
Chapter 6 
THE DEFINITE INTEGRAL 

§ 6.1. Statement of the Problem. 
The Lower and Upper Integral Sums 

Let a function f (x) be defined in the closed interval [a, b]. The 
following is called the integral sum: 

n-1 

In=~ f (Si) llxi, 
i=o 

where a=X0 < X1 < X2 <· .. < Xn-i < Xn=b, 

!lxi=Xi+i-xi; S;E[xi,xi+il (i=O, 1, ... ,n-1). 

n-1 

The sum Sn= ~Mi !lxi is called the upper (integral) sum, and 
i=O 

n-1 

sn = ~ mi !lxi is called the lower (integral) sum, where Mi= 
i=O 

=sup f (x) [mi= inf f (x)] for x E [xi, xi+il · 
The definite integral of the function f (x) on the interval [a, b] is 

the limit of the integral sums 

b n-1 

~ f (x) dx =Jim .~ f (Si) !lxi when max I !lxi 1--r 0. 
a 1=0 

If this limit exists, the function is called integrable on the inter­
val [a, b]. Any continuous function is integrable. 

6.1.1. For the integral 
n 

~sin xdx 
0 

find the upper and lower integral sums corresponding to the division 
of the closed interval (0, n] into 3 and 6 equal subintervals. 
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Solution. Divide the closed interval [O, n] into 3 equal parts by 
the points: 

11 211 
X0 =0, X1 =3 1 X2 =3 1 X3 =:it. 

The function sinx increases monotonically on the interval [ 0, -i-] . 
and therefore for this interval we have m0 =sin0=0, M0 = 

=sin i- = ~3 . The least value of the function on the interval 

l .n 2n] · · n V3 d th t t 1 · M 3 , 3 ts m1 =sm 3 = - 2-, an e grea es va ue 1s 1 = 

=sin~= I. On the interval [2;, n] the function sinx decreases 

monotonically and therefore 

m2 =Sinn=0, 

11 Since all tuk are equal to 3 , 

~ 11 ( y3 ) 11 y3 s3 = .£...mk !!l.xk= 3 O +-2-+ O =-6 - ~o.907, 
k=O 

Sa= i: Mk !!l.xk = ~ (~+I+ ~3) = 11 (V~ +I) ~ 2.86. 
k=o 

When subdividing the closed interval [O, n] into 6 equal intervals 
• 11 11 11 211 

by the points X0 =0, x1 = 6 , x2 =3. X3 =2• x,=3, Xs = 
511 l = 6, X6 = n, we find by ana ogy: 

m0 =0, 

• 11 l 
m1=Sln6=2• 

• 11 V3 
m2 = sm3 =-2-, 

. 2't y3 
m3 =Slll3=-2-, 

• 511 l 
m4 =sm 6 = 2 , 

m5 =sinn=0, 

M . 11 l -sm---
0- 6 - 2' 

M . 11 y3 
i=Sln 3=-2-, 

M 3 =sin ~ =I, 

• 211 y3 
M,=stn 3 =-2-, 

M . 511 I 
5=Sin5=2· 
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For this division we obtain 

1t 1t v-
S5 = "6 (mo+ m1 + · · · +m0)=5(1+ 3)~ 1.43, 

1t 1t v-Sa =5 (Mo+ M1 + ... +M0)=5(3+ 3) ~ 2.48. 

As would be expected, the inequalities 
n 

S3 ~ s6 ~ \ sin x dx ~ s6 ~Sa 
,) 

0 

hold true (the exact value of the integral is equal to 2). 

6.1.2. At what 6 > 0 does the relation 

I~ sinxdx-~1sinsk~xkl < 0.001 

follow from the inequality max ~xi< 6. 
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Solution. Since sn < In <Sm then for the required inequality to 
hold true it is sufficient that the upper and the lower integral sums 
differ by less than 0.001: 

0 <Sn-Sn< 0.001. 
But 

n-1 n-1 

S -s = ~ (M .-m.) ~X· < c5 ~ (M ·-tn·) n n ~ i z 1 ~ 1 , , 
i=o i=o 

where Mi and mi are the greatest and the least values of the func­
tion sin x on the interval [xi, xi+1] (i = 0, 1, ... , n-1). Assuming 

for simplicity that the point ; is chosen as one of the points of 

division and taking advantage of monotonicity of the function sin x 

on the intervals l 0, ; J and [ ~ , n J , we obtain 

n-1 

~(Mi-mi)=2(sin ~ -sin0)=2. 
1=0 

Consequently, the required inequality is satisfied if 2c5 < 0.001, 
i.e. c5 < 0.0005. 

6.1.3. Show that the Dirichlet function [see Problem l.14.4 (b)] 
is not integrable in the interval [O, l]. 

Solution. In dividing the closed interval [O, l] into a fixed num­
ber of parts we must take into consideration, in particular, two 
possible cases: (1) all points Si are rational; (2) all points Si are 
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irrational. In the first case the integral sum is equal to unity, in 
the second to zero. Hence, no matter how we reduce the maximum 
length of subintervals, we always get integral sums equal to unity 
and integral sums equal to zero. Therefore, the limit of integra 1 
sums is non-existent, which means that the Dirichlet fund ion is 
not integrable on the interval [O, l]. 

6.1.4. Find the distance covered by a body in a free fall within 
the time interval from t =a sec to t = b sec. 

Solution. A body moves in a free fall with constant acceleration g 
and initial velocity v0 = 0. Consequently, the velocity at the instant t 
is equal to the velocity increment within the time interval from 0 
to t, i. e. v (t) = ~v. For a short time period M the velocity incre­
ment is approximately equal to the acceleration at the instant t 
multiplied by M. But in our case acceleration is constant, there­
fore ~v =gM, and hence, v (t) =gt, since M = t-0 = t. 

Let us subdivide the time interval from t=a to t=b into n 
equal parts; then the duration M of each subinterval will be equal 

to M = b-a. We assume that during each subinterval of time the 
n 

body moves uniformly with a velocity equal to its velocity at the 
beginning of this interval, i.e. 

V0 =ga, 

( b-a) v1 = g a+ 1 -n- , 

( b-a) V2 =g a+2 -n- , 

Vn-l =g [a+(n-1) b n a]. 

Whence we find the distance covered by the body during the ith 
V· (b-a) 

subinterval: ' . The entire distance covered by the body is 
n 

approximately equal to 

b-a 
S;::::: Sn =-n- (v0 + V1 + ... + Vn_ 1 ) = 

=-g na+l-+2-+ ... +(n-l)- = 
b-a [ b-a b-a b-aJ 

n n n n 

-(b ) [ + b-an{n-1)] - -a g a ""112 2 • 

With n increasing the distance covered can be evaluated more accu-
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rately. The exact value of s is found as the limit Sn as n _,. oo: 

s = lim sn = Jim g (b-a) [a+ ~ (b-a) ( 1 _ _.!._)] = 
n-+r£ n-+® n 

=g(b-a) [a++(b-a)J =~ (b2 -a2). 

Since sn is an integral sum 
n-1 

Sn=LVidfi 
i=o 

the distance s is an integral: 
b b 

s= S vdt= Sgtdt=; (b2 -a2). 

a a 

6.1.5. Proceeding from the definition, compute the integral 
1 

~ xdx. 
0 

Solution. By definition, 

1 n-1 

~ xdx= lim .~ £i dxi as max dxi _,. 0, 
o t=O 

where 
0=X0 < X1 < ... <Xn=1, SiE [xi, Xi+ 1 ], 

dXi=Xi+i-Xi. 

1. Subdivide the closed interval [O, 1] 
points xi=~ (i=O, 1, 2, ... , n). 

into n equal parts by the 

The length of each subinterval is equal I I to dxi = - , and - _,. 0 n n 
as n-... oo. 

Let us take the right-hand end-points of the subintervals as the 

points Si: si=Xi+i=i~l(i=O, 1, ... , n-1). 
Form an integral sum: 

n-1 

I =S =L i+1._.!_=_.!_ 
n n i=o n n n2 

n (n+ I) 
(1+2+ ... +n)=2T-· 

As n- oo the limit of this sum is equal to 

. n+I I 
hm -2-=-2. 

n- e» n 
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Hence, 
I 

Sxdx= ~. 
0 

2. Using this example, we will show that for any other choice 
of points ~i the limit of the integral sum will be the same. 

Take, for instance, the mid-points of the subintervals as si: Si = 
i +..!.. 

=--2 (i=O, 1, ... , n-1). 
n 

Form an integral sum 
n-l 
~ 2i + l l l [ l 2n2 l 

In = ~ 2n . n = 2n2 1 + 3 + 5 + ... + (2n- l) J = 4n2 = 2 . 
i:O 

Hence 

6.1.6. Proceeding from the definition, compute the integral: 
b 

~ xmdx (m=l=-1, 0 <a< b). 
a 

Solution. In this example the following points can be conveniently 
chosen as points of division: 

I I " 

Xo =a; X1 =a ( : r , · .. , Xi= a ( : ) n , • • • , Xn =a (: r =' b. 

They form a geometric progression with the common ratio 

q=(!)n>l. 
The length of the ith subinterval is equal to 

tlxi= aqi+1_aqi = aqi (q-1). 

Therefore the maximum length of the subintervals equals max tlxi = 
fl-I I 

= aqn-1 (q- 1) =a ( ! ) n [ ( ~) n -1 J and tends to zero with 

increasing n, since lim q = 1. 
fl -+ 00 

Now let us choose the right-hand end-points of the subintervals 
as Si: Si= xi+i = aqi+i (i = 0, 1, 2, ... , n-1). 
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Form an integral sum: 
n-1 n-1 

ln= ~ srl1xi= "!iamq<i+umaqi(q-l)= 
i=O i=O 

= am+1 (q-1) qm [l + qm+1 + ... + q<n-1) <m+t>] = 
q<m+l)n_ I q-1 = am+1 (q- l)qm = (bm+t_am+l) qm --'-...,..--qm+l-l qm+l-( • 

Let us calculate the limit of the integral sum as max Axi - 0, 
i.e. as q- 1: 

Jim I = (bm+1_am+1) lim qm q-1 = (bm+1_am+1) _1_. 
n q ... J qm+l_I m+I 

Thus, 
b 

S xmdx=-1- (bm+1_am+1) 
m+l · 

a 

6.1.7. Proceeding from the definition, compute the integral: 

2 sd:. 
I 

Solution. Subdivide the interval [l, 2] into n parts so that the 
points of division xi (i = 0, 1, 2, ... , n) form the geometric pro­
gression: 

whence q = -j12. 
The length of the ith subinterval is equal to 

dXi = qi+t_qi =qi (q- 1), 

and so maxl1xi=qn- 1 (q-l)-O as n-oo, i.e. as q- l. 
Now let us choose the right-hand end-points of the subintPrvals 

as the points Si• i.e., Si= xi+i = qi+i. 
Form an integral sum: 

n-1 n-1 ( 1 ) 
I -., I · n I n 

In = L T.'" dXi = L -i - 1 q' (q- 1) = - ( q - l) = - 1 n 2 - 1 • 
i=O "'' i=O q + q n 

1. I 1· n ( 2 ,i--I) I 2 tm n= Im l = n , 
n-+ex> n-•oo 

I 
- I 

since 2n -l,....,,-ln2 as n-+oo. 
n 

2 
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And so, 
2 

Sdx 
-x=ln2. 

I 

6.1.8. Evaluate the integral 
5 

I=~ V25-x2 dx, 
0 

proceeding from its geometric meaning. 

