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Figure 1 Schematic model of a crystal of sodium metal. The atomic cores are Na' ions: they are 
immersed in a sea of conduction electrons. The conduction electrons are derived from the 3s 
valence electrons of the free atoms. The atomic cores contain 10 electrons in the configuration 
l s 2 2 s 2 2 p ~  In an alkali metal the atomic cores occupy a relatively small part (-15 percent) of the 
total volume of the crystal, hut in a nohle metal (Cu, Ag, Au) the atomic cores are relatively larger 
and may he in contact with each other. The common crystal structure at room temperature is 
hcc for the alkali metals and fcc for the nohle metals. 



In a theory which has given results like these, 
there must certainly be a great deal of truth. 

H .  A. Lorentz 

We can understand many physical properties of metals, and not only of the 
simple metals, in terms of the free electron model. According to this rnodel, die 
valence electrons of the constituent atoms becorne coriduction electrons and 
move about freely through the volurrie of the metal. Even in metals for which 
the free electron model works best, the charge distribution of thc conduction 
electrons reflects the strong electrostatic potential of the ion cores. The utility 
of the free electron model is greatest for properties that depend essentially on 
the kinetic properties of the conduction electrons. The interaction of the 
conduction clcctrons with the ions of the lattice is treated in the next chapter. 

Thc simplest metals are the alkali metals-lithium, sodium, potassium, 
cesium, and rubidium. In a free atom of sodium tlie valence electron is in a 
3s state; in the metal this electror~ becomes a conduction electron in the 3s 
conduction band. 

A r~ionovalent crystal which contains N atoms will have N conduction 
electrons and N positive ion cores. Thc Nat ion core contains 10 electrons that 
occupy the Is, 29, and 2p shells of the free ion, with a spatial distribution that 
is csscntially the same when in the metal as in the free ion. The ion cores fill 
only about 15 percent of the volume of a sodiurri crystal, as in Fig. 1. The 
radius of the free Na+ ion is 0.98 A, whereas one-half of the nearest-neighbor 
distance of the rr~etal is 1.83 A. 

The interpretation of metallic properties in terms of the motion of free 
electrons was developed long before the invention of quantum mechanics. The 
classical theory had several conspicuous successes, notably the derivation of tlie 
form of Ohm's law and the relation between the electrical and thermal conduc- 
tivity. The classical theory fails to explain the heat capacity and the magnetic 
susceptibility of the conduction electrons. (These are not failures of the free 
electron model, but failures of the classical Maxwell distribution function.) 

There is a further difficulty with the classical model. From many types of 
experiments it is clear that a conduction electron in a metal can move freely in 
a straight path over many atomic distances, undeflected by collisions with 
other cond~~ction electrons or by collisions with the atom cores. In a very pure 
specimen at low temperatures, the mean free path rnay be as long as 10' inter- 
atomic spacings (rnore tivan 1 cm). 

Why is condensed matter so transparent to conduction electrons? The 
' 

answer to the question contains two parts: (a) A conduction electron is not 



deflected by ion cores arranged on a periodic lattice because mattcr waves can 
propagate freely in a periodic structure, as a consequencc of the mathematics 
treated in thc following chapter. (b) A conduction elrctron is scattered only in- 
frequently hy other conductio~i electrons. This property is a consequence of 
the Pauli exclusion principle. By a free electron Fermi gas, we shall mean a 
gas of free electroris subject to thc Pa111i principle. 

ENERGY LEVELS IN ONE DIMENSION 

Consider a free electron gas in one dimension, t ak i~~g  account of quantum 
theory and of the Pauli principle. An electron of maqs m is confined to a length L 
by infinite harriers (Fig. 2). The wavefunction $,(x) of the electron is a solu- 
tion of the Schrodinger equation X+ = E+; with the neglect of potential cnergy 
we have X = p2/2m, where p is the momentum. In quantum theory p may be 
represented by the operator -i?i dldx, so that 

where t, is the e n c r a  of the electron in the orbital. 
We use thc term orbital to denote a solution of the wave equation for a 

system of only one electron. The term allows us to distinguish between an 
exact quantum state of the wave equation of a system of N interacting elec- 
trons and an approxirrlate quantum state which we construct by assigning the 
N electrons to N different orbitals, where each orbital is a solution of a wave 
equation for one electron. The orbital model is exact only if there are no inter- 
actions between electrons. 

The boundary conditions are cL,(O) = 0; $,,(L) = 0, as imposed by the infi- 
riite potential energy barriers. They are satisfied if the wavefunction is sir~elike 
with an integral number n of half-wavelengths between 0 and L: 

where A is a constant. \Ve see that (2) is a solution of (1), because 

whence the energy E, is given by 

We want to accommodate N electrons on the linc. According to the Pauli 
exclusion principle, no two electrons can have all their quantum numbers 



6 Free Electron Fermi Gas 135 

Energy levels 

Wavefunctions, 
A = Z L  relative scale 

V 

w- g ---- ----- ---- 3 2   IN : Figure 2 First three energy levels and wave- 
+ .- 9 G functions of a free electron of mass m confined 9 
C. to a line of length L. The energy levels arc la- .- 

beled according to the quantum number n 
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which gives thc liu~nber of half-wavelengths in r 
W A =2L the wavefunction. The wavelengths are indi- 

--------------- cated on the wavefunctions. The energy E, of 
the level of quantum number n is equal to 

x- (h'/~m)(n/21,)~. 

identical. That is, each orbital can be occupied by at most one electron. This 
applies to electrons in atoms, molecules, or solids. 

