0.8 X 10° eV, at which
point the neutron, proton, and electron concentrations are in equilibrium.

Liquid He". The atom He® has spin 3 and is a fermion. The density of liquid He?
is 0.081 g cm™ near absolute zero. Calculate the Fermi encrgy €, and the Fermi
temperature Tr.

6. Frequency dependence of the electrical conductivity. Use the equation

mldv/dt + /1) = —¢E for the electron drift velocity v to show that the conductivity
at frequency a is

_ A tior
alw) = o(0) (]? (wT)2> , (62)

where o(0) = ne*r/m.

Dynamic magnetoconductivity tensor for free electrons. A metal with a concen-
tration n of frec clectrons of charge —e is in a static magnetic field BZ. The clectric
current density in the xy plane is related to the electric field by

Je=0LE, o E, Jy=0RE:. o, E, .

Assumc that the frequency w ® o, and w > 1/7, where w, = eB/mc and 1 is the
collision time. (a) Solve the drift velocity equation (51) to find the components of
the magnetoconductivity tensor:

— o = ind )
Oy =0, = iw/imw | o,

-y = 2 2
= T Op = oo fiTe”

where a),% = 41ne’/m. (b) Note from a Maxwell cquation that the dielectric func-
tion tensor of the medium is related to the conductivity tensor as € = 1 + i(47/w)o.
Cousider an electromagnetic wave with wavevector k = kZ. Show that the disper- -
sion relation for this wave in the medium is
272 _ 2 2 )

k=w —w, T oe)o. (63)
At a given frequency there are two modes of propagation with different wavevec-
tors and different velocities. The two modes correspond to eircularly polarized

“This problem is somewhat difficult.
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waves. Because a linearly polarized wave can he decomposed into two circularly
polarized waves, it follows that the plane of polarization of a linearly polarized wave
will be rotated by the magnetic field.

8. Cohesive energy of free electron Fermi gas. We define the dimensionless

10.

length r,, as ry/ay, where r, is the radius of a spherc that contains one electron,
and ay is the bohr radius #%¢%m. (a) Show that the average kinetic energy per elec-
tron in a frec electron Fermi gas at 0 K is 2.21/72, wherc the energy is expressed in
rydbergs, with 1 Ry = me*/2#% (b) Show that the coulomb energy of a point posi-
tive charge e interacting with the uniform electron distribution of one electron in
the volume of radius r, is —3¢*2ry, or —3/r, in rydbergs. (c) Show that the
coulomb self-encrgy of the electron distribution in the sphere is 3¢%/5ry, or 6/5r, in
rydbergs. (d) The sum of (b) and (c) gives —1.80/r; for the total coulomb energy
per electron. Show that the equilibrium value of 7, is 2.45. Will such a metal be
stable with respect to separated H atoms?

. Static magnetoconductivity tensor. For the drift velocity theory of (51), show
that the static current density can be written in matrix form as
i, - 1 —ar 0 E,

Jy g wr 1 0 E | . (64)

o) e o o 1+(ar/\E
In the high magnetic field limit of w,7 > 1, show that

Oy = nec/B = — Oy - (65)

In this limit o,, =0, to order /w1 The quantity o,, is called the Hall
conductivity.

Maximum surface resistance. Consider a square sheet of side L, thickness d, and
electrical resistivity p. The resistance measured hetwcen opposite edges of the
sheet is called the surface resistance: R, = pL/I.d = p/d, which is independent of
the area L? of the sheet. (R is called the resistance per square and is expressed in
ohmns per square, because p/d has the dimensions of ohms.) If we express p by (44),
then R, = m/nde*r. Suppose now that the minimum value of the collision time is
determined by scattering from the surfaces of the sheet, so that 7 = d/v,, where vy
is the Fermi velocity. Thus the maximum surface resistivity is R, = mu/nd’e’.
Show for a monatomic metal sheet one atom in thickness that R, = fie* = 4.1 kQ.

"This problem is somewhat difficult.
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