Solution. The curve u=V25-x2 is the upper half of the circle 
x~ + y2 = 25. The portion of the curve corresponding to the variation 
of x from 0 to 5 lies in the first quadrant. Hence, we conclude 
that the curvilinear trapezoid bounded by the lines x = 0; x = 5; 
y = 0, and y = V25-x2 is a quarter of the circle x2 + y2 = 25; and 

25n 
its area is equal to - 4-. 

Hence, 
5 

I= S V25-x2 dx= 2~n. 
0 

6.1.9. Evaluate the integral, proceeding from its geometric 
meaning: 

6.1.10. Prove that 

!J A 

Fig. 59 

5 

I=~ (4x-l)dx. 
I 

Solution. The integral 
x 

I= ~ V a2 -x2 dx 
0 

expresses the area SoAMx of the por­
tion of a circle of radius a lying in 
the first quadrant (see Fig. 59). 
This area equals the sum of the 
areas of the triangle OMx and the 
sector OAM. 

S xy x v-2--2 
01ux=2=2 a -x. 
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The area of the sector 

where sin t = _.:... a 

Hence, 

and consequently, 

S - I 2/ 
OAM-2a ' 

a2 • x 
SaAM= 2 arcsma, 
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6.1.11. Proceeding from the geometric meaning of the integral, 
show that 

2:rt I I 

(a) ~ sin 3 xdx=0; 
0 

(b) ~ e-x2 dx=--= 2 ~ e-x2 dx. 
-1 0 

Solution. (a) The graph of the function y = sin 3 x is shown in 
Fig. 60. Let us show that the area situated above the x-axis is 
equal to that lying below this axis. Indeed, let :rt~ x ~ 2:rt, then 
x=n+x1 where O~x1 ~:rt and sin3 x=sin3 (:rt+x1)=-sin3 x1 • 

Therefore, the second half of the 
graph is obtained from the first one 
by shifting it to the right by :rt 
and using the symmetry about the 
x-axis. Hence, 

2:rt 

~ sin3 xdx= 0. 
0 Fig. 60 

6.1.12. Given the function f(x)=x3 on the interval [-2, 3), 
find the lower (sn) and the upper (Sn) integral sums for the given 
interval by subdividing it into n equal parts. 

6.1.13. Proceeding from the geometric meaning of the definite 
integral, prove that: 

:rt 

(a) ~ sin2xdx=O; 
0 

2 

(c) S (2x+ 1)dx=6; 
I 

2:rt 

(b) ~ cos3 x dx = O; 
0 

3 

(d) SV9-x2 dx= 9;. 
-3 
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6.1.14. Passing to the limit from the integral sums, compute the 
integral 

4 

I=~ x3 dx, 
I 

by subdividing the interval [1, 4]: 
(a) into equal parts; 
(b) by points forming a geometric progression. In both cases 

choose ~i as: 
(1) left-hand end-points of the subintervals; 
(2) right-hand end-points of the subintervals; 
(3) mid-points of the subintervals [xi, xi+il· 

§ 6.2. £'valuating Definite Integrals by the 
Newton-Leibniz Formula 

The following is known as the Newton-Leibniz formula: 
b 

~ f (x} dx= F (x) lb= F (b)-F (a), 
a a 

where F (x) is one of the antideri v atives of the function f (x), i.e. 

F'(x)-f(x) (a::;;;;x::;;;;b). 

6.2.1. Evaluate the integral 

V3 

S dx 
I= 1+x~ • 

I 

Solution. Since the function F (x) =arc tan x is one of the anti­

derivatives of the function f (x) = 1 ;x2 , using the Newton-Leibniz 

formula we get 

V3 

S dx /Va v- n n n I= l+x2 =arctanx 1 =arctan 3-arctanl=3 - 4 = 12 • 
I 

6.2.2. Compute the integrals: 

n 
2 

(a) S sin 2x dx; 
0 

n 
2 r cos x 

(b) .l sina x dx; 
n 
6 
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6.2.3. Given the function 

I x2 for 0 ~ x ~ I , 
f (x) = \ Vx for 1 ~ x ~ 2. 

2 

Evaluate ~ f (x) dx. 
0 

Solution. By the additivity property of the integral 
2 I 2 I 2 

~ f (x) dx = ~ f (x) dx + ~ f (x) dx = ~ x2 dx + ~ Vx dx = 
0 0 I 0 I 

257 

I 3 2 _ 

= ~ I + ! x 21 = _!_ + 4 v 2 - ! = _!_ (4 v 2 - I) 3 3 3 3 3 3 . 
0 I 

6.2.4. Evaluate the integral 
2 

Solution. Since 

I=\ I 1-x I dx. 
0 

I 1 _ x I = I I -- x for 0 ~ x ~ I , 
) x-1 for I ~ x ~ 2, 

we obtain, taking advantage of the additivity property of the integral, 
2 I 2 

~ I I - x I dx = ~ (I - x) dx + ~ ( x - I ) dx = 
0 0 I 

I 2 

= - (I -x)2 I + (x- 1)21 =__!__+_I_= l 
2 2 2 2 • 

0 I 

6.2.5. Evaluate the integral 
b 

l=s~dx 
x ' 

a 

where a< b. 
b 

Solution. If 0 ~a< b, then f (x) = I; I =I, therefore ~ f (x) dx= 
a 

b 

=b-a. If a<b~O, then f(x)=-1 and ~f(x)dx=-b-(-a)= 
a 

b 
(' 

= a--b. Finally, if a< 0 < b, then divide the integral ~ f (x) dx 
a 
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into two integrals: 
b 0 b 

~ f (x)dx = ~ f (x) dx+) f (x) dx= b-(-a). 
a a 0 

The above three cases may be represented by a single formula: 
b 

S 1 ~ L dx =I b 1-1 a J. 
a 

Note. When evaluating integrals with the aid of the Newton-Leib­
niz formula attention should be paid to the conditions of its legi­
timate use. This formula may be applied to compute the definite 
integral of a function continuous on the interval [a, b] only when 
the equality F' (x) = f (x) is fulfilled in the whole interval [a, b] 
[F (x) is an antiderivative of the function f (x)]. In particular, the 
antiderivative must be a function continuous on the whole interval 
[a, b]. A discontinuous function used as an antiderivative will lead 
to the wrong result. 

6.2.6. Find a mistake in the following evaluation: 

v3 

S dx I 2x Iva I [ t V3 ] n l+x2 = 2 arc tan l-x2 0 = 2 arc an(- )-arctanO =-6 , 
0 

where ( f arc tan 1 
2xx2 )' = 1 ~x2 (x =¥= 1). 

Solution. The result is a priori wrong: the integral of a function 
positive everywhere turns out to be negative. The mistake is due 

to the fact that the function ~arc tan 1 
2xx2 has a discontinuity 

of the first kind at the point x = I: 

. I 2x n 
It m 2 arc tan 1 -x2 = 4 ; 

.-- 1-0 

. I 2x n 
ltm 2 arctan~=-4· x-1+0 X 

The correct value of the integral under consideration is equal to 

¥3 

S 1 ~x2 =arc tanx 1~3 =arc tan V3-arc tan O = ~ . 
0 

Here the Newton-Leibniz formula is applicable, since the function 

F (x) =arc tan xis continuous on the interval [ 0, ~ J and the equality 

F' (x) = f (x) is fulfilled on the whole interval. 



§ 6.2. Newton-Leibniz Formula 259 

6.2.7. Find a mistake in the following evaluation of the integral: 

n :rt 

S dx r dx 
l-t-2sin 2x=.) cosix+3sin 2 x= 

0 0 

cos 2 x I r-\n __c!!__ In 
=. 1 +3 tanzx = V"3 arc tan (V .1 tan x) 0 

~~o. 

0 

(The integral of a function positive everywhere turns out to be 
zero!) 

Solution. The Newton-Leibniz formula is not applicable here, 

since the antiderivative F (x) = h arc tan (V3 tan x) has a discon-

tinuity at the point x = ~ . Indeed, 

I v-F (x) = Jim ,r- arc tan ( 3 tan x) = 
rr x~~-or3 

Jim 
x~2-0 2 

I n 
= ,r- arctan ( +oo) = ,r- , 

r 3 2 r 3 

Jim F (x) = Jim .)_ arctan (V3tan x) = 
rr rr r 3 

x~ 2 +o x~ 2 +o 

I n 
= V 3 arc tan (-oo) = - 2 V3 . 

The correct result can be obtained in the following way: 

n rt 

S dx r I dx 
cos 2 x+ 3 sin 2 x = J cot 2 x+ 3 sin2 x = 

0 0 

= - ; 3 arc tan (J/3 cot x) J: = V:r . 
rt can also be found with the aid of the function F (x) = 
= / 3 arc tan (l/3 tan x). For this purpose divide the interval of 

integration [O, n) into two subintervals, [ 0, ~ J and [ ~ , n J , and 

take into consideration the above-indicated limit values of the func­

tion F (x) as x--+ ~ + 0. Then the antideriva tive becomes a conti­

nuous function on each of the subintervals, and the Newton-Leibniz 

9* 
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formula becomes applicable: 

.'l 

11 2 11 

S cos 2 x~-\ sin~x= 5 + 5 = 
0 0 11 

2 

= -;r- arc tan V 3 tan x T + .r _ arc tan 3 tan x i = I ( --- ) In: I (V- ) 1:-t 
r3 o r3 2 

= ;3 [(i-- 0)+(0-(-~))J= V3 · 
6.2.8. Compute the integral 

Solution. V,- I+ c2os 2x = V 2 cot x =I cos x / = 

= { cosx, 

-cosx, 

O~x~ ~, 
ll 

2 ::::::;; x::::::;;n. 
Therefore 

n: 
11 2 n: 

J V 1 + c;s 2x dx = J cos x dx + J (- cos x) dx = 
0 0 n: 

2 

=sinxl0~ -1-(-sinx)I~ =(l-0)+(0-(-1))=2. 

Note. If we ignore the fact that cos x is negative in [ ~ , n] 
and put 

"I /1+cos2x y 2 =COSX, 

we get the wrong result: 

:rt 

~ cosxdx=sinxl~=O. 
0 
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6.2.9. Evaluate the integral 

Solution. We have 

IOO:rt 

I = ~ V 1-cos2x dx. 
0 

Vi-cos 2x= V2isinx1. 

Since I sin x I has a period n, then 
JOO:rt IOO:rt 

~ Vl-cos2xdx=V2 ~ Jsinxldx= 
0 0 
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:rt 

= 100 V2 ~ sin xdx= 200 V2. 

6.2.10. Evaluate the integrals: 

-1 

(a) I= S (I I ~5x)a ; 
-2 

:rt 

(c) I= S sin 2 i- dx; 
-:rt 

e' 

(e) I= s x ~~ x ; 

I 

(g) f = s I _;:2x dx; 
0 
3 

(i) I j' __ x_d_x __ 
= -Vx+I+ -Vsx+I 

0 

:rt 
2 

(j) I= ~ V cosx-cos3 xdx; 

(k) I= 

:rt 
2 
V3 

3 • I dx 

(I+ x2) 2 
I 

0 

-2 

(b)J=S x2~!; 
-3 
:rt 
4 

(d) /= s x2:1 dx; 
0 
2 

(f) I = r sin•~ dx; J x· 
I 

:rt 
I 

S x3 dx 
(h) I= I +xs ; 

0 
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§ 6.3. Estimating an Integral. 
The Definite Integral as a Function of Its Limits 

1. If f (x)~qJ(x) for a~x~b, then 
b b 

~ f (x)dx~ ~ qJ(x)dx. 
a a 

In particular, 

If f (x)dx I~ f If (x) I dx. 

b 

2. m(b-a)~ ~ f(x)dx~M(b-a), 
a 

where m is the least value, and M the greatest value of the func­
tion f (x) on the interval [a, b] (estimation of an integral). 

