Gravitation

Exercise Solutions

Solution 1:

The mass of each ball = m = 10 kgDistance of separation = r = 10 cm or 0.010 cm

Force = $GMm/r^2 = [6.67x10^{-11}x10^2]/(0.010)^2$

= 6.67 x 10⁻⁷

Solution 2:



The gravitational force at the center = vector sum of all the forces acting on it.

The distance between the center particle with others, say $r = a/v^2$

Force acting between particles of mass m and center particle = $F_m = GMm/r^2 = 2Gm^2/a^2$

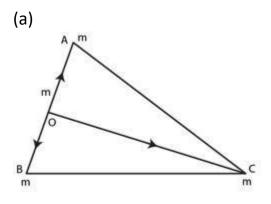
Force acting between particles of mass m and center particle = $F_2m = GM(2m)/r^2 = (4Gm^2)/r^2 = 2F_m$

Similarly, we can calculate of mass 3m and 4m along with the center particle: $F_{\rm 3m}$ =3 F_m and $F_{\rm 4m}$ = 4 F_m

The net force:

 $F_{net} = 2 F_m \cos\theta = 4 F_m (1/\sqrt{2}) = 2\sqrt{2} F_m$ $=> F_{net} = 2\sqrt{2} F_m = 2\sqrt{2} x 2Gm^2/a^2 = [4\sqrt{2} Gm^2]/a^2$

Solution 3:



If "m" is the mid point of a side, then

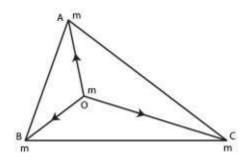
 $F_{OA} = 4Gm^2/a^2$ in OA direction $F_{OB} = 4Gm^2/a^2$ in OB direction

 $=> F_{OC} = 4Gm^2/3a^2$ in OC direction

[As, Equal and opposite cancel each other]

So, net gravitational force on m is $4Gm^2/a^2$

(b)



If point "O" is the centroid, then

 $F_{OA} = 3Gm^2/a^2$ and $F_{OB} = 3Gm^2/a^2$

So, resultant force is

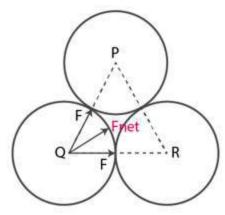
$$=\sqrt{2(\frac{3Gm^2}{a^2})^2 - 2(\frac{3Gm^2}{a^2})^2 \times \frac{1}{2}} = \frac{3Gm^2}{a^2}$$

Since $F_{OC} = 3Gm^2/a^2$ [Equal and opposite to F cancel each other]

=> Net gravitational force become zero.

Solution 4:

Distance between the centers of two spheres = r = 2a



Force on one sphere due to another = $F = GM^2/4a^2$

Net force = F_{net} = 2F cos θ = 2F cos 30°

 $= 2 \times \sqrt{3}/2 \times GM^2/4a^2$

 $=> F_{net} = \sqrt{3}GM^{2}/4a^{2}$

Solution 5:

Let A, B, C and D are four particles of mass, moving in a circle of radius R.

Force between A and B = $F_{AB} = GM^2/(\sqrt{2R})^2 = GM^2/2R^2$

Force between A and D = $F_{AD} = GM^2/(\sqrt{2R})^2 = GM^2/2R^2 = F_{AB}$

Net force in downward direction = $F_D = 2F_{AB} \cos 45^\circ = \sqrt{2} F_{AE}$

Force between A and C = $F_{AC} = GM^2/(2R)^2 = GM^2/4R^2$

Now, Net force on particle $A = F_{net} = F_D + F_{AC}$

$$F_{net} = \left(\frac{2\sqrt{2}+1}{4}\right) \frac{GM^2}{R^2}$$

For moving along the circle, $F_net = mv^2/R$

$$\frac{Mv^2}{R} = \left(\frac{2\sqrt{2}+1}{4}\right) \frac{GM^2}{R^2}$$
$$v = \sqrt{\left(\frac{2\sqrt{2}+1}{4}\right) \frac{GM}{R}}$$

Solution 6:

Mass of the moon= M = 7.4×10^{22} kg Radius = R = 1740 km and Distance of the point from surface= R' = 1000 km

Total distance from the center = r = 1740+1000 = 2740 km

Now, Find Acceleration due to gravity: $g = GM/r^2$

$$g = \frac{6.67 \times 10^{-11} \times 7.4 \times 10^{22}}{(2740 \times 10^3)^2} = 0.65 \text{m/s}^2$$

Solution 7:

let m_1 and m_2 masses of bodies, where $m_1 = 10$ kg and $m_2 = 20$ kg

Initial separation, say $r_1 = 10$ m and Final separation, say $r_2 = 0.5$ m Let v_1 be the initial velocity and v_2 be the final velocity, where $v_1 = v_2 = 0$ m/s

Let us consider v_1' , v_2' are the final velocities.

