Introduction to Physics

Exercise Solutions

Solution 1:

(i) Linear momentum can be written as "mv"

Dimensions of Linear momentum: mv = [MLT⁻¹]

(ii) Frequency can be written as "1/T", where T is time.

Dimensions of Frequency: $1/T = [M^0L^0T^{-1}]$

(iii) All units of pressure represent some ratio of force to area

So, dimensions of pressure: Force/Area = $\frac{[MLT^{-2}]}{[L^2]}$ = $[ML^{-1}T^{-2}]$

Solution 2:

(a) Dimensions of Angular speed, $\boldsymbol{\omega}$

We know, $\omega = \theta/t$ Dimensions are [M⁰L⁰T⁻¹]

(b) Dimensions of Angular acceleration, α We know, $\alpha = \omega/t$ So required dimensions are $=\frac{[M^0L^0T^{-1}]}{[T]} = [M^0L^0T^{-2}]$ [using (a) result)]

(c) Dimensions of Torque, τ and

We know, $\tau = Fr$

So, $\tau = [MLT^{-2}][L] = [ML^2T^{-2}]$

(d) Dimensions of Moment of Inertia, I

Here I = $Mr^2 = [M][L^2] = [ML^2T^0]$

Solution 3:

(a) Dimensions of Electric Field E = F/q = $\frac{[MLT^{-2}]}{[TI]}$ = [MLT⁻³I⁻¹]

(b) Dimensions of Magnetic field B = F/qv = $\frac{[MLT^{-2}]}{[TI][LT^{-1}]}$ = [MT⁻² I⁻¹]

(c) Dimensions of Magnetic permeability $\mu_0 = (Bx2 \pi a)/I = \frac{[MT^{-2}I^{-1}][L]}{[I]} = [MLT^{-2}I^{-2}]$

Solution 4:

- a) Dimensions of Electric dipole moment p = qI = [IT] [L] = [LTI]
- (b) Dimensions of Magnetic dipole moment $M = IA = [I][L^2] [L^2I]$

Solution 5:

Planck's constant can be written as, h = E/vWhere E = energy and v = frequency

$$=>$$
 h = E/v = $\frac{[ML^2T^{-2}]}{[T^{-1}]}$ = [ML² T⁻¹]

Solution 6:

(a) Dimensions of specific heat capacity,

$$c = Q/m\Delta T = \frac{[ML^2T^{-2}]}{[M][K]} = [L^2 T^{-2}K^{-1}]$$

(b) Dimensions of coefficient of linear expansion,

$$\alpha = \frac{L_1 - L_2}{L_0 \, \Delta T} = \frac{[L]}{[L][R]} = K^{-1}$$

(c) Dimensions of gas constant,

$$R = PV/nT = \frac{[ML^{-1}T^{-2}][L^3]}{[mol][K]} = [ML^2 T^{-2}K^{-1} (mol)^{-1}]$$

Solution 7:

As per given instruction, considering force, length and time to be the fundamental quantities

```
(a) Density = mass/volume ...(1)
```

```
and, mass = Force/acceleration = (Force × time^2)/displacement.
```

(1)=> Density = {(Force × time^2)/displacement}/Volume

```
Dimensions of Density = [FL^{-4}T^2]
```

(b) Pressure = F/A Dimensions of A = [L²] Dimensions of Pressure = [FL⁻²]

(c) Momentum = mv = (force/acceleration) x velocity = [F/LT⁻²] x [LT⁻¹] = [FT]

```
Dimensions of Momentum [FT]
```

(d) Energy = $\frac{1}{2}$ mv² = Force/acceleration x (velocity)²

$$=\frac{[F]}{[LT^{-2}]} [LT^{-1}]^2 = [FL]$$

Dimensions of Energy = [FL]

Solution 8:

Given: acceleration due to gravity at a place is 10 m/s^2 Convert units into cm/min²

Here, g = $10 \text{ m/sec}^2 = 36 \text{ x} 10^5 \text{ cm/min}^2$

Solution 9:

Average speed of a snail = 0.020 miles/hour (Given) Average speed of a leopard = 70 miles/hour (Given)

In SI Units: 0.020 miles/hour = (0.02x1.6x1000)/3600 = 0.0089 m/s [Using 1 mile = 1.6 km = 1600m] And, 70 miles/hr = (70x1.6x1000)/3600 = 31 m/s

Solution 10:

The height of mercury column in a barometer in a Calcutta laboratory was recorded to be 75 cm. (Given) Say, h = 75 cm Calculate pressure in SI and CGS units. Pressure = hpg = $10 \times 10^4 \text{ N/m}^2$ approx

In C.G.S. units, Pressure = 10×10^5 dyne/cm²

Solution 11: Write power 100 watt in CGS units.

