Chapter 2. Structure of Atom

Question-1

Calculate the frequency and energy associated with photon of radiations having a wavelength of 6200 A°. Plank's constant = 6.625 ×10⁻²⁷ ergs sec.

Solution:

We know that $c = v\lambda$ or $v = \frac{c}{\lambda}$ The value of c for all electromagnetic radiation = 3.0×10^8 m sec⁻¹. $\lambda = 6200 \text{ A}^\circ = 6200 \times 10^{-8}$ cm $= 6200 \times 10^{-10}$ m $= 62 \times 10^{-8}$ m $v = \frac{3 \times 10^8}{62 \times 10^{-8}} = 4.839 \times 10^{14}$ cycles sec⁻¹. The energy (E) associated with a radiation is given by E = hu E = $6.625 \times 10^{-27} \times 4.839 \times 10^{14}$ $= 2.914 \times 10^{-12}$ ergs $= \frac{2.914 \times 10^{-12}}{10^7}$ Joules

Question-2

= 2.914 ×10⁻¹⁹ Joules.

Calculate the wave number of lines having the frequency of 5×10^{16} cycles per sec.

Solution:

Given c =
$$3 \times 10^8$$
 m/sec
 $U = 5 \times 10^{16}$ cycles/sec
 $U = ?$
We know that
 $U = \frac{v}{c} = \frac{5 \times 10^{16}}{3 \times 10^8} = 1.666 \times 10^8 \text{ m}^{-1}$.

In a hydrogen atom, an electron jumps from a third orbit to the first orbit. Find out the frequency and wavelength of the spectral line.

Solution:

(i) When an electron jumps from a higher orbit n_2 to the lower orbit n_1 , the frequency uof the radiation is given by

U=
$$3.29 \times 10^5 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$
 cycles sec⁻¹
Here, $n_1 = 1$ and $n_2 = 3$
U = $3.29 \times 10^5 \left[\frac{1}{(1)^2} - \frac{1}{(3)^2} \right]$ cycles sec⁻¹
= $3.29 \times 10^5 \left[1 - \frac{1}{9} \right]$ cycles sec⁻¹
= $3.29 \times 10^5 \times 0.889$ cycles sec⁻¹
= 2.925×10^{15} cycles sec⁻¹
Now wavelength $\lambda = \frac{c}{9}$

$$\lambda = \frac{3 \times 10^8}{2.925 \times 10^{15}} = 1.0256 \times 10^{-7} \,\mathrm{m}$$

 $= 1.0256 \times 10^{-7} \times 10^{10} A^{\circ} = 1025.6 A^{\circ}$

Thus the wavelength of light emitted falls in the UV region of the electromagnetic spectrum.

$$R_H = 1.09678 \times 10^7 \, \text{m}^{-1}$$
, $c = 3 \times 10^8 \, \text{ms}^{-1}$, $h = 6.625 \times 10^{-34} \, \text{Js}$.

Solution:

$$\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

For lowest frequency in Lyman series

$$n_1 = 1, n_2 = 2$$

For
$$H, Z = 1$$

$$\frac{1}{\lambda}$$
 = 1.09678 × 10⁷ × 1 $\left(1 - \frac{1}{4}\right)$ = $\frac{1.09678 \times 3 \times 10^{7}}{4}$

$$\lambda = \frac{4 \times 10^{-7}}{3 \times 1.09678} = 1215 \times 10^{-10} \text{ m or } 1215 \text{ A}^{\circ}.$$

$$v^{-} = \frac{c}{\lambda} = \frac{3 \times 10^{8}}{1215 \times 10^{-10}} = 0.002469 \times 10^{18} \text{ Hz} = 2.469 \times 10^{15} \text{ Hz}$$

$$E = 6.625 \times 10^{-34} \times 2.469 \times 10^{15} = 10.22 \text{ eV}$$

For
$$Li^{2+}$$
, $Z = 3$

$$Li^{2+}=(3)^2 \times 10.22 = 9 \times 10.22 = 91.98 \text{ eV}.$$

Calculate the uncertainty in the position of a particle when the uncertainty in the momentum is (a) 1×10^{-2} (b) zero.

Solution:

(a) According to the uncertainty principle,

$$\Delta x$$
. $\Delta p \approx \frac{h}{4\pi}$

Putting the values of

$$h = 6.62 \times 10^{-34}$$
 Joules-sec

$$\Delta p = 1 \times 10^{-7} \text{ Kg-m-sec}^{-1}$$

$$\Delta x \times 10^{-7} = \frac{6.62 \times 10^{-34}}{4 \times 3.142}$$

$$\Delta x = \frac{6.62 \times 10^{-34}}{4 \times 3.142 \times 10^{-7}} \text{m}$$

$$= 0.527 \times 10^{-27} \text{ m}$$

(b) We know that $\Delta x = \frac{h}{4\pi \times \Delta p}$

When $\Delta P = 0$, the denominator in the above expression becomes zero; hence the uncertainty in position becomes infinity.

Question-6

Solution:

(a) electronic configuration of elements with atomic number

(b) (i) Atomic number of the element is 2+2+6+2+6+1=19

Therefore, the element is potassium.

(ii) Atomic number of the element is 2+2+6+2+6+5+1=24

Therefore, the element is chromium.

(iii) Atomic number of the element is 2+2+6+2+6+10+1=29

Therefore, the element is copper.

An electron is in a 4f orbital. What possible values for the quantum numbers n, l, m and s can it have?

Solution:

For an electron in a 4f orbital,

n = 4, I = 3, m = -3, -2, -1, 0, +1, +2, +3, s =
$$+\frac{1}{2}$$
 and $-\frac{1}{2}$ for each value of m.

Question-8

A neutral atom has 2K, 8L, 5M electrons. Find out the following from the data:

- (a) atomic number,
- (b) total number of s electrons,
- (c) total number of p electrons,
- (d) number of protons in the nucleus, and
- (e) valency of element.

Solution:

- (a) Atomic number = No. of protons = No. of electrons

 Total no. of electrons = 2 + 8 + 5 = 15

 Hence atomic number = **15**
- (b) Total number of s electrons. To find out it, we are to write electronic configuration of At. No. = 15

$$1s^2$$
, $2s^2$, $2p^6$, $3s^2$, $3p^3$

- :: Total electrons = 6
- (c) Total number of p electrons = 9
- (d) Number of protons in the nucleus = Number of electrons in extranuclear part
- ∴ Number of protons = 15
- (e) Valency of element. The arrangement of electrons in orbits is 2, 8, 5. As the atom tends to gain three electrons, therefore it is **trivalent electronegative (-3)**.

Question-9

$$15P^{31},\,{}_{1}H^{1},\,{}_{18}Ar^{40},\,{}_{14}Si^{30},\,{}_{16}S^{32},\,{}_{19}K^{40},\,{}_{20}Ca^{40},\,{}_{1}H^2,\,{}_{1}H^3.$$

Solution:

- (a) $_{1}H^{1}$, $_{1}H^{2}$, $_{1}H^{3}$ isotopes (same number of atomic number)
- (b) $_{18}Ar^{40}$, $_{19}K^{40}$, $_{20}Ca^{40}$ isobars (same number of mass number)
- (c) $_{15}P^{31}$, $_{14}Si^{30}$, $_{16}S^{32}$ isotones (same number of neutrons)

Which are isosters?

Solution:

Molecules having same numbers of atoms and also same number of electrons are called isosters.

Example: N₂ and CO

N₂ = 14 electrons

CO = 6 + 8 = 14 electrons.