Now, $m_1 v_1' + m_2 v_2' = 0$

=> v₁' = -(20/10)v₂' = - 2 v₂'

[From momentum conservation]

Again, from using the conservation of energy: $PE_{max} + KE_{max} = PE_{max} + KE_{max}$

 $PE_{initial} + KE_{initial} = PE_{final} + KE_{final}$

$$\Rightarrow \quad \frac{Gm_1m_2}{r_1^2} + \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{Gm_1m_2}{r_2^2} + \frac{1}{2}m_1v_1'^2 + \frac{1}{2}m_2v_2'^2$$

Substituting the values, we get

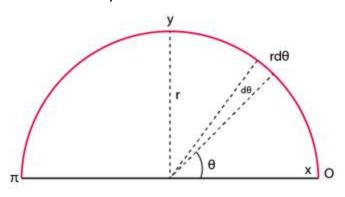
=>
$$v_2'^2 = \frac{2 \times 6.67 \times 10^{-11}}{3} = 44.47 \times 10^{-11} = 2.10 \times 10^{-5} \text{m/s}$$

and,
 $v_1' = 2v_2' = 4.20 \times 10^{-5} \text{m/s}$

Solution 8:

Let us take a small element on the wire. The arc length of the element is r d θ . => Mass of the element = dM = (M/L) r d θ Also, r = L/ π

 $=> dM = Md\theta/\pi$



The force on particle due to element = dF = GmdM/r²= (GMm π d θ)/L² Therefore,

$$F = \int dF = \int_{0}^{\pi} \frac{GMm\pi}{L^{2}} \cos\theta d\theta$$
$$F = \frac{2\pi GMm}{L^{2}}$$

Solution 9:

A small section of rod is at "x" distance mass of the element = dm = (M/L).dx

 $dE_1 = [G(dm)]/(d^2+x^2) = dE_2$

So resultant $dE = 2 dE_1 \sin\theta$

$$2\times \frac{Gdm}{d^2+x^2}\times \frac{d}{\sqrt{d^2+x^2}} = \frac{2(GM)dx}{L(d^2+x^2)(\sqrt{d^2+x^2})}$$

Now, the total gravitational force:

$$E = \int_0^{\frac{L}{2}} \frac{2Gmddx}{L(d^2 + x^2)^{3/2}}$$

Solving above equation, we get

$$E = 2GM/[d v(L^2+4d^2)]$$

Solution 10:

The gravitational force on m due to shell of M_2 is zero. Ma is at distance $(R_1 + R_2)/2$

The gravitational force:

$$F = \frac{GM_1m}{r^2} = \frac{GM_1m}{[(R_1 + R_2)/2]^2}$$
$$F = \frac{4GM_1m}{(R_1 + R_2)^2}$$

Solution 11:

Let us assume that tunnel doesn't change the gravitational field distribution of earth. Mass of the sphere:

$$\frac{M'}{\frac{4}{3\pi x^3}} = \frac{M_e}{\frac{4}{3\pi R^3}}$$
or
$$M' = \frac{x^3}{R^3} M_e$$

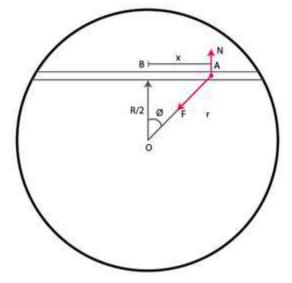
Where M_{e} is the mass of the earth .

The gravitational force on the particle at distance x,

 $F = GMM'/x^2 = GM_e/R^3$

Solution 12:

Let M_E be the mass of the earth.



From figure,

 $N = F \cos \phi$

here, $\cos \phi = R/2r$ and $F = GM_E mr/R^3$

thus, N = $GM_E mr/R^3 x R/2r$

or N = $GMm/2R^2$

Solution 13:

(a) distance of the particle from the center of solid sphere:

I = x - r

Gravitational force on the object: $F = Gmm'/r^3$

Here, the mass of the sphere "m" and m' is the place at distance x from O.