In a linear solid the quantum numbers of a conduction electron orbital are 
n and m,, where n is any positive integer and the magnetic qnanti~m number 
m, = +:, according to spin orientation. A pair of orbitals labeled by the quan- 
tum number n can accomlnodate two electrons, one with spin up and one with 
spin down. 

If there are six electrons, then in the ground state of the system the filled 
orbitals are thosc given in the table: 

Electroll glectron 
n nccupancy n o~rupancy 

More than one orbital may have the same energy. The number of orbitals with 
the saIrle energy is called the degeneracy. 

Let nF denote thc topmost filled energy level, where we start filling the 
levels from the bottom (n = 1) and continue filling higher levels with elec- 
trons until all N electrons are accommodated. It is convenient to suppose that 
N is an even number. The condition enF = N determines nF, the value of n for 
the uppermost filled level. 

The Fermi energy eF is defined as the energy of the topmost filled level 
in the ground state of the N electron system. By (3) with n = n, we have in one 
dimension: 



EFFECT OF TEMPERATURE ON THE FERMI-DIRAC DISTRIBUTION 

The ground state is the state of the N electron system at absolute zero. 
What happens as the temperature is increased? This is a standard problem in 
elementary statistical mechanics, and thc sohition is given by the Fermi-Dirac 
distribution function (Appendix D and TP, Chapter 7). 

The kinetic cncrgy of the electron gas increases as the temperature is in- 
creased: some energy levels are occupied which were vacant at absolute zero, 
and some levels are vacant which were occupied at absolute zero (Fig. 3). Thc 
Fermi-Dirac distribution gives the probability that an orbital at energy E 

will be occupied in art ideal electron gas in thermal cq~iilihrium: 

The quantity p is a function of the temperature; p is to be chosen for the 
particular problcm in siich a way that the total number of in the system 
comcs out correctly-that is, equal to N .  At absolute zero = E ~ ,  because in the 
limit T + 0 the functionf(e) changes discontinuously from the value 1 (filled) to 
the value 0 (empty) at = cF = p. At all iemperatures f j ~ )  is equal to when 
E = p, for then the denominator of ( 5 )  has the valuc 2. 

6/kB, in units of 1@ K 

Figure 3 Femi-Dirac distrihutiorr function (5) at the valious labelled temperah~res, for 
T, - cl /kB = 50,000 K. The results apply to a gas in three di~ne~lsions. The total number of parti- 
cles is constant, independent of temperature. The chemical potential p at each te~nperaturc may 
be read off the graph as the energy at whichj = 0.5. 



6 Free Electron Fermi Gas 137 

The quantity y is the chemical potential (TP, Chapter 5), and we see 
that at absolute zero the chemical potential is eqml to the Fermi energy, de- 
fined as the energy of the topmost filled orbital at absolute zero. 

The high energy tail of the distrihi~tion is that part for which 6 - y 9 k,T; 
here the exponential term is dominant in the denominator of (5 ) ,  so 
that f (e)  - exp[(p - <)/k,T].  This l im~t  is called the Boltzmann or  Maxwell 
distribution. 

FREE ELECTRON GAS IN THREE DIMENSIONS 

The free-particle Schrodinger equation in three dimensions is 

If the electrons are confined to a cube of edge J,, the wavefunction is the 
standing wave 

$,,(r) = A  sin ( m n ~ / L )  sin (m,y/L)  sin (m,z /L)  , ( 7 )  

where n,, f ly ,  11, are positive integers. The origin is at one corner of the cubc. 
It is convenient to  introduce wavefiinctions that satisfy periodic boundary 

conditions, as we did for phonons in Chapter 5. We now require the wavefunc- 
tions to be periodic in 1, y, z with period L. Thus 

and si~liilarly for thc y and z coordinates. Wavefunctions satisfying the free- 
particle Schrodinger equation and the periodicity condition are of the form of 
a traveling plane wave: 

$k(r) = exp (ik . r) r 
provided that the components of the wavevector k satisfy 

and similarly fork,, and k,. 
Any component of k of the form 2 n d L  will satisfy thc periodicity 

coridition over a Icngth L,  where n is a positive or negativr integer. The com- 
ponents of k are the quantum nurnhers of the prohlem, along with the 
quantum number m, for the spin direction. We confirm that these values of k, 
satisfy (8), for 



On substituting (9) in (6) we have the energy ek of the orbital with 
wavevector k: 

The magnitude k of the wavevector is related to the wavelength h by k = 2?rlh. 
The linear momentum p may be represented in quantum mechanics by 

the operator p = -ifiV, whence for the orbital (9) 

so that the plane wave $k is an eigenfunction of the linear momentum with the 
eigenvalue fik. The particle velocity in the orbital k is given by v = fiklm. 