3. If the function f (x) is continuous on the interval [a, b], then 
b 

~ f (x) dx= f m (b-a), a< s < b 
a 

(mean-value theorem). 
4. If the functions f (x) and qi (x) are continuous on [a, b], and 

qJ (x}, in addition, retains its sign on this interval, then 
b b 

~ f (x) qi (x) dx = f (£) ~qi (x) dx, a < s < b 
a a 

(generalized mean-value theorem). 
x a 

5. :x Sf (t) dt = f (x); :x Sf (t) dt = - f (x) at each point x of 
a x 

continuity of the function f (x). 

6.3.1. Estimate the following integrals: 

3 

(a) I= S V 3 -~ x~ dx; 
I 

2 

S x2+5 
(c) I= x2+2 dx. 

0 

n 
3 

(b) I= s si: x dx; 
n 
4 

Solution. (a) Since the function f (x) = V 3 + x2 increases mono­
tonically on the interval [1, 3j, then m=2, M=V30, b-a=2. 
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Hence, the estimation of the integral has the form 
3 

2 · 2 ~ ~ V 3 + x3 dx ~ V 30 · 2, 
I 

i. e. 
3 

4 ~ ~ i13 +x3 dx~ 2 V30 ~ 10.95. 
I 

(b) The integrand f (x) = si~ x decreases on the interval [ ~ , ~ J • 
since its derivative 

f' ( ) = x cos x- sin x = (x- tan x) cos x < O 
x x2 x2 • 

Hence, the least value of the function: 

m = f (;) = 3 ~3- ' 

its greatest value being 

Therefore 

i. e. 

M=f(~)= 2 ~i. 
:rt 

3 

~y:f (_:: _ _::) ~ r ~dx~ 2 ¥2 (_:: _ _::) 
21t 3 4 -....-:: J x -....-:: 1t 3 4 ' 

:rt 

4 

:rt 
;J 

V3 1· sinx y2 9 0.22 ~ - 8- ~ v -x- dx ~ - 6- ~ 0.-4. 
:rt 

4 

6.3.2. Estimate the absolute value of the integral 
19 

S ~d I +xs X. 
10 

Solution. Since I sin xi~ 1, for x~ 10 the inequality 

I t~:s J < 10-s is fulfilled. 

Therefore 
19 

S ~dx < (19-10) 10-s < 10-~ 
I +x8 

10 

(the true value of the integral ~ -10- 8 ). 
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6.3.3. Which of the two integrals 
I 

~ Vxdx, 
0 

is the greater? 

Solution. As is known, Vx > x3 for 0 < x < 1. Therefore 
I I 

~ Vxdx > ~ x3 dx. 
0 0 

6.3.4. Prove the inequalities: 
l I 

\
. x7 dx I 

(a) 0 < 3/ < 8; 
b V I +xs 

(b) 1 < r ex2 dx < e. 
b 

x7 
Solution. (a) Since 0 < 3 / < x1 for O < x ~ 1, 

V l+xB 
then 

I I 

S x7 dx I x8 11 I 0 < 3 , < . x1 dx =--= 8 o = 8 . 
V l+x8 

0 0 

(b) Since for 0 < x < 1 there exists the inequality 1 < e"2 < e, 
then 

I l I 

~ dx < ~ e"2 dx < ~ edx. 
0 0 0 

Hence the inequality under consideration holds true. 

6.3.5. Prove the inequality 
n 
2 s e-R sin x dx < 2~ (1-e-R) (R > 0). 
0 

Solution. Since the function f (x) = sinxx decreases on ( 0, ; ) [see 

Problem 6.3.1 (b)), then for 0 < x < i 
f (x) =sin x > f ( ~) = ~ • 

x \ 2 1t 

Hence, on this interval sin x > ~ x, therefore 
1t 

2R --x e-Rsir.x<e n 
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and 

6.3.6. Prove that for any functions f (x) and g (x), integrable on 
the interval (a, b), the Schwarz-Bunyakovsky inequality takes place: 

Ii f (x) g (x) dx I ~ -v I f 2 (x) dx I g2 (x) dx. ·­

Solution. Consider the function 

F (x) = [f (x)-J.g (x)]2, 

where J. is any real number. Since F (x) ;;;:: 0, then 
b 

~ [f (x)-J.g(x)]2 dx :;;=:: 0, 
a 

or 
b b b 

J.,2 ~ g2 (x) dx-n ~ f (x) g (x)dx+ ~ f2 (x) dx :;;=:: 0. 
a a a 

The expression in the left side of the latter inequality is a quad­
ratic trinomial with respect to J.. It follows from the inequality that 
at any A, this trinomial is non-negative. Hence, its discriminant is 
non-positive, i. e. 

{
b J2 b b 
~ f (x) g (x)dx - j f2 (x)dx) g2 (x) dx ~ 0. 

Hence 

I If (x) g (x) dx I ~vi f f2 (x) dx j g2 (x) dx, 

which completes the proof. 

6.3.7. Estimate the integral from above 
I 

(' sin x 
I= j I +x2dx. 

0 

Solution. By the generalized mean-value theorem we have 
l 1 

S sin x d . t s dx · t t 
1 + x~ x = s m "' 1 + x2 = s m "' a re an x =-Tsins(O < s < l). 