 $=> F = Gmm'(x-r)/r^{3}$

(b) 2r < x < 2R, then F is due to only sphere

 $F = Gmm'/(x-r)^2$

(c) If x > 2R, the gravitational force is due to both shell and sphere,

Force due to shell: $F = GMm'/(x-R)^2$

Force due to sphere: $F = GMm'/(x-r)^2$

So, resultant force = $GMm'/(x-R)^2 + GMm'/(x-r)^2$

Solution 14:

At point P₁ Gravitational force due to sphere = $M = GM/(3a+a)^2 = GM/16a^2$

At point P₂,Gravitational force due to sphere and shell

```
= GM/(a+4a+a)^{2} + GM/(4a+a)^{2}
```

= (61/900) GM/a²

Solution 15:

we know, the field inside the shell is zero. Let the gravitational field at A due to the first part be E and the gravitational field at B due to the second part be E'.

Therefore, E + E' = 0

or E = -E'

Hence, the fields are equal is magnitude and opposite in direction

Solution 16:

Let the mass of 0.10 kg be at a distance x from 2 kg mass and at the distance of (2-x) from the 4 kg mass.

Force between 0.1 kg mass and 4 kg mass = Force between 0.1 kg mass and 2 kg mass

$$(2x0.1)/x^2 = -(4x0.1)/(2-x)^2$$

x = 2/2.414

or x = 0.83 m from the 2 kg mass.

Now, The gravitational potential energy is given by

$$V = \sum_{i \neq j} \frac{Gm_i m_j}{r_{ij}} = \frac{G0.1 \times 2}{0.83} + \frac{G0.1 \times 4}{1.17} + \frac{G2 \times 4}{2}$$
$$= 0.24GJ$$
$$= -3.06 \times 10^{-10}$$

Solution 17:

work done = $W = U_f - U_i$

Where U_f = Final potential energy and U_i = Initial potential energy

Here, $U_f = -3Gm^2/2a$ and $U_i = -3Gm^2/a$

Now, $W = 3Gm^2/2a$

Solution 18:

 U_f = Final potential energy = 0 [As the particle is to be taken away, we assume the final point to be approximately at infinite distance]

and U_i = Initial potential energy = (-GM_s m)/r

Here, m = Mass of the particle = 100 g or 0.1 kg

 M_s = Mass of sphere = 10 kg

And r = radius of sphere = 10 cm or 0.1 m

On putting values, we get

 $U_i = -6.67 \times 10^{-10}$

Now, work done = W = $-(U_f - U_i)$ => W = 6.67 x 10⁻¹⁰ J

Solution 19:

(a) force on the particle

F = mE = 2[5i+12j] = 10i + 24j N

[given mass of the particle = m = 2 kg]

Magnitude of F = 26 N

(b) Potential at (12, 0):

V = -E.r = -12i [5i+12j] = -60 J/kg

Potential at (0, 5):

V = -E.r = -5i [5i+12j] = -60 J/kg

(c) potential energy at (12,5) m:

V = [5i+12j] [2i + 5j] = -120 J/kg

And potential energy at the origin is zero.

Therefore, the change in potential energy is -240 J.

(d) Change in potential energy = 0[from part (b), potential energy of the particle would be same at both the points.]

Solution 20:

(a) V= 20N Kg⁻¹ (x+y)

Dimension of V = $[MLT^{-2}]/M \times L = L^{2}T^{-2}$

Dimension of j/kg = $[ML^2T^{-2}]/M = L^2T^{-2}$

Hence dimensions are correct.

(b)

 $E = -\frac{\partial V}{\partial x} - \frac{\partial V}{\partial y}$

Or E = -20i – 20j N/kg

E is independent of the coordinate.

(c) Force = mE = 0.5 x [-20(i+j)] = -10i - 10j

Magnitude of Force = $10\sqrt{2}$ N

Solution 21:

Electric field = E = 2i + 3j

Angle made by E with the x-axis:

$$\cos\theta = \frac{\text{E. i}}{|\text{E}||\text{i}|} = \frac{(2\text{i} + 3\text{i}).\text{i}}{\sqrt{13}} = \frac{2}{\sqrt{13}}$$

$$\sec\theta = \frac{\sqrt{13}}{2}$$
we know,
$$\tan^2\theta = \sec^2\theta - 1$$

$$= \left(\frac{\sqrt{13}}{2}\right)^2 - 1$$
or
$$\tan\theta = \frac{3}{2}$$

Equation of line is y = -(2/3)x + 5/3 made angle with x-axis is

 $tan\phi = -2/3$

Now,

 $tan(\phi - \theta) = [tan\phi - tan\theta]/[1+tan\phi tan\theta]$

= infinity

Now, the angle between the electric filed and the line = $\phi - \theta = 90^{\circ}$ Since product of both the slope is -1, the direction of field and the displacement are perpendicular, is done by the particle on the line.