In the ground state of a system of N free electrons, the occupied orbitals 
may be represented as points inside a sphere in k space. The energy at the sur- 
face of the sphere is the Fermi energy; the wavevectors at the Fermi surface 
have a magnitude k, such that (Fig. 4): 

From (10) we see that there is one allowed wavevector-that is, one dis- 
tinct triplet of quantum numbers k,, k,,, k,-for the volume element ( 2 7 r / ~ ) ~  of 
k space. Thus in the sphere of volume 4?rk23 the total number of orbitals is 

where the factor 2 on the left comes from the two allowed values of the spin 
quantum number for each allowed value of k. Then (15) gives 

which depends only on the particle concentration. 

Figure 4 In the ground state of a system of N free 
electrons the occupied orbitals of the system fill a 
sphere of radius k ,  where EF = fL2k,22m is the energy of 
an electron having a wavevector k,. 



Table 1 Calculated free electron Fermi surface parameters for metals at room temperature 

(Except for Na, K, Rh, Cs at 5 K and Li at 78 K) 

Fermi 
Elcciron Radius'" Fermi Fermi F e r ~ n i  terriperature 

concentration, parameter \vdvevectur, vc1ocit)i energy, & - ~ ~ / k *  
V;llmw Metal in C I I I - ~  r. in cm-' in cm sC1 in eV in dee K 

- -- 

"The d~mens~onless radlus parameter IS defined as r,, = ~,la,, where a" is the first Bohr radlus and r, IS the radlus of a ~ p h e r r  that contrlns one electron 



Energy, + 

Using (14) and (l6), 

Figure 5 Density of single-particle states as a func- 
tion of energy, for a free electron gas in three dimen- 
sions. The dashed curve represents the density 
f ( E ,  T )D(E)  of filled orbitals at a finite temperature, 
but such that k,T is small in comparison with E,. The 
shaded area represents the filled orbitals at absolute 
zero. The average energy is increased when the tem- 
perature is increased from 0 to T, for electrons are 
thermally excited from region 1 to region 2. 

This relates the Fermi energy to the electron concentration NN. The electron 
velocity vF at the Fermi surface is 

Calculated values of k,, v,, and E, are given in Table 1 for selected metals; also 
given are values of the quantity TF which is defined as ~ , / k , .  (The quantity TF 
has nothing to do with the temperature of the electron gas!) 

We now find an expression for the number of orbitals per unit energy 
range, D(E), called the density of states.' We use (17) to obtain the total 
number of orbitals of energy SE:  

so that the density of states (Fig. 5) is 

'Strictly, D ( E )  is the density of one-particle states, or density of orbitals. 
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This result may he expressed more simply by comparing (19) and (20) to ohtain 
at E 

Within a factor of the ordcr of unity, the number of orbitals per unit energy 
range at the Fermi energy is the total number of conduction electrons divided 
by the Fermi energy, just as we would expect. 

HEAT CAPACITY OF THE ELECTRON GAS 

The question that caused the greatest difficulty in the early development 
of the electron theory of metals concerns the heat capacity of the conduction 

: electrons. Classical statistical mechanics predicts that a free particle should 

: have a heat capacity of k,, where k, is the Boltzrnann constant. If N atoms 
i each give one valence electron to the electron gas, and the electrons arc freely 
i mobile, then the electronic contribution to the heat capacity shonld be ;h'k,, 
i just as for the atoms of a monatomic gas. But the observed electronic contribu- 

tion at room temperature is usually less than 0.01 of this value. 

i This important discrepancy distracted the early workers, such as Lorentz: 

[ How can the electrons participate in electrical conduction processes as if they ' were mobile, while not contributing to the heat capacity? The question was / answcrcd only upon the discovery of the Pauli exclusion principle and the 
Fermi distribution function. Fermi found the correct result and he wrote, 
"One recognizes that the specific heat vanishes at absolute zero and that at low 
temperatures it is proportional to the absolute temperatnre." 

When we heat the specimen from absohite zero, not every electron gains 
1 an energy -kBT as expectcd clawically, but only those electrons in orbitals 
/ within an energy range k,T of the Fermi level are excited thermally, as in 
! 
i Fig. 5. This gives an immediate qualitative solution to the problem of the heat 
I 

capacity of the conduction electron gas. If N is the total number of electrons, ! 
i only a fraction of the order of TITF can he excited thermally at temperature T, 

[ because only these lie within an energy rangc of the order of kBT of the top of 
I the energy distribution. 

Each of these NT/Tr clcctrons ha5 a thermal energy of the order of kBT. 
The total electronic thermal kinetic energy U is of the order of 

The electronic heat capacity is given by 

and is directly proportional to T, in agreement with the experimental 
results discussed in the following section. At room temperature CeI is smaller 



than the classical value Nk, by a factor of the order of 0.01 or less, for 
TF -5  X 104K.  