0 0 



266 Ch. VI. The Definite Integral 
~~~~~~~~~~~ 

Since the function sin x increases on the interval [O, I] then 
sin£< sin I. Whence we get an upper estimate of the integral: 

1 

5 sin x :rt • 

1 +x2 dx < T Sin I~ 0.64. 
0 

It is possible to get a better estimation if we apply the same 
theorem in the form 

I 1 

5 sin x I 5 . I t l+x2 dx = 1 + 62 Sin xdx = 1 + 6£ (l-cos I)< -cos I~ 0.46. 
0 0 

6.3.8. Proceeding from geometric reasoning, prove that: 
(a) if the function f (x) increases and has a concave graph in the 

interval [a, b], then 
b 

(b-a) f (a) < 5 f (x) dx < (b-a) f(a) t f(b); 

a 

(b) if the function f (x) increases and has a convex graph in the 
interval [a, b], then 

b 

(b-a) f (a) t f (b) < 5 f (x) dx < (b-a) f (b). 
a 

Solution. (a) Without limitation of generality we may assume 
f (x) > 0. Concavity of the graph of a function means, in particu-

f(b) 

f(a) 

lar, that the curve lies below the chord 
!J through the points A (a, f (a)) and 

--,------ 8 
I .,.,...-""' I 
I ,...,.,. I 

-- ,.. ------le 
A1 I 

I I 

B (b, f (b)) (see Fig. 61). Therefore the 
area of trapewid aABb is greater than 
that of the curvilinear trapezoid boun­
ded above by the graph of the func­
tion, i. e. 

--t-::---'-~~~~~~.z b 

0 a b St (x)dx < SaABb= (b-a)· f (a)t f (b). 

Fig. 61 a 

The inequality 
b 

(b-a)f (a)<~ f (x)dx 
a 

is obvious. 
I 

6.3.9. Estimate the integral ~Vt -j-x'dx using 
0 
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(a) the mean-value theorem for a definite integral, 
(b) the result of the preceding problem, 

V-- x4 
(c) the inequality l +x4 < l +2 , 
(d) the Schwarz-Bunyakovsky inequality (see Problem 6.3.6). 

Solution. (a) By the mean-value theorem 

I 

I = ~ VI + x4 dx = V l + £ 4 , where 0 ~ £ ~ l. 
0 

But 

1 < V 1 + £4 < V2, 
whence 

l <I< V2 ~ l.414. 

(b) The function f(x)=Vl+x 4 is concave on the interval[O, l], 
since 

f"(x)=2xz(x4+3)>0 O~x~l. 
(l + x4)3/2 ' -..::::: 

On the basis of the preceding problem we get 

t < S Vt +x4 dx < 1 +{2 ~1.207. 
0 

I I 

( c) t < I = S Vt + x4 dx < S ( l + ~ ) dx = I + +cr = l . t. 
0 

(d) Put f (x) =Vt +x4 , g(x) =land take advantage of the Schwarz­
Bunyakovsky inequality 

I ~ V I + X4 dx / = I VI + x4 dx = I < { ~ ( I + x4) dx. ~ l2 dx = 
0 0 () 0 

= V1.2 ~ 1.095. 

6.3.10. Find the derivative with respect to x of the following 
functions: 

x' 

(a) F (x) = ~ Int dt (x > 0), 
x' 

(b) F(x)= ~ cos(t2 )dt (x>O). 
I 

K 
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Solution. (a) Write the given integral in the following way: 

c x 3 X 3 x 2 

F (x) = ~ In t dt + ~ Int dt = ~ Int dt - ~ Int dt, 
x2 c c c 

where c > 0 is an arbitrary constant. 
Now let us find the derivative F' (x) using the rule for differen­

tiating a composite function and the theorem on the derivative of 
an integral with respect to the upper limit: 

F; (x) =[~Int dt]' (x3)~-[I Int dt]' (x2)~ =In x3 3x2 - lnx2 2x = 
c ~ c x 2 

= (9x~ - 4x) In x. 
c Vx 

(b) F(x)=~ cos(t 2 )dt-t- ~cos(t2)dt= 
I C 

x 

.l. 
x Vx 

= - ~ COS (t2) df + ~ COS (tZ)d/; 
c c 

F'(x) =-[f cos (t2)dt]~ ( ~ t + [v(cos(t 2 )dt]' __ (Vx);= 
c x c v x 

I ( I ) I I I I = - cos 2 - 2 + cosx · .r- '= 2 cos 2 + .r- cos x. 
x x 2rx x x 2rx 

6.3.11. Find the derivative with respect to x of the following 
functions: 

2~ 0 

(a) F (x) = S si~ / dt; (b) F(x)=SVl+t 4 dt. 
0 x 

~ 

6.3.12. Find the points of extremum of the function F (x) = S si~t dt 
• 

.in the domain x > 0. 

Solution. Find the derivative 

F' (x) = [~ si~t dt I =-si1_:x 

The critical points are: 

x=n~ (n= l, 2, ... ), where sinx=O. 
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Find the second derivative at these points: 

F"(x) =xcosx~sinx; 
x 

I I F" (me) =-cos (me)= -(-l)n=FO. nn nn 

Since the second derivative is non-zero at the points x =mt 
(n= l, 2, ... ), these points are points of extremum of the function, 
namely: maxima if n is odd, and minima if n is even. 

6.3.13. Find the derivative of y, with respect to x, of the func­
tion represented parametrically: 

I' 3 

x= ~ Vz In zdz; y= ~ 22 ln zdz. 

' 
Vt 

Solution. As is known, 

Find x; and y;: 

• Yt Yx=-, · 
Xt 

I' ' 

x;=(~ Vzln zdz) (t3);=tlnt3 ·3t2 =9t3 lnt; 
I I' 

y; = ( ~ 22 In z dz)' (Vt); = - t In VI .~- = - ! Jlt Int; 
\vr VT 2 r t 

whence 

y~ = 9t31n t = -·36t2 Vt (t > O). 
_ _.!._ Vtln I 

4 

6.3.14. Find the limits: 

'• 
~sin Vx dx 

lim -0 --,,-­x3 (a) 
x~o 

(b) Jim 
x-+ oo 

x 

~ (arc tan x) 2 dx 
0 

x• 

Solution. (a) At x =--= 0 the integral ~sin Vx dx equals zero; it is 
0 

easy to check the fulfilment of the remaining conditions that ensure 
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the legitimacy of using the L'Hospital rule. Therefore 

l' sin Vxdx [r sin Vxdx]. tx2); . 

I. o I' o x• 1. 2xsinx 2 
xi~ xa = x1!!fi 3x2 = xl~l~ 3X2 = 3 . 

(c) We have an indeterminate form of the type 00 • Use the 
00 

L'Hospital rule: 

x 

2 ~ ex2 dx 
o ex2 

---- = lim 2--=0. 
ex2 x-+ + oo ex2 • 2x 

= Jim 
x~ + oo 

6.3. 15. Find the derivative ~~ of the following implicit functions: 

y x• 

(a) ~ e- 12 dt + ~ sin2 t dt = 0; 
0 0 

y x 

(b) ~ e1 dt + ~ sin t dt = 0; 
0 0 
x y 

(c) ~V3-2sin2 zdz+~costdt=O. 
1T 0 
2 

Solution. (a) Differentiate the left side of the equation with 
respect to x, putting y = y (x): 

[ y ]' [x' ]' ~ e-t2 dt . ~~+ ~ sin2 tdt (x2)~=0; 
0 y 0 x' 

e-Y2 ~~ + sin2 x2 • 2x = 0. 

Hence, solving the equation with respect to ~~, we get 

dy = -2xa+Y2 sin2 x 2 • dx 
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(c) Differentiate the left side of the equation with respect to x, 
putting y=y(x): 

[ S V3-2 sin2 z dz]' + [ S cost dt]' :~ = 0. 
:re 0 y 
2 x 

Whence 

V3-2 sin2x+cosy:~=O; dy V3-2 sin 2 x 
dx= - cosy 

6.3.16. Find: (a) the points of extremum and the points of 
inflection on the graph of the function 

x 

I=~ (t-1) (t-2)2 dt; 
0 

(b) curvature of the line defined by the parametric equations: 

(the Cornu spiral). 

Solution. (a) The function is defined and continuously differen­
tiable throughout the entire number scale. Its derivative 

I~= (x-1) (x-2)2 

equals zero at the points x1 = I, x2 = 2, and when passing through 
the point x1 it changes sign from minus to plus, whereas in the 
neighbourhood of the point x2 the sign remains unchanged. Conse­
quently, there is a minimum at the point x1 = l, and there is no 
extremum at the point x2 = 2. 

The second der·ivative 

1;=3x2 -10x+8 

vanisaes at the points x1 -= : , x2 = 2 and changes sign when pas­

sing through these points. Hence, these points are the abscissas of 
the points of inflection. 

(b) We have . v- :rtf2 x,=a ncos 2 , . v- . :n;f2 y,=a nsm 2 , 
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hence, 
, Yt nf!. 

Yx=-, = tan 9 , 
,, (y_:l; Vilt . 

Yxx= -,- = 'JI./!.• 
Xt - Xt a cos 3 -

2 

whence the curvature 
I y" I K = ---'-"--'--3,-

Vrrt 
a 

l t + (y'J21 T 

6.3.17. Prove that the function L(x), defined in the interval 
(0, oo) by the integral 

x 

S di 
l (x) = {, 

I 

is an inverse of the function ex. 

Solution. Let us take the derivative 

l' (x) = _!_ (x > 0). 
x 

Since the derivative is positive, the fund ion y ~= l (x) increases 
and, hence, has an inverse function 

X= l - 1 (y). 

The derivative of this inverse function is equal to 
dx l 
dy= L' (x) =X, 

whence it follows (see Problem 3.1.10) that 

X=CeY. 

To find C, substitute x =I. Since 

l(l)=O, i.e. Ylx= 1 =0, 

then 
I =Ce0 =C, 

which proves our assertion: 

x= L- 1 (y) =eY. 

6.3.18. Given the graph of the functio:i y = f (x) (Fig. 62), find 
x 

the shape of the graph of the antiderivative I=~ f (t) dt. 
0 

Solution. On the interval [O, a] the given function is posi­
tive; consequently, the antiderivative increases. On the interval 
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l 0, i J the derivative of the given function is positive; hence, the 

curve I= I (x) is concave. On the interval r ~ , a] the derivative 

of the given function is negative; consequently, the curve I= I (x) 

is convex, the point x = ~ being a point of inflection. The inter­

val [a, 2a] is considered in a similar way. The point x1 = 0 is a 
point of minimum, since the derivative /'(x)=f(x) changes its 
sign from minus to plus; the point x2 =a is a point of maximum, 
since the sign of the derivative changes from plus to minus. 

!I 

~x 
2 2 

Fig. 62 Fig. 63 

The antiderivative I (x) is a periodic function with period 2a, 
since the areas lying above and below the x-axis are mutually 
cancelled over intervals of length 2a. Taking all this into account, 
we can sketch the graph of the antiderivative (see Fig. 63). 

6.3.19. Find the polynomial P (x) of the least degree that has 
a maximum equal to 6 at x =I, and a minimum equal to 2 at 
X=3. 

Solution. The polynomial is an everywhere-differentiable function. 
Therefore, the points of extremum can only be roots of the deriva­
tive. Furthermore, the derivative of a polynomial is a polynomial. 
The polynomial of the least degree with roots x1 = I and x2 = 3 
has the form a(x-l)(x-3). Hence, 

P'(x) =a(x-1) (x-3) =a(x2 -4x+3). 

Since at the point x = 1 there must be P (I) = 6, we have 
x x 

P (x) = ~ P' (x) dx + 6 = a ~ (x2 - 4x + 3) dx + 6 = 
I I 

=aC;-2x2 +:3x-1; )-1-6. 
The coefficient a is determined from the condition P (3) = 2, whence 
a= 3. Hence, 

P (x) = X3 - 6x2 + 9x -I 2. 
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6.3.20. Find the polynomial P (x) of the least degree whose graph 
has three points of inflect ion: (-1, -1 ), ( 1, 1) and a point with 
abscissa 0 at which the curve is inclined to the axis of abscissas 