Solution 22:

Let h be the height

```
Therefore, (1/2) Gm/R<sup>2</sup> = GM/(R+h)<sup>2</sup>
or 2R^2 = (R+h)^2
or h = (\sqrt{2} - 1)R
```

Solution 23:

Height of Mount Everest = h = 8848 m or 8.848 km

Acceleration due to gravity at a height h, say g'

g' = g(1 - 2h/R)

 $= 9.8(1 - 640/(6400 \times 10^3))$

= 9.799 m/s²

Solution 24:

Let g' be the acceleration due to gravity

g' = g (1 - 2h/R)

= 98(1-0.64/6400)

= 9.799 m/s²

Solution 25:

Let g' be the acceleration due to gravity at equation and that of pole g

Angular velocity of earth = $\omega = 2\pi/T$

 $= 2\pi/(24x3600)$ rad/s

Now, acceleration due to gravity at equator:

g' = g - $\omega^2 R$

$$= 9.8 - [2\pi/(24x3600)]^2 \times 64000$$

And the weight at equator = $mg' = 1 \times 9.767 \text{ N} = 0.997 \text{ kg}$

Solution 26:

Acceleration due to gravity at equator = g' = g- $\omega^2 R$

Acceleration due to gravity at a height above south pole = g'' = g(1-2h/R)

Now g' = g'' => g- $\omega^2 R = g(1-2h/R)$ => h = $\omega^2 R^2/2g$ Or h = [4 π x 6400000²]/[(4x3600)²x2x9.8] = 10 km (approx)

Solution 27:

for apparent g at equator be zero.

g' = g - $\omega^2 R = 0$ or g = $\omega^2 R$ => $\omega = v(g/R) = v(9.8/6400000)$ = 1.237 x 10⁻³ rad/s Now, T = 2 π / ω = [2x3.14]/[1.237x10⁻³x3600] = 1.4 h (approx.)

Solution 28:

a) the speed of the ship is equal to earth's rotation when the ship is stationary point.

speed = ωR

(b) tension in the string at the equator

 $T_0 = mg' = mg - m\omega^2 R$

 $mg - T_0 = m\omega^2 R$ Difference between T_0 and the earth's attraction on the bob.

(c) angular speed of the ship is v/R about its center.

Total angular speed = $\omega' = \omega - v/R$

And T = mg – $m\omega'^2 R$ [tension given]

 $=> T = mg - m(\omega - V/R)^2 R$

 $=> T = mg - [m\omega^2 + mv^2/R^2 - 2m\omega v/R)R]$

= T = mg - m ω^2 R - mv²/R + 2m ω v

From part (b),

 $T_0 = mg' = mg - m\omega^2 R$

 $=> T = T_0 - mv^2/R + 2m\omega v$

=> T = T₀ + 2mωv Neglect, mv²/R, As small quantity.

Solution 29:

From Kepler's third law, the time period of an orbit is proportional to the cube of the radius of the orbit.

 $T^2 \ \alpha \ R^3$

$$T_{m}^{2}/T^{2} = R_{MS}^{3}/R_{SE}^{3}$$

 $R_{MS}/R_{SE} = (3.534)^{1/3} = 1.52$

Solution 30:

For an orbit, the time period:

 $T^2 = 4 \pi^2 a^3 / GM$

[here a = 3.84×10^5 km and T = $27.3 \times 24\times3600$ sec]

Or M = 6.02×10^{24} kg

Solution 31:

For an orbit, the time period:

 $T^2 = 4 \pi^2 a^3 / GM$

Or M = $4 \pi^2 a^3/G T^2$ (1) Where M = mass of mars.

Here, Radius of mars=a = 9.4×10^3 km or 9.4×10^6 m and Time = T = 27540 s

Now, (1)=> M = $[4 \pi^2 (9.4 \times 10^6)^3] / [6.67 \times 10^{-11} \times 27540^2]$

Or M = $6.5 \times 10^{23} \text{ kg}$

Solution 32:

(a) Radius of the orbit = a = 2000 + 6400 = 8400 km or 8.4×10^6 m

Therefore, the speed = v = V(GM)/a

 $v = v[(6.67x10^{-11}x6x10^{24})/(8.4x10^{6})] = 6.9 \text{ km/s} (approx.)$

(b) $KE = (1/2)mv^2$ Here m = 1000 kg (mass of satellite)

 $KE = (1/2) \times 1000 \times 6900^2 = 2.38 \times 10^{10}$

(c) Potential energy at infinity is zero. Hence, the potential energy at a radius, a

PE = -GMm/a = $[-6.67 \times 10^{-11} \times 6 \times 10^{24} \times 1000]/[8.4 \times 10^{6}]$ = -4.76×10^{10} (d) Time period T² = $4 \pi^2 a^3/GM$ = $[4 \pi^2 (8.4 \times 10^6)^3]/[6.67 \times 10^{-11} \times 6 \times 10^{24}]$ = 2.12 hours

Solution 33:

(a) Time period of revolution of satellite: T = 24x3600 = 86400 sec

Let "a" be the radius of the orbit.