We now derive a quantitative expression for the electronic heat capacity 
valid at low temperatures kllT 4 eF. The increase AU = U(T) - 17(0) in the 
total energy (Fig. 5)  of a system of W electrons when heated from 0 to T is 

Here f ( c )  is the Fer~ni-Dirac function (5): 

and D ( c )  is the number of orbitals per unit energy range. i17e multiply the 
identity 

by eF to obtain 

We use (26)  to rcwritc (24)  as 

The first integral on the right-hand side of (27)  gives the energy needed to 
take electrons from eF to the orbitals of energy l > c ~ ,  a i d  the second integral 
gives the energy needed to bring the electrons to C ,  f ro~n orbitals below c,. 
Both contributions to the energy are positive. 

The product f ( ~ ) D ( r ) d e  in the first intcgral of (27) is the number of 
electrons elevated to orhitals in the energy range d~ at an energy C .  The factor 
[l - . f ( ~ ) ]  in the second integral is the probability that an electron has been 
removed from an orbital E .  The function AU is plotted in Fig. 6 .  

The heat capacity of the electron gas is f o u ~ ~ d  on differentiating AU with 
respect to T .  Tlie orily temperature-depe~idellt term in (27)  is f ( r ) ,  whence we 
can group terms to obtain 

At the terriperatures of interest in metals, r/tF < 0.01, and we see from 
Fig. 3 that ( C  - r F )  dYdT has large positive peaks at energies near c,. It is a 
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Figure 6 Temperature dependence of the 
energy of a noninteracting fermion gas in three 
dimensions. The energy is plotted in normal- 
ized form as AUINE,, where N is the number of 
electrons. The temperature is plotted as k B T k p .  

Region of degenerate quantum gas 

Figure 7 Plot of the chemical potential p versus temperature as k,T for a gas of noointeracting 
fermions m three dimensions. For convenience in plotting, the units of p and k,T are 0 . 7 6 3 ~ ~  

good approximation to evaluate the density of states D(E)  at E ,  and take it 
outside of the integral: 

Examination of the graphs in Figs. 7 and 8 of the variation of the chemical 
potential p with T suggests that when kgT < eF we ignore the temperature 



I 1.00 
P - 

EF 

Figure 8 Variation with temperature of the chemical 
potential p, for free electrorr Fermi gases in unc and 
three dimensions. In common metals T / E ~  = 0.01 at 
room temperature, so that p is closely equal to E,. 0.95 1 I 
These curves were calculated from series expansions 0 0.1 0.2 
of the integral for the number of particles in the - r - 
system. t~ 

dependence of the chemical potential p in the Fermi-Dirac distribution func- 
tion and replace p by the constant E,. We have then, with T = kBT, 

We set 

X = (E - E&T , (31) 

and it follows from (29) and (30) that 

We may safely replace the lower limit by -w because the factor ex in the inte- 
grand is already negligible at r = e F / 7  if we are concerned with low tempera- 
tures such that E ~ / T  - 100 or more. The integral in (32) then becomes 

whence the heat capacity of an electron gas is 

From (21) we have 

for a free electron gas, with kRTF -- eF. Thus (34) becomes 
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Recall that although T,  is called the Fermi temperature, it is not the electron 
temperature, but only a convenier~t reference notation. 

Experimental Heat Capacity of Metals 

At temperatures much below both the Debye temperature 0 and the 
Fermi temperature T,, the heat capacity of metals may be written as the sum 
of elcctron and phonon contributions: C = yT + AT3, where y and A are con- 
stants characteristic of the material. The electronic term is linear in T and is 
dominant at sufficiently low temperatures. It is convenient to exhibit the ex- 
perimental values of C as a plot of CIT versus p: 

for then the points should lie on a straight line with slope A and Intercept 7. 
Such a plot for potassium is shown In Fig. 9. Observed values of y, called the 
Sommerfeld paramctcr, are pven in Table 2. 

Thr ohscrved values of the coefficient y are of the expected magnitude, 

, but often do not agree very closely with the value calculated for free electrons 
of mass m by use of (17) and (34). It is coIrlmon practice to express the ratio of 
the observed to the free electron values of the electronic hcat capacity as a 
ratio of a thermal effective mass nLth to the electron mass m, where mm IS de- 

1 fined by the relation 

This form arises in a natural way because eF is i~iversely proportional to the 
mass of the electron, whence y a m. Values of the ratio are given in Table 2. 
The departure from unity involves three scparate effects: 

The interaction of thc conduction electrons with the periodic potential of 
the rigid crystal lattice. The effective mass of an electron in this potential is 
called the hand effective mass. 

Figure Y Experimental heat capacity values for potassi~lm, plotted as C/T versus T2. (Aftcr 
W. H. Lien and N.  E. Phillips.) 
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The interaction of the conduction electrons with phonons. An electron 
tends to polarize or distort the lattice in its neighborhood, so that the rnov- 
ing electron tries to drag nearby ions along, thereby increasing the effective 
mass of the electron. 
The interaction of the conduction electrons with themselves. A moving elec- 
tron causes an inertial reaction in the surrounding electron gas, thereby in- 
creasing the effective mass of the electron. 

Heavy Fermions. Several metallic compoiinds have been discovered that have 
enormous values, two or three orders of magnitude higher than usual, of the elec- 
tronic heat capacity constant y. The heavy fermion compourids include UBe13, 
CcAI,, and CeCu,Si,. I t  has been suggested that f electrons in these compounds 
may have inertial masses as high as 1000 rn, because of the weak overlap of wave- 
functions off electrons on neighboring ions (see Chapter 9, "tight binding"). 