at an angle of 60°. 

Solution. Since the required function is a polynomial, the abscis­
sas of the points of inflection can only be among the roots of the 
second derivative. The polynomial of the least degree with roots 
-1, 0, l has the form ax(x2 - l). Consequently, 

P" (x) =a (x3 -x). 

Since at the point x = 0 the derivative P' (0) =tan 60° = V3, we 
have 

x 

P' (x) = 5 P" (x) dx + V3 =a c~ -x;) + V3. 
0 

Then, since P (1) = 1, we get 

P (x) = S P'(x)dx+ 1 =a (~~-x: +Zo) + V3(x- l)+ 1. 
I 

The coefficient a is determined from the last remaining condition 
60CV3-t) P (-1) =-1, whence a= 7 . Hence, 

V3-t v-P(x)= 7 (3x~-10x3 ) +x 3. 

6.3.21. Taking advantage of the mean-value theorem for the 
definite integral, prove that 

I 

(a) 3 < ~ V q +x2 dx < 10, 
0 
3t 

(b) ~ <S v' 1 ++sin2 xdx < ~ Ji/;. 
0 

23t 

2n s dx 2n 
( c) I3 < JO+ 3 cos x < T · 

0 

6.3.22. Using the Schwarz-Bunyakovsky inequality, prove that 

5 Vl +x3 dx < ~s. Make sure that the application of the mean­
o 
value theorem y·ields a rougher estimate. 
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6.3.23. Find the derivatives of the following functions: 
x x' 

(a) F (x) = S Int dt (x > 0); S dt 
(b) F (x) = T. 

I 2 -
x 

6.3.24. Find the derivative ~~ of functions represented paramet-

rically: 
I In I 
('In z (' 

(a) X= J z-dz, y= j ezdz; 
2 5 

sin t 17 1 

S (' sin z2 
(b) x= arcsinzdz, y= j - 2 -dz. 

ca 11 

6.3.25. Find the points of extremum of the following functions: 

x t' 

(a) F(x)=~e-2(1-t2)dt; 
I 
x' 

(b) F (x) = s tz-st+4 dt. 
o 2+et 

§ 6.4. Changing the Variable in a Definite Integral 

If a function x = cp (t) satisfies the following conditions: 
(1) cp (t) is a continuous single-valued function defined in [a, ~] 

and has in this interval a continuous derivative cp' (t); 
(2) with t varying on [a, ~] the values of the function x = cp (t) 

do not leave the limits of [a, b]; 
(3) cp (a)= a and cp (~) = b, 

then the formula for changing the variable (or substitution) in the 
definite integral is valid for any function f (x) which is continuous 
on the interva I [a, b]: 

b (:l 

~ f ( x) dx = ~ f[ cp ( t)] cp' (t) dt. 
a a 

Instead of the substitution x = cp (t) the inverse substituHon 
t = 'ljJ (x) is frequently used. In this case the limits of integration 
a and ~ are determined directly from the equalities a= 'ljJ (a) and 
~ = 'ljJ (b). In practice, the substitution is usually performed with 
the aid of monotonic, continuously differentiable functions. The 
change in the limits of integration is conveniently expressed in 
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the tabular form: 

~ 
ala 
b ~ . 

v3-
6.4. t. Compute the integral ~ V 4-x2 dx. 

-V3 
Solution. Make the substitution x=2sint, assuming that 

- ~ ~ t ~ ~ . The function x =qi (t) = 2 sin t on the interval r- ~ . ~ ] satisfies all the conditions of the theorem on changing 

the variable in a definite integral, since it is continuously differen­
tiable, monotonic and 

And so, 

x=2sint; dx=2costdt; V4-x2 =2[cost[=2cost, 

since cost> 0 on the interval [- ; , ~ J . 
Thus, 

l't l't 

Va a 3 

~ V4-x2 dx=4 ~ cos2 tdt=2 ~ (l+e<:>s2t)dt= 
-ira l't -~ 

3 3 

=2 [t+-}sin2t]~= 4;+V3. 
3 

' 
6.4.2. Compute the integral 5 Vx;=4 dx. 

2 

Solution. Make the substitution 

x=2 sect; 
dx=2sintdt· 

cos 2 t ' 

x I t 

2 0 

4 .:.':__ 
3 

On the interval [ 0, -'}] the function 2 sec t is monotonic, there­

fore the substitution is valid. 
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Hence, 
n 

Y4sec2 t-4. 2 sint dt= 
16 sec4 t cos2 t 

..:'.. In 3 -

I ' I 3 3 
= 4 ~ sin2 t cost dt = Tii sin3 t 0 = ~2 • 

0 

6.4.3. Compute the integrals: 

a 

(a) S x2 V a2 -x2 dx; (b) 

6.4.4. Compute the integrals: 

'"' 2 

n 
2 

\~ cos x dx 
(a) ·J 6-5 sin x+ sin 2 x; (b) 5 2+dc:s x • 

0 0 

Solution. (a) Apply the substitution 

sin x= t; 
cosxdx=dt; 

~ 
0 0 
~. 
2 

The inverse function x =arc sin t ( 0 ~ x ~ ~ for 0 ~ t ~I) satisfies 

.all conditions of the theorem on changing the variable. Hence, 

n 
2 l l=S c?sxdx =S dt =lnt-311=ln±.. 

6-5smx+sin2 x 6-51+12 t-2 o 3 
0 0 

(b) Make the substitution t =tan ~ 

x = 2 arc tan t, 2dt 
dx= 1+12' ~ 

0 0 
ll 

2 

which is valid due to monotonicity of the function tan ~ on the 
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interval l 0, ~ J . 
:rt 

2 I 1 

(' dx s I 2dt s di J 2-t-cos x = 2 -1-.!...=E ·I +12 = 2 3+12 = 
o o , I+ 12 o 

ll 

= J3 arc tan ~3 /: = J3 (arc tan ; 3 - arc tan 0) = 3 ;,T. 

6.4.5. Compute the integral 
:rt 

4 

S dx 
a2 cos2 x+b2 sin 2 x 

0 

Solution. Make the substitution 

tanx=t, 

~=dt 
cos2 x ' 

Hence, 

(a> 0, b > 0). 

~ 
0 0 

4 I I 

S dx s di I s dt 
a2 cos2 x-f-b2 sin2 x = a11 -t-b2t2 = b2 ~= 

0 0 0 b2 +12 

=-·-arctan- =-arctan-. I b bt \1 I b 
b2 a a o ab a 

If a= b = 1, then :b arc tan ! =arc tan 1 = ~ , which exactly coin­
cides with the result of the substitution a= b = l into the initial 
integral 

:rt ~ 

4 4 

S dx =Sdx=.!!:.. 
a2 cos2 x+ b2 sin2 x 4 · 

0 0 

6.4.6. Compute the integrals: 

1'3 

(a) s vir dx; 
I 

S2 V<x-2)J 
(c) 3 dx. 

8 3+ V<x-2)2 
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" . s x sin x 6.4. 7. Compute the integral I = 1 +cost x dx. 
0 

Solution. Reduce this integral to the sum of two integrals: 

Jt 

2 Jt 

I = s x sin x dx + s x sin x dx =I + I 
l+cos 2 x i+cos 2 x 1 2· 

0 Jt 

2 

To the integral 
Jt 

I = s x sin x dx 
2 I +cos 2 x 

Jt 
-

2 

apply the substitution 

X=n-f, x 
dx=-dt, 

Then 
Jt 

0 2 

I = _ s (n-t) sin (n-t) dt = s (n-t) sin t dt = 
2 l+cos 2 (n-I) l+cos2 1 

!1 0 

2 

Jt 

2 

sin t dt-S t sin t dt 
l + cos2 t l + cos2 t • 

0 

Hence 
Jt Jt 11 

2 2 2 

I= I +I = s x sin x dx + n s sin t dt -s t sin t dt 
1 2 l+cos2 x I+cos 2 / I+cos2 t 

0 0 0 

Since the first and the third integrals differ only in the notation 
of the variable of integration, we have 

sin t dt 
l+cos2 t • 



280 Ch. VI. The Definite Integral _________ _ 

To this integral apply the substitution 
u =cost, t I u 

---;---1 
du=-sintdt, O 

:rt 

T 0 

o I 
(' du (' du rr~ 

/=-Jl j 1+u2 =ll j 1+112 =4· 
I fJ 

• • • r> x sin x . . Note. The mdefimte integral \ 1 + 2 dx 1s not expressed m 
u cos x 

elementary functions. But the given definite integral, as we have 
shown, can be computed with the aid of an artificial method. 

6.4 .8. Evaluate the integral 
I 

I = s In (I +x) d 
1+x2 x. 

0 

Solution. Make the substitution 

Hence, 

x= tant, 
dt 

dx = cos2 t' 
0 

4 

Jt Jt 

4 4 

. 

I= (' In (I+ tan t) sec2 t dt = ('In ( l +tan t) dt. 
J sec2 t J 
0 0 

Transform the sum l +tan t: 

v~rsin (1 -/-~) 
I +tan t =tan ~ +tan t = cos 1 

4 • 

Substituting into the integral, we obtain 
n n n 
4 4 4 

I =-='S ~ln2dt+Slnsin(t+ ~ )dt-Slncostdl 0 = 

0 0 () 

4 4 

=+tln2t: + 51nsin(t+ ~ )dt-Slncostdt= 
0 3 
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Now let us show that / 1=/2. To this end apply the substitution 

n t= 4 -z, 

dt =-dz, 

n 
4 

to the integral l 2 =Slncostdt. 

Then 
:rt 

0 4 

t I z 
0 n 

n T 
- 0 4 

/ 9 = - S In cos ( ~ -z) dz= S In sin l ~ -( ~ -z) J dz= 
~ 0 

4 

4 

= S In sin ( ~ · + z) dz=/ 1. 

0 

Therefore 

I=~ In 2. 

Note that in this problem, as well as in the preceding one, the 

indefinite integral S ln1~~2x) dx is not expressed in elementary fun­

ctions. 

6.4.9. Prove that for any given integral with finite limits a and b 
one can always choose the linear substitution x =pt+ q (p, q con­
stants) so as to transform this integral into a new one with limits 
0 and l. 

Solution. We notice that the substitution x=pt+q satisfies 
explicitly the conditions of the theorem on changing the variable. 
Since t must equal zero at x =a and t must equal unity at x = b 
we have for p and q the following system of equations 

a=p·O+q, 
b=p·l+q, 

whence p = b-a, q =a. Hence, 

b 1 

~ f (x)dx=(b-a) ~ f [(b-a) t+a] dt. 
a o 
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6.4.10. Compute the sum of two integrals 
2 

-5 3 ( 2 )2 
~ eCx+S)' dx+ 3 ~ e <J x-3 dx. 
-4 I 

Solution. Let us transform each of the given integrals into an 
integral with limits 0 and 1 (see the preceding problem). 

To this end apply the substitution x = - t-4 to the first inte­
gral. Then dx =-dt and 

-5 I I 

/ 1 = ~e<x+ 5>"dx=- ~e<-t+l>'dt=- ~e<1 - 1 >'dt. 
-4 0 0 

Apply the substitution x= ~ + ~ to the second integral. Then 
dt 

dx= 3 and 
2 

3 ( 2 )" I 
/ 2 =3 ~ / x-3 dx = ~ e< 1- 1>'dt. 

I 0 
3 

Hence 
I I 

f 1 + / 2 = - ~ eU - !)' df + ~ e( 1 -1)• df = 0. 
0 0 

Note that neither of the integrals ~ e<x+si• dx and ~ e9 ( x- ~ )' dx is 
evaluated separately in elementary functions. 

6.4.11. Prove that the integral 
n 

\' si~ 2kx dx 
., smx 
0 

equals zero if k is an integer. 

Solution. Make the substitution 
x I t 

X=:rt--f, 

dx=-dt, 
0 
:rt 

Then at k an integral number we get: 

:rt 

0 

n 0 n 

5 si~ 2kx dx = -s sin_ 2k (n-t) dt = _ s si~ 2kt dt. 
sm x sm (n-t) sm t 

O n o 
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Since the definite integral does not depend on notation of the vari­
able of integration, we have 

I= - I, whence I =0. 

6.4.12. Compute the integral 

Solution. Apply the substitution x =sin t (the given function is 
not monotonic), dx =cost dt. The new limits of integration t1 and 
ta are found from the equa-

t . I . t y3 . t 10ns 2 =sm ; - 2 - =Sm . 

We may put t1 = ~ and ta= 
:rt 

= 3 , but other values may 

also be chosen, for instance, 
5:rt 2:rt 

/ 1 = 6 and t 2 = 3 . 
In both cases the variable 

x =sin t runs throughout the 

x 

Fig. 64 

entire interval [ ~ , ~3 J (see Fig. 64), the function sin t being 

