Chapter 6

THE DEFINITE INTEGRAL

§ 6.1. Statement of the Problem.
The Lower and Upper Integral Sums

Let a function f(x) be defined in the closed interval [a, b]. The
following is called the integral sum:

n-=1
In= 3 [ &) Ax,
where a=x, < %, < x, <... < x,_, < x,=b,

Axi=x,-+l—x,~; gi € [xi» xi+l] (t::O, l’ Tt n—l)
n-1
The sum S,= X, M;Ax; is called the upper (integral) sum, and
i=o0

n-=1
s, = > m;Ax; is called the lower (integral) sum, where M;=
i=0

= sup f (x) [m;=inf [ (x)] for x € [x;, x;,,].
The definite integral of the function f(x) on the interval [a, b] is
the limit of the integral sums
b n-1
Sf(x) de=1lim 2 f (&, Ax; when max|Ax;| — 0.
i=0

a

If this limit exists, the function is called infegrable on the inter-
val [a, b]. Any continuous function is integrable.

6.1.1. For the integral
T
S sin x dx
0

find the upper and lower integral sums corresponding to the division
of the closed interval [0, n] into 3 and 6 equal subintervals.
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Solution. Divide the closed interval [0, m] into 3 equal parts by
the points:

T 2n
x,=0, =7, X=T7, X=T

The function sinx increases monotonically on the interval [O, %] R

and therefore for this interval we have m,=sin0=0, M,=

= sin 3—=Ki. The least value of the function on the interval

[—’;T, %n] is ml=sin—g—=g, and the greatest value is M, =
=sin%= 1. On the interval [?—g—, n] the function sinx decreases

monotonically and therefore

2nl/§

m2=sinn=0, M2=sin—3—=—2—.

Since all Ax, are equal to % ,

2 — —
Sy = 2 My Ay =2 <0 +£23-+ o) == }5/3 ~0.907,
k=0

When subdividing the closed interval [0, =] into 6 equal intervals
T T 2n
by the points x,=0, x, = 6’ Xo=g, Xg="3, Xg=73, X =

= xs=m, we find by analogy:

5
m,=0, Mo=sin%-=%,
mlzsin—g—=%, Ml_sm%=-'{2£,
mz._smﬁ—g, M,=sin =1,
ma_sm%=§, My=sin =1,
m,,._sm%n=-;—, M4=sm2;=‘—/;,

. . 1
my=sinn=0, M5=sm_g'.=§,
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For this division we obtain
S =-%—(mo+ml+ coe Fmy) :%-(1 +V'3) & 1.43,
Sy=5 (Mo M+ ... + M) =5 3+ 3) ~ 2.48.

As would be expected, the inequalities
Sy <L S << S sinxdx<{ S, < S,
0

hold true (the exact value of the integral is equal to 2).
6.1.2. At what 6 > 0 does the relation

1

S sin xdx— ) sing, Ax, | < 0.001
0 =

0

follow from the inequality maxAx; < 8.

Solution. Since s, < 1,<S,, then for the required inequality to
hold true it is sufficient that the upper and the lower integral sums
differ by less than 0.001:

0<S§,—s, < 0.001.
But

n-1 n—1
Sn_sn = 2 (Mi_mi) A)ci < 8 2 (/Vli__mi)7
i=0 i=0

where M; and m; are the greatest and the least values of the func-
tion sinx on the interval [x; x;,,] (i=0,1, ..., n—1). Assuming

for simplicity that the point % is chosen as one of the points of
division and taking advantage of monotonicity of the function sinx
on the intervals lO, %] and [%, n] , we obtain

n-—-1

2 M;—m;) =2 (sin 2 —sin 0) =2.

4 2
=0

Consequently, the required inequality is satisfied if 28 < 0.001,
i.e. §<0.0005.

6.1.3. Show that the Dirichlet function [see Problem 1.14.4 (b)]
is not integrable in the interval [0, 1].

Solution. In dividing the closed interval [0, 1] into a fixed num-
ber of parts we must take into consideration, in particular, two
possible cases: (1) all points §; are rational, (2) all points ; are
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irrational. In the first case the integral sum is equal to unity, in
the second to zero. Hence, no matter how we reduce the maximum
length of subintervals, we always get integral sums equal to unity
and integral sums equal to zero. Therefore, the limit of integral
sums is non-existent, which means that the Dirichlet function is
not integrable on the interval [0, 1].

6.1.4. Find the distance covered by a body in a free fall within
the time interval from f=a sec to =05 sec.

Solution. A body moves in a free fall with constant acceleration g
and initial velocity v,=0. Consequently, the velocity at the instant ¢
is equal to the velocity increment within the time interval from 0
to ¢, i.e. v(f)=Av. For a short time period Af the velocity incre-
ment is approximately equal to the acceleration at the instant ¢
multiplied by A¢. But in our case acceleration is constant, there-
fore Av=gAt, and hence, v (f)=gt, since At=t{—0=¢.