ELECTRICAL CONDUCTIVITY AND OHM'S LAW 

The momentum of a free electron is related to the wavevector by m v  = hk. 
In an electric field E and magnetic field B the force F on an electron of charge 
-e is -e[E + (1Ic)v X B ] ,  so that Newton's second law of motion becomes 

In the absence of collisions the Fermi sphere (Fig. 10) moves in k space at a 
uniform rate by a constant applied electric field. We integrate (39)  with B = 0 
to obtain 

k(t)  - k(0)  = -eEt/h . (40)  

If the force F = -eE is applied at tirne t = 0 to an electron gas that fills 
the Fermi sphere centered at the origin of k space, then at a later time t the 
sphere will be displaced to a new center at 

Sk = -eEtlh . (41)  

Notice that the Fcrmi sphere is displaced as a whole because every electron is 
displaced by the same 6k .  

Because of collisions of electrons with impurities, lattice imperfections, and 
phonons, the displaced sphere may be maintained in a steady state in an electric 
field. If the collisio~i time is r, the displacement of the Fermi sphere in the 
steady state is given by (41) with t = 7 .  The incremental velocity is v =$%ldm = 

-eErlm. If in a constant clectric field E there are n electrons of charge q = -e 
per unit volume, the electric current density is 

j = nqv = ne2rE/m . (42) 

This is Ohm's law. 



Fermi sphere 

k* 

Figure 10 (a) The Ferrni sphere encloses the occupied electron orbitals i n k  space in the ground 
state of the electron gas. The net momentum is zero, because for every orbital k there is an occu- 
pied orbital at -k. (b) Under the illfluc~rcc of a constant force F acting f i r  a time interval t eveT 
orbital has its k vector increased hy Sk = Ftlfi. This is equivalent to a displacement of the whole 
Fermi sphere by 6k. The total momentum is ATfiSk, if there are N electrons present. The applica- 
tion oT the force incrcascs tlrc clrcrgy of tile system by N(fi6k)2/2m. 

The electrical conducti\lty u is defined by j = uE, so by (42) 

The electrical resistivity p is defined as the reciprocal of the conductivity, 
so that 

I 

I 
p = mn/ne27 . (44) 

Values of the electrical conductivity and resistivity of the elements are given in 
Table 3. In Gaussian units u has the dimensions of frequency. 

It is easy to understand thc result (43) for the conductivity of a Fermi gas. 
We expect the charge transported to he proportional to thc chargc dcnsity ne; 

the factor e/m enters (43) because the acceleration in a given electric field is 
proportional to e and inversely proportional to the mass m. The time T describes 
the free time during whidi the field acts on the carrier. Closely the same result 
for the electrical conductivity is obtained for a classical (Mawwellian) gas of elec- 
trons, as realized at low carrier concentration in many semico~lductor problems. 

Experimental Electrical Resistivity of Metals 

The electrical resistivity of most metals is dominated at room te~nperature 
(300 K) hy collisions of thc conduction electrons with lattice phonons and at 





(a) (b) 

Figure 11 Electrical resistivity in most metals arises from collisions of electrons with irregulari- 
ties in the lattice, as in (a) by phonons and in (h) by impurities and vacant lattice sites. 

liquid helium temperature (4 K) by collisions with impurity atoms and me- 
chanical imperfections in the lattice (Fig. 11). The rates of these collisions 
are often independent to a good approximation, so that if the electric field 
were switched off the momentum distribution would relax back to its ground 
state with the net relaxation rate 

where rL and T, are the collision times for scattering by phonons and by imper- 
fections, respectively. 

The net resistivity is given by 

P = P L + P i ,  (46) 

where pL is the resistivity caused by the thermal phonons, and p, is the resistiv- 
ity caused by scattering of the electron waves by static defects that disturb the 
periodicity of the lattice. Often pL is independent of the number of defects 
when their concentration is small, and often p, is independent of temperature. 
This empirical observation expresses Matthiessen's rule, which is convenient 
in analyzing experimental data (Fig. 12). 

The residual resistivity, p,(O), is the extrapolated resistivity at 0 K because 
p, vanishes as T + 0. The lattice resistivity, pL(T) = p - p,(O), is the same for 
different specimens of a metal, even though p,(O) may itself vary widely. The 
resistivity ratio of a specimen is usually defined as the ratio of its resistivity at 
room temperature to its residual resistivity. I t  is a convenient approximate in- 
dicator of sample purity: for many materials an impurity in solid solution cre- 
ates a residual resistivity of about 1 pohm-cm (1 X ohm-cm) per atomic 
percent of impurity. A copper specimen with a resistivity ratio of 1000 
will have a residual resistivity of 1.7 x pohm-cm, corresponding to an 
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Figure 12 Resistance of potassium below 
20 K,  as measured on two specirrrells by 
D. MacDonald and K.  Mendelssohn. The 
differe~~t i~iterceyts at 0 K are attributed to 
different concentrations of impurities arrd 
static imperfections in the two specimens. 

impurity concentration of about 20 ppm. In exceptionally pure specimens the 
resistivity ratio may be as high as 10" whereas in some alloys (e.g., manganin) 
it is as low as 1.1. 