 $T^2 = 4 \pi^2 a^3 / GM$

Or $a^3 = GM T^2/4 \pi^2$

```
= [6.67 \times 10^{-11} \times 6 \times 10^{24} \times 86400^{2}]/[4 \pi^{2}]
```

 $= 7.56 \times 10^{22}$

Or a = 42300 km (approx.)

(b) A complete revolution takes 24 hours, therefore a quarter of revolution is 24/4 = 6 hours

Solution 34:

Weight at north pole, $W_p \alpha 1/R^2$ Let h is distance of the satellite from earth. Weight of satellite at equator, $W_e \alpha 1/(R+h)^2$ Now, ratio is $W_p/W_e = (R+h)^2/R^2$

 $W_e = [W_p R^2]/[(R+h)^2]$

We are given, $W_p = 10 \text{ N}$ and h = 36000 km [Height of the geostationary satellite,]

Therefore, $W_e = [10x6400^2]/[(6400+36000)^2] = 0.23 \text{ N(approx.)}$

Solution 35:

The time period of revolution: $T^2 = 4 \pi^2 a^3/GM$

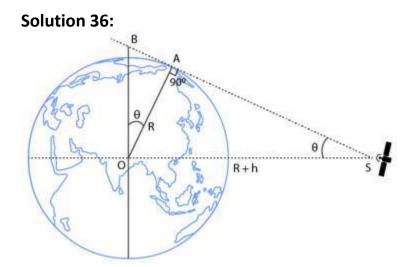
Or GM = $4 \pi^2 (R_2)^3 / T^2$

Or GM/R₁² = 4 π^2 (R₂)³/T² R₁²

Now, Acceleration due to gravity :

 $g = GM/R_1^2$

or g = 4 $\pi^2 (R_2)^3 / T^2 R_1^2$



form figure, angle BOA = angle OSA

In triangle AOS

 $\sin\theta = AO/OS$

= R/(R+h)

= 6400/(6400+36000)

= 0.15 (approx)

or $\theta = \sin^{-1}(0.15)$

Solution 37:

Let KE_i be initial KE and PE_i initial potential energy of the system.

 $KE_i = (1/2)mv^2$ and $PE_i = -GMm/R$

KE_f = 0 [at the maximum height]

And PE at height h is h = 6400 kmAnd $PE_f = -GMm/(R+h)$

Now, From conservation of energy, $KE_i + PE_i = KE_f + PE_f$

 $=> (1/2)mv^2 - GMm/R = -GMm/(R+h)$

 $=> (1/2)mv^{2} = GMm[(-R+R+h)/R(R+h)] = GMmh/R(R+h)$

Or $v^2 = 2GMh/R(R+h)$

```
= [2x6.67x10^{-11}x6x10^{24}x6400x10^{3}]/[2x(6400x10^{3})^{2}]
```

= 7.9 km/s

Solution 38:

Let KE_i be initial KE and PE_i initial potential energy of the system.

 $KE_i = (1/2)mv_i^2$ and $PE_i = -GMm/R$

Final KE = $KE_f = (1/2)mv_f^2$

Final potential energy = $PE_f = 0$

Using energy conservation, we have $KE_i + PE_i = KE_f + PE_f$

$$\Rightarrow \frac{1}{2}mv_i^2 - \frac{GMm}{R} = \frac{1}{2}mv_f^2$$

$$\Rightarrow \frac{15^2}{2} - \frac{6.67 \times 10^{-7} \times 6 \times 10^{24}}{6400} = \frac{1}{2} v_f^2$$

$$\Rightarrow v_f = \times 10^4 \text{m/s} = 10 \text{km/s}$$

Solution 39:

We have, $(1/2) \text{ mv}^2 = \text{GMm/R}$

or R = $2GM/v^2$

 $R = [2x6.67x10^{-11}x6x10^{24}]/[(3x10^8)^2]$

R = 9 mm (approx.)