In S.I. units: 100 watt = 100 Joule/sec In C.G.S. unit = 10⁹ erg/sec

Solution 12:

Given: 1 microcentury = $10^{-6} \times 100$ years. 1 year = 365 x 24 x 60 min Or 1 microcentury = $10^{-4} \times 365 \times 24 \times 60$ min So, 100 min = $10^{5}/52560 = 1.9$ microcentury

Solution 13:

Given: surface tension of water is 72 dyne/cm

In S.I units: 72 dyne/cm = 0.072 N/m

Solution 14:

K = kl^a ω^{b} ; where k is a dimensionless constant, K = kinetic energy and ω = angular speed To find: a and b Now, K = [ML²T⁻²]

 I^{a} = $[\mathsf{M}\mathsf{L}^2]^{\,\mathsf{a}}$ and ω^{b} = $[\mathsf{T}^{\text{-1}}]^{\mathsf{b}}$

=> [ML²T⁻²] = [ML²]^a [T⁻¹]^b [using principle of homogeneity of dimension]

Equating the dimensions, we get $2a = 2 \Rightarrow a = 1$ $-b = -2 \Rightarrow b = 2$

Solution 15:

The relationship between energy, mass and speed of light is, $E \propto M^a C^b$ Where M = mass and C = speed of light or E = K M^a C^b(1) where K = constant of proportionality

Find the dimensions of (1)

 $[ML^{2}T^{-2}] = [M]^{a} [LT^{-1}]^{b}$

By comparing values, we have a = 1 and b = 2 So, we have required relation is E = KMC²

Solution 16:

Given: Dimensional formulae for $R = [ML^2I^{-2}T^{-3}]$ and Dimensional formulae for $V = [ML^2T^{-3}I^{-1}]$ Therefore,

 $[ML^{2}T^{-3}I^{-1}] = [ML^{2}I^{-2}T^{-3}] [I]$

=> V = IR

Solution 17:

L = length, M = mass and F = Force Here, $f = KL^aF^bM^c...(1)$

Dimension of frequency, $f = [T^{-1}]$ or $[M^0L^0T^{-1}]$ Dimension of length, L = [L]Dimension of mass, $M = [ML^{-1}]$ Dimension of force, $F = [MLT^{-2}]$

```
(1)=> [M^{0}L^{0}T^{-1}] = K [L]^{a} [MLT^{-2}]^{b} [ML^{-1}]^{c}
Equating both sides, we get
b + c = 0
-c + a + b = 0
-2b = -1
Solving above three equations , we have
a = -1, b = \frac{1}{2} and c = -\frac{1}{2}
```

Therefore, frequency is

 $f = KL^{-1}F^{1/2}M^{-1/2}$

$$f = KL^{-1}F^{1/2}M^{-1/2} = \frac{K}{L}\sqrt{\frac{F}{M}}$$

Solution 18:

(a) Dimension of h = [L]

Dimension of S = F/I = $MLT^{-2}/L = [MT^{-2}]$ Dimension of density = $M/V = [ML^{-3}T^{0}]$ Dimension of radius = [L] Dimension of gravity = $[LT^{-2}]$ Now,

 $\frac{2S\cos\theta}{\rho rg} = \frac{[MT^{-2}]}{[ML^{-3}T^{0}][L][LT^{-2}]} = [M^{0}L^{1}T^{0}] = [L]$

Relation is correct.

(b) Let velocity = v = $\sqrt{(p/\rho)}$ (1) Dimension of v = [LT⁻¹] Dimension of p = F/A = [ML⁻¹T⁻²] Dimension of $\rho = m/v = [ML^{-3}]$

Substituting dimensions in (1), we have

$$\sqrt{\frac{p}{\rho}} = \sqrt{\frac{[ML^{-1}T^{-2}]}{[ML^{-3}]}} = [L^2T^{-2}]^{1/2} = [LT^{-1}]$$

Therefore, relation is correct.

(c) Dimension of V = $[L^3]$ Dimension of p = $[ML^{-1}T^{-2}]$ Dimension of r⁴ = $[L^4]$ Dimension of t = [T]Dimension of $\eta = [ML^{-1}T^{-1}]$

πpr ⁴ t_	[ML ⁻¹ T ⁻²][L ⁴][T]
8ŋl	[ML ⁻¹ T ⁻¹][L]

Therefore, relation is correct.

(d) Dimension of $v = [T^{-1}]$ Dimension of m = [M]Dimension of $g = [LT^{-2}]$ Dimension of I = [L]Dimension of inertia = $[ML^2]$

$$\sqrt{(mgl/l)} = \sqrt{\frac{[M][LT^{-2}][L]}{[ML^2]}} = [T^{-1}]$$

Therefore, relation is correct.

Solution 19:

Dimensions of a = [L] Dimensions of x = [L] LHS $\int \frac{dx}{\sqrt{a^2 - x^2}} = \int \frac{L}{\sqrt{L^2 - L^2}} = [L^0]$ RHS $\frac{1}{a} \sin^{-1} \left(\frac{a}{x}\right) = [L^{-1}]$ $\int \frac{dx}{\sqrt{a^2 - x^2}} \neq \frac{1}{a} \sin^{-1} \left(\frac{a}{x}\right)$