It is possible to obtain crystals of copper so pure that their conducticity at 
liquid helium temperatures (4 K )  is nearly 10' times that at room temperature; 
for these conditio~~s T = 2 X s at 4 K. The mean free path t of a conduc- 
tion electron is defined as 

where uF is the velocity at the Fermi surface, because all collisions involve only 
electrons near the Fermi surface. From Table 1 we have c~ = 1.57 X 10' cm s-' 
for Cu, thus the mean free path is ((4 K) = 0.3 cm. Mean free paths as long as 
10 cm have been observed in very pure metals in the liquid helium tempera- 
ture range. 

The temperature-dependent part of the electrical resistivity is proportional 
to the rate at which an electron collides with thermal phonons and thermal elec- 
trons. The collision rate with phonons is proportional to the co~rcentration of 
thermal phonons. One simple limit is at te~r~peratures over the Debye tempera- 
ture 0: here the phonon co~rcentration is proportional to the temperature T, so 
that p a T for T > 8. A sketch of the theory is given in Appendix J. 

Umklapp Scattering 

Umklapp scattering of electrons by phonons (Chapter 5) accounts for 
most of the electrical resistivity of metals at low tenrperatures. These are 
electron-phonon scattering processes in which a reciprocal lattice vector G is 
involved, so that electron momentum change in thc process may be much larger 



Figure 13 Two Fermi spheres in adjacent . . - 
zones: a construction to show the role of phonon 
umklapp processes in electrical resistivity. 40 

than in a normal electron-phonon scattering process at low temperatures. (In an 
umklapp process the wavevector of one particle may be "flipped over.") 

Consider a section perpendicular to [loo] through two adjacent Brillouin 
zones in bcc potassium, with the equivalent Fermi spheres inscribed within 
each (Fig. 13). The lower half of the figure shows the normal electron-phonon 
collision k' = k + q, while the upper half shows a possible scattering process 
k' = k + q + G involving the same phonon and terminating outside the first 
Brillouin zone, at the point A. This point is exactly equivalent to the point A' 
inside the orignal zone, where AA' is a reciprocal lattice vector G.  This scat- 
tering is an umklapp process, in analogy to phonons. Such collisions are strong 
scatterers because the scattering angle can be close to T. 

When the Fermi surface does not intersect the zone boundary, there is 
some minimum phonon wavevector q, for umklapp scattering. At low enough 
temperatures the number of phonons available for umklapp scattering falls 
as exp(-OdT), where 0, is a characteristic temperature calculable from the 
geometry of the Fermi surface inside the Brillouin zone. For a spherical Fermi 
surface with one electron orbital per atom inside the bcc Brillouin zone, one 
shows by geometry that q, = 0.267 k,. 

The experimental data (Fig. 12) for potassium have the expected exponen- 
tial form with 6, = 23 K compared with the Debye O = 91 K. At the very low- 
est temperatures (below about 2 K in potassium) the number of umklapp 
processes is negligible and the lattice resistivity is then caused only by small 
angle scattering, which is the normal (not umklapp) scattering. 

MOTION IN MAGNETIC FIELDS 

By the arguments of (39) and (41) we are led to the equation of motion for 
the displacement 6k of a Fermi sphere of particles acted on by a force F and 
by friction as represented by collisions at a rate 11~: 
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The free particle acceleration term is (M/dt)  6k and the effect of collisions 
(the friction) is represented by UWT,  where T is the collision time. 

Consider now the motion of the system in a uniform magnetic field B. The 
Lorentz force on an electron is 

If mv = fi6k, then the equation of motion is 

An important situation is the following: let a static magnetic field B lie 
along the z axis. Then the component equations of motion are 

The results in SI are obtained by replacing c by 1. 
In the steady state in a static electric field the time derivatives are zero, so 

that the drift velocity is 

where w, = eBlmc is the cyclotron frequency, as discussed in Chapter 8 for 
cyclotron resonance in semiconductors. 

Hall Eflect 

The Hall field is the electric field developed across two faces of a conduc- 
tor, in the direction j x B, when a current j flows across a magnetic field B. 
Consider a rod-shaped specimen in a longitudinal electric field E, and a trans- 
verse magnetic field, as in Fig. 14. If current cannot flow out of the rod in the 
y direction we must have 8uy = 0. From (52) this is possible only if there is a 
transverse electric field 



Section + + + + + * + + +  
perpendicular 

to B axis; 
drift velocitv 

Figure 14 The standard geometry for the Hall effect: a rod-shaped specimen of rectangular 
cross-section is placed in a magnetic field EL, as in (a). An electric field E, applied across the end 
electrodes causes an electric current density j, to flow down the rod. The drift velocity of the 
negatively-charged electrons immediately after the electric field is applied as shown in (b). The 
deflection in the -y direction is caused by the magnetic field. Electrons accumulate on one face 
of the rod and a positive ion excess is established on the opposite face until, as in (c), the trans- 
verse electric field (Hall field) just cancels the Lorentz force due to the magnetic field. 