monotonic both on [ ~ , ~ J and [ 2; , 5
6n] . 

Let us show that the results of the two integrations will coincide. 
Indeed, 

Y~ n n 

T dx = s3 cost dt = \~ ~ = In I tan!.___ 11 ~ = 
,1 xVt-xi sintcost ., sint 2 ~ 
I n n 6 

2 6 6 

n I n 2+ }""3 =In tan-- ntan-= In V 
6 12 3 

On the other hand, taking into consideration that cost is negative 

on the interval [ 23n; ~n] , we obtain 
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1'3 2n 5n 
-2- 3 6 

.\· x Y ~~x~ = S sin ~0(~::s t) = S s~~ t = 
I 5rt 2n 

2 6 3 

I 5n t 5 I t I 6 an 12 Jt 
= In tan 2 2n =In n 

3 tan 3 

Note. Do not take t1 = 5
6n t2 =; , since, with t varying on 

the interval [ ~ , 5
6nl , the values of the function x =sin t lie beyond 

the limits of the interval [ +, ~3] . 

6.4.13. Prove that the function L (x) defined on the interval 
x 

(0, oo) by the integral L (x) = S ~t possesses the following properties: 
I 

L (X1X2) = L (X1) + L (X2), 

L ( :J =L (x1)-L (x2). 

Solution. By the additivity property 

Let us change the variable in the second integral 

t I z 

Then 

t = X1Z, 

dt =X1dz, 
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It is also easy to obtain the other corollary L(x ~) = ~ L (x) for 

any integral m and n. 
Indeed, for positive m and n this follows from the relations 

and for a negative exponent, from 

L (1) = 0, L (x- 1 ) = L ( +) =l (1)-L (x) =- L (x). 

Now, taking advantage of the continuity of the integral as a fun­
ction of the upper limit, we get the general property l (xa) =al (x). 

Note. As is known, L (x) =In x. Here we have obtained the prin­
cipal properties of the logarithm proceeding only from its determi­
nation with the aid of the integral. 

3 

6.4.14. Transform the integral ~ (x-2)2 dx by the substitution 
0 

(x-2)2 = t. 
Solution. A formal application of the substitution throughout the 

interval [O, 3] would lead to the wrong result, since the inverse 
function x=cp(t) is double-valued: x=2±Vt, i.e. the function x 
has two branches: x1 = 2-Vt; x2 = 2 +Vt. The former branch can­
not attain values x > 2, the latter values x < 2. To obtain a cor­
rect result we have to break up the given integral in the following 
way: 

3 2 3 

~ (x-2)2 dx= ~ (x-2)2 dx+ ~ (x-2)2 dx, 
0 0 2 

and to put x=2-Vt in the first integral, and x=2+V-t in the 
second. Then we get 

2 0 4 

11 = s (x- 2)2 dx = - J t 2 ~T = ~ s Vt dt = ~ , 
0 4 0 

3 I I 

(' (' dt Is - I 12 = J (x-2)2 dx= J t 2 VT = 2 Vtdt =a· 
2 0 0 

8 I 
Hence, I= 3 + 3 = 3, which is a correct result. It can be easily 
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verified by directly computing the initial integral: 

3 3 s (x-2)2dx= <x--;2i:• J =f +: =3. 
0 0 

6.4.15. Compute the integrals: 

5 

(b) I - r dx 
-J 2x+V3x+l 

0 
It 

3 I () /-5 dx. c - 1-sinx' 
It 

(d) I= 5v-2x-x2 dx; 
0 

4 
It 

4 
(e) / -5 sin x+cos x d , 

- 3+sin2x X, 
0 

a 

(f) / = .f x2 y :+; dx, 
0 

2a 

a>O; 

I 

(g) I= 5 V2ax-x2 dx; 
0 

(' dx 
(h) I = J (I+ x2)2 • 

-1 

6.4.16. Applying a suitable change of the variable, find the fol­
lowing definite integrals: 

2 a 

(a) J Yx+T:Vtx+l)3 ; (b) f x+ ~; 
0 b 

2 

f dx 
(c). x(l +x'); 

I 

(d) 

2 

6.4.17. Consider the integral 5 4 !xx2 • It is easy to conclude 
-2 

that it is equal to ~ . Indeed, 

2 

S ~=_!_arc tan !_j 2 =_!_ [~-(-~)] =~ 
4+x2 2 2 -2 2 4 4 4 • 

-2 
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On the other hand, making the substitution x ~= +, we have 

x I t 

dt 
dx= -(i, 

2 

I I 

~2 dx -~2 dt r dt I 1 + n 
4+x2 = - 2 ( I)= - '412+1 =2arctan2t I= -4· 

-2 I t 4+72 '1 l-2 
-2 -2 

This result is obviously wrong, since the integrand 4 ~x2 > 0, and, 

consequently, the definite integral of this function cannot be equal 

to a negative number - ~ . Find the mistake. 
2n 

6.4.18. Consider the integral I= 5 5 _g:os x. Making the substi­
o 

tut ion tan ~ = t we have 
2n 0 

~ dx -i 2dt -O 
5-2cosx- (l+t2 ( 5_ 2 1-ti)- · 

) I +1 2 
0 0 

The result is obviously wrong, since the integrand is positive. 
and, consequently, the integral of this function cannot be equal to 
zero. Find the mistake. 

2 

6.4.19. Make sure that a formal change of the variable t = xr; 
2 

leads to the wrong result in the integral ~ V x2 dx. Find the 
-2 

mistake and explain it. 

6.4.20. Is it possible to make the substitution x= sect in the 
I 

integral I = ~ V x2 + 1 dx? 
0 

1 

6.4.21. Given the integral ~Vi -x2 dx. Make the substitution 
0 

x =sin t. Is it possible to take the numbers n and ~ as the limits 

for t? 
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6.4.22. Prove the equality 

a a 

~ f (x)dx= ~ [f (x)+f(-x)] dx 
-a 0 

for any continuous function f (x). 
2n 

6.4.23. Transform the definite integral ~ f (x) cos x dx by the sub­
o 

stitution sinx=t. 

§ 6.5. Simplification of Integrals Based on the 
Properties of Symmetry of Integrands 

I. If the function f (x) is even on [-a, a], then 

a a 

\ f (x) dx = 2 \ f (x) d>:. . ~ 

-a 0 

2. If the function f (x) is odd on [-a, a], then 
a 

~ f (x) dx = 0. 
-a 

3. If the function f (x) is periodic with period T, then 
b b+nT 

~ f (x) dx = ~ f (x) dx, 
a a+nT 

where n is an integer. 
I 

6.5. l. Compute the integral ~ Ix I dx. 
-1 

Solution. Since the integrand f (x) =Ix I is an even function, we 
have 

I I I II 
~ Ix I dx = 2 ~Ix I dx = 2 ~ xdx = x2 0 --= 1. 

-1 0 0 

6.5.2. Compute the integral 
7 

S x4 sin xd 
xs+2 x. 

-7 

Solution. Since the integrand is odd, we conclude at once that 
the integral equals zero. 
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6.5 .3. Evaluate the integrals 

Jt 

(a) ~ f (x) cos nx dx; 
-:rr 

" 
(b) ~ f (x) sin nxdx, 

-Jt 

if: (1) f (x) is an even function; (2) f (x) is an odd function. 
5 

S x" sin2 x 
6.5.4. Calculate the integral x'+ 2x2 + 1 dx. 

-5 

5 
4l1 

6.5.5. Compute the integral S cos' ~~2:in' xdx. 
:Tl 

289 

Solution. The integrand is a periodic function with period n, since 

sin 2 (x+n) sin 2x f 
f(x+n)=cos4(x+n)+sin4(x+n) cos4 x+sin4 x= (X). 

Therefore it is possible to subtract the number n from the upper 
and lower limits: 

5 l't " 
4" 4 4 

S sin2xdx =S sin2xdx = 2 s tanxdx 
cos'x+sin4 x cos4 x+sin4 x cos2 x(I +tan4x) · 

:Tl 0 0 

Make the substitution 

t =tanx, 

dt =_!!!.._ 
cos2 x' 

:Tl 

4 I II tan x dx 2t dt 2 3t 

2 s coszx(l+tan'x)= s l+t•=arctant o=4· 
n o 

6.5.6. Prove the equality 
a a 

~ cos xf (x2)dx = 2 ~cos xf (x2 ) dx. 
-a 0 

Solution. It is sufficient to show that the integrand is even: 

cos (-x) f [(-x)2 j = cosxf (x2). 
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6.5.7. Compute the integral 
Vz 
5 2x7+3x6 - l0x0 -7x3 -12x2 +x+ I 

x2+2 dx. 
-V2 

Solution. 
V2 
5 2x7+3x'-IOx0 -7xs-12x2 +x+1 

x2+2 dx= 
-V2 

Vz V2 
c= s 2x7-10xf>-7x3 +xdx+ s 3x2(x'-4)+1_d = 

x2 +2 x2+2 X 
_vz -V2 

Vz 
=0+2 S [a(x'-2x2)+ x2~ 1 ] dx= 

0 

=~x0-4x3 +-2-arctan x_ ,v2=- 16 V2+~. 
s 12 V2 o s 2 V2 

In calculating we expanded the given integral into the sum of 
two integrals so as to obtain an odd integrand in the first integral 
and an even integrand in the second. 

6.5.8. Compute the integral 
I 

2 

5 cosx In: +;dx. 
I 

-2 

Solution. The function f (x) =cos x is even. Let us prove that the 

function cp (x) =In 1
1 +x is odd: -x 

1-x I (l+x)-t l+x cp (-x) =In 1 +x = n I -x = -ln I -x = -cp (x). 

Thus, the integrand is the product of an even function by an odd 
one, i.e. an odd function, therefore 

I 
T 

5 cosxln :+;dx=O. 
I 

··2 

6.5.9. Prove the validity of the following equalities: 
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:rt I I 
8 2 2 

(a) ~ x 8 sinuxdx=0; (b) ~ eCOSXdX = 2 ~ eCOSX dx; 
:rt I 0 

-8 -2 

n 

(c) ~ sinmxcosnxdx=O (m and n natural numbers); 
-JI 

a 

(d) \ sin xf (cos x) dx = 0 . .. 
-a 

6.5.10. Prove the equality 
h h 

~ f (x)dx= ~ f (a+b-x)dx. 
a a 

Solution. In the right-hand integral make the substitution 

x-=a+b-t, dx= -dt, 

Then we obtain 

I~ li__G_. 
h a h h 

~ f (a+b-x)dx= - ~ f (t) dt = ~ f (t) dt = ~ f (x)dx. 
a 11 a a 
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Note. The relation established between the integrals can be explai­
ned geometrically. 

The graph of the function f (x), considered on the interval [a, bJ, 
is symmetrical to that of the function f (a+ b-x), considered on 

the same interval, about the straight line x= a;b. Indeed, if the 

point A lies on the x-axis and has the abscissa x, then the point A', 
which is symmetrical to it about the indicated straight line, has 
the abscissa x'=a-tb-x. Therefore, f(a+b-x')=f[a+b-(a+ 
-tb-x)] = f (x). But symmetrical figures have equal areas which are 
expressed by definite integrals. And so, the proved equality is an 
equality of areas of two symmetrical curvilinear trapezoids. 

6.5. l l. Prove the equality 
I I 

~ f (x) g(t-x) dx = ~ g(x) f (t-x)dx. 
0 0 
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Solution. Apply the substitution t-x=z in the right-hand integral; 
then we have 

0 I 

- ~ g ( t - z) f ( z) dz = ~ f ( z) g ( t - z) dz. 
t 0 

:rt :rt 

2 2 
6.5.12. Prove the equality~ sinmxdx= ~ cosmxdx and apply the 

0 0 

obtained result in computing the following integrals: 
:rt :rt 

2 2 
~ cos2 x dx and ~ sin2 x dx. 
0 0 

Solution. On the basis of Problem 6.5. to we have 

:rt :rt :rt 

2 2 2 
~ sinm x dx = ~ sinm ( ; - x) dx = ~ cosm x dx. 
0 0 0 

Hence, in particular, 
:rt :rt 

2 2 

I=~ sin2 xdx= ~ cos2 xdx; 
0 0 

add these integrals: 
:rt :rt 

2 2 

2/= s (sin2 x+cos2 x)dx= S dx=~·; 
:rt 

hence, != 4 . 

0 0 

6.5.13. Prove the equality 
:rt 

:rt 2 
~ f (sin x) dx= 2 ~ f (sin x) dx. 
0 0 

Solution. Since 
:rt 

:rt 2 11 