The quantity defined by 

is called the Hall coefficient. To evaluate it on our simple model we use j, = 

ne27E/m and obtain 

This is negative for free electrons, fore is positive by definition. 
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Table 4 Comparison of observed Hall coefficients with free electron theory 

~ ~ 

' 
wavr method at 4 K are by J. M. Goodman. The values of the carrier concentratioh n are from I Table 1.4 except for Na, K, Al, In. where Goodman's vahles are nsed. To corrvert tlrc valuc oTR, in 
CGS nnits to the value in volt-cn~/amp-gauss, ~ n u l t i p l ~  by 9 x 10"; to convert A, in CGS to 

conv. -1.89 1 electron - 1.48 
-2.619 1 electron 2 . 6 0 3  

conv. -2.3 
1 electron -4.944 

 con^^. 4 . 7  
1 electron -6.04 
1 electron 0 . 8 2  
1 electron 1 . 1 9  
1 clcctron -1.18 
- - 

-0.92 - - 

+1.136 I hole +I.135 
+ 1.774 1 hole +1.780 

- - 

- - 

conw -6000. - - 

The lower the carrier concesltration, the greater the magnitude of the 
Hall coefficient. Measuring RH is all important way of measuring the carrier 
concentration. Note: The symbol RH denotes the Hall coefficient (54), but the 
same sysnbol is sometimes used with a different meaning, that of Hall resis- 
tance in two-dimensional problems. 

The simple result (55) follows from the assusnption that all relaxation 
times are equal, independent of the velocity of the electron. A numerical fac- 
tor of order unity enters if the relaxation time is a function of the velocity. The 
expression becomes somewhat more complicated if both electrons and holes 
contribute to the conductivity. 

In Table 4 observed values of the IIall coefficient are compared with val- 
ues calculated from the carrier concentration. The most accurate Ineasure- 
ments are made by the method of helicon resonance which is treated as a 
problem in Chapter 14. 

The accurate values for sodium and potassium arc in excellent agreement 
with values calculated for one cond~~ction electron per atom, using (55). 



Notice, however, the experimental values for the trivalent elerrlents aluminum 
and indiu~n: these agree with values calculated for one positive charge carrier 
per atom and thus disagree in magnitude and sign with values calculated for 
the expected three negative charge carriers. 

The problem of an apparent positive sign for the charge carriers arises 
also for Be and As, as seen in the table. The anomaly of the sign was explained 
by Peierls (1928). The motion of carriers of apparent positive sign, which 
Heisenberg later called "holes," cannot be explaitled by a free electron gas, but 
finds a natural explanation in terms of the energy band theory to be devclopcd 
in Chapters 7-9. Band theory also accounts for thc occiirrence of very large 
values of the Hall coefficient, as for As, Sh, and Bi. 

THERMAL CONDUCTIVITY OF METALS 

In Chapter Fj we found an expression K = ;Cut for thr thermal cond~ictiv- 
ity of particles of velocity v ,  heat capacity C per nnit vohlme, and mean free 
path t?. The thermal conductivity of a Fermi gas follows from (36) for the heat 
capacity, and with E ,  = :mu; : 

2 nkZT &=-.L. u,.Z =- 2nkiT.r 
3 mu: 3m 

Here 4 = V ~ T ;  the electron concentration is n, and T is the collision time. 
Do the electrons or the phonons carry the greater part of the heat current 

in a metal? In pure metals the electronic contribution is dominant at all tem- 
peratures. In impure metals or in disordered alloys, the electron mean free 
path is rednced by collisions with impurities, and the phonon contribution may 
be comparable with the electronic contribution. 

Ratio of Thermal to Electrical Conductivity 

The Wiedemann-Franz law states that for metals at not too low tcmper- 
atures the ratio of the thermal conductivity to the electrical cond~lctlvlty is 
directly proportional to the temperature, ulth the value of the constant of 
proportionaky independent of the particular metal. This result was important 
in the history of the theory of metals, for it supported the picture of an 
electron gas as the carrier of charge and energy. It can be explained by using 
(43) for u and (56) for K: 
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Table 5 Experimental Lorenz numbers 

L x lO%att-ohmldeg2 L X l0"vatt-ohm/de$ 

Metal 0°C 100°C Metal 0°C 100°C 

The Lorenz number L is defined as 

and according to (57) shollld have the  value 

This re~r~arkable  result involves neither n nor m. Experimental values of L at  
0°C and at 100°C as given in Table 5 are in good agreement with (59). 

Problems 

1. Kinetic energy ofelectron gas. Show that the kinetic energy of a three-dimensional 
gas of N free electrons at 0 K is 

U , , = ~ N E ,  . (60) 

2. Pressure and bulk modulus of an electron gas. (a) Derive a relation connecting 
the pressure and volume of an electron gas at 0 K. Hint: Use the result of Problem 
1 and the relation hctween E ,  and electron concentration. The result may be writ- 

ten as p - $(~J,/v). (b) Show that the bulk modulus B = -V(apl;tV) of an electron 
gas at 0 K is B = $13 = 10Ud9V. (c) Estimate for potassium, using Table 1, the 
value of the electron gas contribution to B.  

3. Chemical potential in two dimensions. Show that the chemical potential of a 
Fermi gas ill two dimensions is given by: 

for n electrolls per unit area. Note: The density of orbitals of a free electron gav in 
two dimensions is independent of enera:  D(e) = m./7Tf12, per unit area of specimen. 



4 .  Fermi gases in astrophysics. (a) Given = 2 x g for the mass of thc Son, 
estimate the numbcr of electrons in the Sun. In a white dwarf star this number nf 
electrons may be ionized and contained in a sphere of radius 2 % 10' cm; find the 
Fermi energy of the clectrnns in  electron volts. (b) The energr. of an electron in the 
relativistic limit E S mc%s related to the wavevector as t = pc = hkc. Show that the 
Fermi energy in this limit is E P =  J2C ( N / v ) " ~ ,  roughly. (c) If the abovc numher of 
electrons were container1 within a pulsar of radius 10 km, show that thc Fermi en- 
ergy would bc =loX eV. This value explains why pulsars are believed to be cnrnposed 
largely of neutrons rather than of protons and electrons, for the energy rclease in the 
reaction n + p + e- is only 0.8 x lo6 eV, which is not large enough to enable many 
electrons to lnrm a Ferrrii sea. The neutron decay proceeds only until the electron 
concentration h~rilds up enough to create a Fermi level of 0.8 % lO%\7, at wlricl~ 
point the neutron, proton, and electron concentrations are in equiliblilnn. 

5 .  Liquid He". The atom He3 has spin and is a fermion. Thc dcnsity nf liquid He" 
is 0.081 g cm-'' near absolute zero. Calculate the Fermi encrgy E, and the Ferrni 
temperature TF. 

6 .  Frequency dependence of the electrical conductivity. Use the equation 
m(du/dt + t ; / ~ )  = -eE for the electron drift velocity v to show that the conductivity 
at f r cq~ lenc~  w is 

'7 .  Dynamic magnetoconductivity tensor for free electrons. A metal with a concen- 
tration n of frec clcctrons of charge -e is in a static m a ~ e t i c  field 84. The clcctric 
current density in the xy plane is related to the electric field by 

Assumc that the freqirency w 9 w, and w * l / ~ ,  where w, = eB/mc and T is the 
collision time. (a) Solve the drift velocity- equation (51) to find thc compnne~rts of 
the magnetncnnductivity tensor: 

where W; = 4me2/m. (b) Note from a Maxwell cqnatinn that the dielectric func- 
tion tensor of the medium is related to the conductivity tensor as E = 1 + i ( 4 - d ~ ) ~ .  
Coi~sider an electromagnetic wave with wavcvcctnr k = kg. Show that the disper- 
sion relation for this wave in the medium is 

At a given frequency there are two modes nf propagation with different wavevec- 
tors and different velocities. The two modes correspond to circularly polarized 

' ~ l l i s  problem is somewhat difficult. 
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wdves. Because a linearly polarized wave can he dccomposed into two circularly 
I~olarized waves, it follows that the plane of polarization of a linearly polarized wave 
will be rotated by the magnetic field. 

'8. Cohesive energy of free electron Fenni gas. We define the dimensionless 
length r,, as r,/a,, where r, is the radius of a spherc that contains one electron, 
and oH is thc bohr radius h2/e2m. (a) Show that the average kinetic energyper elec- 
trori in a frcc electron Fermi gas at 0 K is 2.21/<, where the energy is expressed in 
$bergs, with 1 Ry = me4Ah! (b) Show that the co~~lnmb energy of a point posi- 
tive charge e interacting with the uniform electron distribution of one electron in 
the volnme of radius r, is 3e2 /2r0 ,  or -3/rs in rydbergs. (c) Show that the 
coulornh self-encrg of the electron distribution in the sphcre is 3e2/5r,,, or 6/5r, in 
rydbergs. (d) The sum of (b) and (c) gives -1.80/rS fnr thc total coulomb energy 
per electron. Show that the equilibrium value of r, is 2.45. Will such a metal be 
stable with respect to separated I1 atoms? 

9. Static magnetoconductivity tensor. For the drift velocity theory of (51), show 
that the static cnrreut dcnsity can be written in matrix fonir as 

In the high magnetic field limit of W,T * 1 ,  show that 

In this limit a,, = 0,  to order l / w < ~ .  llie quantity uy, is called the Hall 
conductivity. 

10. Maximum surface resistance. Consider a square sheet of side L, thickness d ,  and 
electrical resistivity p. The resistance measured hetwccn opposite edges of the 
sheet is called the surface resistance: RSq = pL/lrl = pld, which is independent of 
the area L%f the sheet. (R,,, is called the resistance per square and is expressed in 
ohrrls per square, because pld has the dimensions of ohms.) If we express p by (44), 
then R,, = m/nde2r. Suppose now that the rrrininrilm value of the collision time is 
deter~rrined by scattering from the surfaces of the sheet, so that r = dlu,, where ti, 
is the Fernri velocity. Thus the maximum surface resistivity is RSq = rnok/nd2e2. 
Show for a rnonatomic metal sheet one atom in thickness that Rq = ii/e2 = 4.1 ka. 

'This problem is somewhat ddficult 