~ f (sin x) dx = ~ f (sin x) dx + ~ f (sinx) dx, 
0 0 :rt 

2 
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it is sufficient to prove that 
n 

n 2 
~ f (sin x) dx= ~ f (sin x) dx. 
n 0 
2 

In the left integral make the substitution 

Then 

X='!t-f, 
dx= -dt, 

JI 0 

x 

~ f(sinx)dx=-~ f[sin(n-t)]dt= 
n J1 

2 2 

:re 

2 
0 

J1 J1 

2 2 
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= ~ f (sin t) dt = ~ f (sin x) dx. 
0 0 

6.5.14. Prove the equality 
n n 

5 xf(slnx)dx= ~ 5 f (sinx) dx. 
0 0 

Solution. In the left integral make the substitution 

Then we obtain 
n 0 

X=n-t, 
dx=-dt, 

l~I L_Uij. 

~xt(sinx)dx=- ~ (n-t)f[sin(n-t)]dt= 
o n 

JI J1 

= ~ nf (sin t)dt - ~ tf (sin t)dt. 
0 0 

Whence 
n :rr 

2 ~ xf (sin x)dx = n ~ f (sin x) dx, 
0 0 

which is equivalent to the given equality. 
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6.5.15. Using the equality 

sin ( n++) x 1 
---'----'- = -2 +cos x + cos 2x + ... +cos nx, 

2 . x sm 2 

prove that 

:rr sin ( n+ ~) x 
r dx= :n:. J . x 
o sm2 

6.5.16. Prove that if cp(x)=+a0 +a1 cosx+b1 sinx+a2 cos2x+ 

+b2 sin 2x+ ... +an cosnx+bn sinnx, then 
2:rr 2:rr 

(a) ~ cp (x) dx = :n:a0 ; 

0 
(b) ~ cp (x) cos kx dx = :n:ak; 

0 
2:rr 

(c) ~ cp(x)sinkxdx=:n:bk (k= l, 2, ... , n). 
0 

§ 6.6. Integration by Parts. Reduction Formulas 

If u and v are functions of x and have continuous derivatives, 
then 

b b 

~ u (x) v' (x) dx = u (x) v (x) 1:- ~ v (x) u' (x) dx 
a a 

or, more briefly, 
b b 

~ udv=uvl:- ~ vdu. 
a a 

I 

6.6.1. Compute the integral ~ xex dx. 
0 

Solution. Let us put 
x = u' ex dx = dv; 

du = dx; v = ex' 

which is quite legitimate, since the functions U=X and v=ex are 
continuous and have continuous derivatives on the interval [O, l). 

Using the formula for integration by parts, we obtain 
I I 

~ xex dx = xex j~ - ~ex dx = e- ex I~= 1. 
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Jt 

b 

6.6.2. Compute the integral I= ~ eax sin bx dx. 
0 

Solution. Let us put 

u=sinbx, 

du= b cos bx dx, 

dv= eax dx; 
I v= -eax. 
a 
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Since the functions u=sinbx, V=_!_eax together with their deri­a 
vatives are continuous on the interval [O, n], the formula for in­
tegration by parts is applicable: 

" 
I IJt bjT l=-eaxsinbx b -- eaxcosbxdx= 
a 0 a 

0 
:rt 

b 

= _ .!?._ S eaxcosbxdx= _.!?._ / 1• 
a a 

0 

Now let us integrate by parts the integral / 1. Put 

u =cos bx, 

du= -bsinbxdx, 

Then 

dv=eax dx, 
I V= -eax. 
a 

' :rt \ 

l=-.!?._(\_!_eaxcosbxl~ +.!?._ r eaxsinbxdx )= 
a a 0 a 0 / 

( art ) (an ) 
=-.!:.__el) _ _!__ -~l=b eT+1 

a a a a~ a2 

Hence 

In particular, at a=b= l we get 

1t 

Sex sinx dx =+(en +l). 
0 

b2 
-(;21. 
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e 

6.6.3. Compute the integral ~ ln3 x dx. 
I 

n' 
4 

6.6.4. Compute the integral ~sin Vxdx. 
0 

Solution. First make the substitution 

Vx =t, x 

X= f 2 , 0 
dx= 2t dt, n2 

4 
Whence 

Jt2 .n 

4 2 

t 

0 
:rt 

2 

~ 3 in V x dx = 2 ~ t sin t dt. 
0 0 

Integrate by parts the latter integral. 
Put 

Then 

t=u; 
du= dt; 

sin t dt =dv; 
V=-COS f. 

2{ tsintdt=2[-tcostl~ +f costdtl=2sintl~ =2. 
0 0 0 0 

I 

I __ \(' arc sin x 
6.6.5. Compute the integral ~ YI +x dx. 

0 
n 
2 

6.6.6. Compute the integral ~ x2 sin x dx. 
0 

a 

6.6.7. Compute the integral ln=~(a2 -x2 )ndx, where n is a na­
o 

tural number. 

Solution. The integral can be computed by expanding the integrand 
(a2 -x2 )n according to the formula of the Newton binomial, but it 
involves cumbersome calculations. It is simpler to deduce a formula 
for reducing the integral In to the integral ln-i· To this end let 
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us expand the integral In in the following way: 
a a 

In=~ (a2-x2)n-1 (a2-x2) dx= a 2/ n-1- ~ x (a2 -x2r-1 x dx 
0 0 

and integrate the latter integral by parts: 

U=X; 

du=dx; 

We obtain 

(a2 -x2)n-1 x dx = dv, 

I 
v = --(a2 -x2 )n (n =I= 0). 

2n 

a 

I =a21 +-x(a2-x2)n -- (a2-x2)"dx=a21 --/. I I a I s I 
n n-1 2n 0 2n n-1 2n n 

0 

Whence 

I 2 2n I 
n=a 2n+I n-1· 

This formula is valid at any real n other than 0 and --} . 

In particular, at natural n, taking into account that 

we get 

where 

2n (2n-2) (2n-4) ... 6·4·2 
In =a2n+i (2n+ I) (2n- I) (2n-3) ... 5.3 

(2n)!! =2·4·6 ... (2n), 

a2n+1 (2n)!! 
(2n+ I)!! ' 

(2n+ l)!! = 1·3·5 ... (2n+ 1). 

6.6.8. Using the result of the preceding problem obtain the fol­
lowing formula: 

C~ C~ C~ n C~ _ (2n)I! 
l-3+5-7+ ... +(-l) 2n+I -(2n+t)ll' 

where C~; are binomial coefficients. 

Solution. Consider the integral 
I 

I S ( 1 2)n dx (2n)ll 
n =- -X = (2n+ 1)11 ' 

0 
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Expanding the integrand by the formula of the Newton binomial 
and integrating within the limits from 0 to 1, we get: 

I 

ln= ~ (l-x2 )ndx= 
0 

I 

= ~ ( l -C~x2 + C~x4 - C~x6 + ... + (-1 )n C~x2 n) dx = 
0 

_I _ C~x3 C~x0 _ C~x? (-l)n x2n+1 J 1 _ 

- l X 3 + 5 7 +.'' + 2n+ I o -

c)i c~ ~~ (-l)n 
=l-3+5-7+··· + 2n+l' 

which completes the proof. 

6.6.9. Compute the integral 
n n 
2 2 

Hm= ~ sinmxdx= ~ cosmxdx 
0 0 

(m a natural number). 
Solution. The substitution 

sinx=t, 
cosx dx=dt, tttt 

reduces the second integral to the integral 
n 

2 m-1 I m-1 

H m = ~ (l -sin2 x)-2-cos x dx = ~ ( 1-t2)_2_dt, 
0 0 

m-1 considered in Problem 6.6.7 with a= 1 and n = - 2-. Therefore, 

the reduction formula 
m-1 

Hm=~Hm_2 (m=t=O, m=t= 1) 

is valid here, since 

2.m_-_I 
2 m-1 m-1 

Hm=lm-1= I /m-1 =--fm-3=--fim-2• 
-2- 2·~+1 -2-- 1 m -2- m 

2 
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If m is an odd number, the obtained reduction formula reduces 
Hm to 

therefore 

:rt 
2 

H 1 = ~ cos x dx = 1, 
0 

H = (m-1)11 
m mll • 

If m is an even number then the reduction formula transforms 
Hm into 

:rt 
2 

H 0 = S dx= ~, 
0 

therefore 
H _ (m-1) I!~ 

rn - m!I 2 • 

6.6.10. Compute the integral 

(m a natural number). 

:rt 

I= ~ x sin m x dx 
0 

Solution. Taking advantage of the results of Problems 6.5.14 and 
6.5.13, we get 

:rt 
n n 2 

I= S xsinmxdx=~ S sinmxdx=n S sinmxdx, 
0 0 0 

which, taking into consideration the result of Problem 6.6.9, gives 

n 2 · m! 1 1f m 1s even, 
{ 

:n2 (m- I)!! . . 

/=~xsinmxdx= (m-1)!1 . 
o rt mil 1f m 1s odd. 

I 

6.6.11. Compute the integral In= ~ xm (In x)n dx; m > 0, n is a 
0 

natural number. 
Solution. First of all note that, though the integrand f (x) = xm (In x)n 

has no meaning at x = 0 it can be made continuous on the interval 



300 Ch. VI. The De"finite Integral 

(0, 1] for any m > 0 and n > 0, by putting f (0) = 0. Indeed, 

limxm(lnx)n= Jim (x:lnxY=o 
X-++0 X-++0 

by virtue of Problem 3.2.4. 
Hence, in particular, it follows that the integral In exists at 

m > 0, n > 0. To compute it we integrate by parts, putting 

U=(lnx)n, dv=xmdx, 
n(lnx)n- 1 

du= dx, x 
Hence, 

I I 
\ xm+l(lnx)nll n s n 

ln=~xm(lnx)ndx= m+I o-m+lo xm(lnx)n-1dx=-m+1ln-1• 

The formula obtained reduces In to I n-l· In particular, with a na­
tural n, taking into account that 

we get 

I 

lo= s xmdx= m~ I, 
0 

ln=(-l)n (m+n;)n+l' 

I 

6.6.12. Compute the integral lm,n= ~ xm(l--x)ndx, 
0 

where m and n are non-negative integers. 

Solution. Let us put 

(1-x)n =U; xm dx =dv; 

du= - n (l-x)n-1 dx; 

Then 
I 

Im, n = l:~\ (1--x)n] ~ + m~ Is xm+1 (l -x)n-1 dx= m~ I /m+1, n-1· 

0 

The obtained formula is valid for all n > 0, and m / - I. If n 
is a positive integer, then, applying this formula successively n 
times, we get 

n n(n-1) 
Im. n = m+ 1/ m+1,n-1 = (m+ I) (m+2) I m+2, n-2 = · · · 

_ n (n-1) ... [n-(n-1)) 
• • · - (in+ I) (m+2) .. . (m+n) lm+n, o· 
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But 
I 

I - xm+ndx- ----5 xm+n+l I' I 
m+n, o - - m+n+ I o - m+n+ I ' 

0 
Hence, 

n (n-1) (n-2) ... 3·2· l 
Im, n = (m+ I) (m+2) .. . (m+n) (m +n+ I) 

The obtained result, with m a non-negative integer, can be written 
in the form 

m!n! 
/ m, n = (m+ n+ 1)1' 

6.6.13. Compute the integrals: 
I 

(a) ~arc tan V'xdx; 
0 
Jl 

3 

(c) 5 s~n~xx; 
:re 
4 

I 

(e) ~ x In ( 1 + x 2 ) dx; 
0 
Jl 

2 

I 

(b) ~ (x- l)e-xdx; 
0 

I 

( d) ~ x arc tan x dx; 
0 

:re 
4 

(f) ~ ln(l+tanx)dx; 
0 

16 

(g) ~ sin 2x arc tan (sin x) dx; 
0 

(h) ~arctanyVx-ldx. 
I 

6.6.14. Prove that 
I 1 

5 (arc cos x)n dx = n( ~ r-1- n (n-1) 5 (arc cos x)"- 2 dx (n > 1). 
0 0 

6.6.15. Prove that if f" (x) is continuous on [a, b], then the fol-
lowing formula is valid 

b 

~ xf" (x)dx= [bf' (b)-f (b)]-[af' (a)-f (a)]. 
a 

§ 6.7. Approximating Definite Integrals 
1. Trapezoidal formula. Divide the interval [a, b] into n equal 

. k b-a parts by pomts xk =a+ h, where h = ~. k = 0, 1, ... , n, and 
apply the formula n 

b 

Sf (X)dx ~ b-;;a [ ~ f (x0)+f (x1) + · · · +f (xn-1)+ ~ f (xn)] • 
tl 
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The error R in this formula is estimated as follows: 

IR I~ M, l(~~a)a' where M, = sup Ir (x) I 
n a<x<b 

(assuming that the second derivative is bounded). 
2. Simpson's formula. Divide the interval [a, b] into 2n equal 

parts by points xk =a+ kh, where h = b 2n a, and apply the formula 
,, 
Sf (x) dx ~ b 6n a {f (x0 ) + f (X2n) + 4 [f (X1) + f (x3 ) + ... 
a 

.. · + f (x2n-1)] + 2 [f (x2) + f (x,) + ... + f (x2n-2)]}. 

Assuming that t•v (x) exists and is bounded, the error in this formula 
is estimated in the following way: 

IR I~ ~~ci~;;J~)&, where M 4 = sup I f•v (x) I· 
n a<x<b 

I 

6. 7. I. Approximate the integral I= S 1 _:x using the trapezoidal 
0 

formula at n = IO. 

Solution. Let us tabulate the values of the integrand, the ordi· 
nates Y; = f (x,.) (i = 0, 1, ... , IO) being calculated within four de­
cimal places. 

I l+x1 I 
I 

II 
:q !li=1 +x, Xi 

0.0000 1.0000 1.0000 0.6000 
0.1000 1.1000 0.9091 0.7000 
0.2000 1.2000 0.8333 0.8000 
0.3000 1.3000 0.7692 0.9000 
0.4000 1.4000 0.7143 1.0000 
0.5000 1.5000 0.6667 

Using the trapezoidal formula, we obtain 
I 

l l+Xi 

1.6000 
1.7000 
1.8000 
1.9000 
2.0000 

I= 5 I !x ~I~ ( l.OOOOt0.5000 +0.9091 +0.8333+ 
0 

I 
I 

111=1+x, 

0.6250 
0.5882 
0.5556 
0.5263 
0.5000 

-----

+ 0. 7692 + 0. 7143 + 0.6667 + 0.6250 + 0.5882 + 0.5fi56 + 

+ o.5263) = /0 • 6.9377 = 0.6937 7 ~ o.6938. 
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Estimate the error in the result obtained. We have f" (x) =(I ~x)s. 
Since 0 ~ x ~ 1, then If" (x) I~ 2. Consequently, we may take the 
number 2 as M 2 and estimate the error: 

2 I 
IR I~ 12X 102 = 600 < 0.0017. 

We calculated the ordinates accurate to four decimal places, and 
0.00005 ( the round-off error does not exceed - 1-0 - ( 1 + 9 X 1) = 0.00005 more 

precisely, 0·0~~05 . 9 = 0.000045, since the ordinates Yo and y10 are 

exact numbers) . Thus, the total error due to using the trapezoidal 

formula and rounding off the ordinates does not exceed 0.0018. 
Note that when computing the given integral by the Newton­

Leibniz formula we obtain 
I 

I= S l~x = ln(l +x) I~= In 2 ~ 0.69315. 
0 

Thus, the error in the result obtained does not exceed 0.0007, i. e. 
we have obtained a result accurate to three decimal places. 

1.5 

S eo.ix 
6.7 .2. Evaluate by Simpson's formula the integral x dx 

0.5 
accurate to four decimal places. 

Solution. To give a value of 2n which ensures the required accu­
eo.1x 

racy, we find f'v (x). Successively differentiating f (x) = - , we get x 

ea.ix p (x) f1v (x) =xr (0.000lx'-0.004x3 +0.12x2 -2.4x+ 24)= X6e0 • 1x, 

where P (x) is the polynomial in parentheses. On the interval 
[0.5, 1.5) the function cp (x) =eo,ix increases aJJd therefore reaches 
its greatest value at x = 1.5: cp (1.5) = e0•10 < 1.2. The upper estimate 
of the absolute value of the polynomial P (x) divided by x& can be 
obtained as the sum of moduli of its separate terms. The greatest 
value of each summand is attained at x= 0.5, therefore 

I
p (x) I< 0.0001+0.004 + 0.12 + 2.4 + 24 ~ 

x& x x2 xs x4 x& """ 

~ 0.0002+0.016 + 0.96 + 38.4 + 768 < 808. 

And so, I f1v (x) I < 1.2 x808 < 1000. Hence, the number 1000 may 
be taken as M,. 
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We have to compute the integral accurate to four decimal places. 
To ensure such accuracy it is necessary that the sum of errors of 
the method, operations and final rounding off should not exceed 
0.0001. For this purpose we choose a value of 2n (which will de­
termine the step of integration h) so that the inequality 

IR I< f · 0.0001=5.10- 0 

is satisfied. 
Solving the inequality 

we obtain 

l&x 1 000 < 5 IO-& 
180 (2n)4 X ' 

2n > 19. 
Let us take 2n = 20; then the step of integration h will be equal to 

b-a 1 
h=2n=20=0.05. 

A more accurate calculation shows that at 2n = 20 

IRl<3·5x10-&. 
If we calculate Y; within five decimal places, i. e. with an error 

not exceeding 10-&, then the error of the final rounding off will 
also be not greater than l0- 0 • Thus, the total error will be less 
than 4.5x10-& < 0.0001. 

eO.lX 
Now compile a table of values of the function y =-x- for the va-

lues of x from 0.5 to 1.5 with the step h = 0.05. The ralculat ions 
are carried out within five decimal places. 

' I Xi I 0.IXi I 
eO-IX• I YI 

0 0.50 0.050 1.05127 2.10254 
1 0.55 0.055 1.05654 1.92098 
2 0.60 0.060 1.06184 I. 76973 
3 0.65 0.065 1.06716 1.64178 
4 0.70 0.070 1.07251 1.53216 
5 0.75 0.075 1.07788 l.4~717 

6 0.80 0.080 1.08329 1.35411 
7 0.85 0.085 1.08872 1.28085 
8 0.90 0.090 1.09417 I. 21574 I 
9 0.95 0.095 1.09966 I. 15754 

10 1.00 0.100 1.10517 1.10517 
11 1.05 0.105 1.11071 1.05782 
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i I '" I O.lx1 I 80.1x1 I YI 

12 1.10 0.110 1.11628 1.01480 
13 1.15 0.115 1.12187 0.97554 
14 1.20 0.120 1.12750 0.93958 
15 1.25 0.125 1.13315 0.90652 
16 1.30 0.130 1.13883 0.87602 
17 1.35 0.135 1.14454 0.84781 
18 1.40 0.140 1.15027 0.82162 
19 1.45 0.145 1.15604 0.79727 
20 1.50 0.150 1.16183 0.77455 

For pictorialness sake we use the tabular data to compile the 
following calculation chart: 

Yi 

I Xi at 1=0 and 

I I 1=20 at an odd 1 at an even t 

0 0.50 2.10254 
I 0.55 1.92098 
2 0.60 1.76973 
3 0.65 1.64178 
4 0.70 1.53216 
5 0.75 1.43717 
6 0.80 1.35411 
7 0.85 1.28085 
8 0.90 1.21574 
9 0.95 1.15754 

10 1.00 I. 10517 
II 1.05 1.05782 
12 1.10 1.01480 
13 1.15 0.97554 
14 1.20 0.93958 
15 1.25 0.90652 
16 1.30 0.87602 
17 1.35 0.84781 
18 1.40 0.82162 
19 1.45 0.79727 
20 1.50 0.77455 

Sums 2.87709 12.02328 10.62893 

Using Simpson's formula, we get 
I. 5 

S eo.ix I 
-x-dx ~ 60 (2.87709 + 4 x 12.02328 + 

0.5 
I + 2 x 10.62893) = 60. 72.22807 = 1.2038. 
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6.7.3. The river is 26 m wide. The table below shows the succes­
sive depths of the river measured across its section at steps of 2 m: 

x I o I 2 I 4 I 6 \ 8 110 112 i 14 i 16 J 1s i 20 \ 22124126 

y I 0.310.911.712.112.813.413.313.013.5\2.911.711.210.810.6 

Here x denotes the distance from one bank and y, the correspond­
ing depth (in metres). Knowing that the mean rate of flow is 
1.3 m/sec, determine the flowrate per second Q of the water in the 
river. 

Solution. By the trapezoidal formula the area S of the cross-sec­
tion 

26 

S = Sy dx ;:::::; 2 [ ~ (0.3 + 0.6) + 0.9 + 1. 7 + 2.1+2.8 + 3.4 + 
0 

+3.3 + 3.0+3.5 + 2.9 + 1.7 + 1.2 + 0.8 J = 55.5 (m2 ). 

Hence, 
Q = 55.5x1.3;:::::; 72 (m3/sec). 

It is impossible to estimate the error accurately in this case. Some 
indirect methods of estimation enable us to indicate approximately 
the order of the error. The error in S is about 3 m2 , hence, the 
error in Q is about 4 m 3/sec. 

6. 7.4. Compute the following integrals: 
J1 

2 

(a) S si; x dx accurate to three decimal places, using Simpson's 
J1 

4 

formula; 
I 

(b) ~ e-x2 dx accurate to three decimal places, by the trapezoidal 
0 

formula. 

6.7.5. By Simpson's formula, approximate the integral 

I. 36 

I= ~ f(x)dx, 
1.05 
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if the integrand is defined by the following table: 

x 1.05 1.10 1.15 1.20 

f (x) 2.36 2.50 2.74 3.04 

§ 6.8. Additional Problems 

6.8.1. Given the fund ion 

{ 
1-x at 

f (x) = 0 at 
(2-x)2 at 

Check directly that the function 
x 

1.25 

3.46 

O~x~ 1, 
l < x~ 2, 
2 < x~ 3. 

F (x) = ~ f (t) dt 
0 

307 

1.30 1.35 

3.98 4.6 

is continuous on the interval [O, 3] and that its derivative at each 
interior point of this interval exists and is equal to f (x). 

6.8.2. Show that the function 

J ~ :: at 
f (x) = l 0 at 

~ -1 at x = l 
is integrable on the interval [O, l]. 

6.8.3. Can one assert that if a function is absolutely integrable 
on the interval [a, b], then it is integrable on this interval? 

6.8.4. A line tangent to the graph of the function 1; = f (x) at the 
point x =a forms an angle ~ with the axis of abscissas and an 

angle ~ at the point x =b. 
b 

Evaluate ~ f" (x) dx, if f" (x) is a continuous fund ion. 
a 

6.8.5. Prove that 
x 

5 E (x) dx = E (x)(£2(x)- l) + E (x) [x-E (x)]. 
0 
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n 

6.8.6. Given the integral S 1 + dx 2 • Make sure that the fun-
cos x 

0 
ct ions 

I ¥2 cos x I tan x 
F 1 (X)· = .r- arc cos V and F 2 (x) = .r-- arc tan .r-

r 2 I+ cos 2 x r 2 r 2 

are antiderivatives for the integrand. Is it possible to use both an­
tiderivatives for computing the definite integral by the Newton­
Leibniz formula? If not, which of the antiderivatives can be used? 

6.8. 7. For f (x) find such an antiderivative which attains the given 
magnitude y =Yo at x = x0 (Cauchy's problem). 

/J 

6.8.8. At what value of £ is the equality ~ e2x dx=e2~ (b-a) ful-
u 

filled? Show that 
t >a+b .., 2 . 

6.8.9. Investigate the function defined by the definite integral 
x 

F (x) =~Vt -t' dt. 
0 

6.8.10. Show that the inequalities 
I 

are valid. 

0.692 ::::;; ~ xx dx::::;; 1 
0 

6.8.11. With the aid of the inequality x~sinx~ ~ x (o::s;;x::s;; 
l"I 

2 
Jt \ t s sin x :n ::::;; 2 ) show hat I < -x- dx < 2 . 

0 

6.8.12. Using the inequality sin x ~ x- x: (x~O) and the Schwarz­

Bunyakovsky inequality, show that 
n 

2 
1.096< \ Vxsinxdx <I.Ill. 

0 

6.8.13. Assume that integrable functions Pt (x), p2 (x), Pa (x), p, (x) 
are given on the interval [a, b], the function Pt (x) is non-negative, 
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and the functions p 2 (x), Pa (x), p4 (x) satisfy the itiequality 

Pa (x) ~ P2 (x) ~ P4 (x). 
Prove that 

" b b 

~ Pa (x) p 1 (x) dx ~ ~ p 2 (x) p1 (x) dx ~ ~ p 4 (x) p, (x) dx. 
u a a 

6.8.14. Let the function f (x) be positive on the interval [a, b]. 
Prove that the expression 

b h 

Sf (x) dx· Sf~;> 
a a 

reaches the least value only if f (x) is constant on this interval. 

6.8.15. Prove that 
l1 

I 2 

S arc tan x dx == ..!._ s-. l- dt. 
x 2 sm t 

0 0 

6.8.16. Prove that one of the antiderivatives of an even function 
is an odd function, and any antiderivative of an odd function is 
an even function. 

6.8.17. Prove that if f (x) is a continuous periodic function with 
a+T 

period T, then the integral I= ~ f (x) dx does not depend on a. 
a 

6.8.18. Prove that if u = u (x}, v = v (x) and their derivatives 
through order n are continuous on the interval [a, b], then 

b 

~ uvwi dx = [uv1n-u_u'vln-2> + ... + (-l)n-1 u<n-u v] I~+ 
a 

b 

+(-l)n ~ ulr•> v dx. 
a 