Let us subdivide the time interval from f{=a to f=0b into n
equal parts then the duration Af of each subinterval will be equal

to At_ . We assume that during each subinterval of time the

body moves uniformly with a velocity equal to its velocity at the
beginning of this interval, i.e

v, = ga,

------------

Whence we find the distance covered by the body during the ith
subinterval: ﬂ—@n—_—a). The entire distance covered by the body is
approximately equal to

S~ Ss,=

+0+.. +Un )=

n
_b—a
T n

b—a

=b—a)g [a + —aQMQ—_I)] .

With n increasing the distance covered can be evaluated more accu-
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rately. The exact value of s is found as the limit s, as n — oo:
s= lim s,= lim g(b—a) [a —|—-;—(b——a) (1 —%)] =
1
—g(b—a) [a +-2—(b——a)] £ — ).

Since s, is an integral sum

n-=1

Se= 3. U, AL, (At,:At:”;"),
i=o

the distance s is an integral:

b b
s=S vdt=‘s gtdt=% (b*—a?).
6.1.5. Proceeding from the definition, compute the integral

1

Sxdx.

0
Solution. By definition,
1 n—1
Sxdx=lim 2t Ax; as max Ax; — 0,
i=0

0
where

O=x, <x, <...<x,=1 E€ [xi» xi+1]»

Ax; =X —X;.

1. Subdivide the closed interval [0, 1] into n equal parts by the
points x;=— (i=0, 1, 2, ..., n).

The length of each subinterval is equal to Ax,-=’ll—, and —,17 —
as n— oo,

Let us take the right-hand end-points of the subintervals as the
points & &= ="11(=0, 1,...,n—1).

Form an integral sum:

i+1 1 1
L=S,=x 2. L1 poq .  yp=tldl
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Hence,

‘Sl‘xdx=—é—.

0
2. Using this example, we will show that for any other choice
of points &; the limit of the integral sum will be the same.
Take, for instance, the mid-points of the subintervals as §;: §; =
1
i+
2

(i=0, 1, ..., n—1).

Form an integral sum

n-1
204+1 1 1 1 2n2 1
n= . 0—27';':% [1—[—3+5—l—... +(2fl—l)J =m=?.
Hence
Jim =7

6.1.6. Proceeding from the definition, compute the integral:

b
(xmdxe (me=—1, 0<a<b).

Solution. In this example the following points can be conveniently
chosen as points of division:
1 [1 n

b ~n— b n b I3
X, =a, xl=a<—a—) y ey xi=a<-;) y e xn=a(;> =:b.
They form a geometric progression with the common ratio

1

b 7
1=(z) >1.
The length of the ith subinterval is equal to
Ax;=aq™'—aq'=aq' (9—1).

Therefore the maximum length of the subintervals equals max Ax; =
n—1 1

=aq”‘1(q—1)=a<—2—> ! [(—b—)"—l] and tends to zero with

a
increasing n, since limg=1.

n - o

Now let us choose the right-hand end-points of the subintervals
as §; Ei=x;,,=aq'* (i=0, 1, 2, ..., n—1).
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Form an integral sum:

n-1 n—1

1= 2 E;"Ax,. — Zamq(i+l)maqi(q_l)=
i=0 i=0

i=

=am+1(q_ l)qm [1 +qm+1+ . _I_q(n—l) (m+1)] —
(m+n__ | —1
=a""(q— l)qm%m—l_:r=(b”‘“—a”‘“) q” q-—_'mq+1_l .

Let us calculate the limit of the integral sum as max Ax; — 0,
i.e. as g— 1t

lim/,= (""" — a"‘“) llm q-

Thus,

m+1 _(bm+1 am+1)

m—|—l

b
Sx”‘dx=

a

6.1.7. Proceeding from the definition, compute the integral:

2
S‘dx
—;-
i

Solution. Subdivide the interval [I, 2] into n parts so that the
points of division x; (i=0, 1, 2, ..., n) form the geometric pro-
gression:

1
m+-1

(bm+1_am+1)_

Xo=1 x,=¢q;, x,=¢q% x,=¢q% ...; x,=q"=2,

whence g= /2.
The length of the ith subinterval is equal to

Axj=q"*r—q'=4q"(q—1),
and so maxAx;=¢""'(gq—1)—0 as n— o0, i.e. as g — 1.
Now let us choose the right-hand end-points of the subintervals

as the points §;, i.e., §;=x;,, =¢'*L.
Form an integral sum:

- n-1 1
—Z'gl—' =2 = q(q—-l)—%(q—l): n<2”—1).
= i=0

gi+t
2

L
lim 1, = lim ’-’-(_QL—) In2,

2

||~

=

1
n

since 2 —1~%1n2 as n— oo.



254 Ch. VI. The Definite Integral

And so,

><|°-

2
)5
6.1.8. Evaluate the integral
5
1=\ V25—xidx,
0

proceeding from its geometric meaning.

Solution. The curve y=}/25—x® is the upper half of the circle
x*4-y2=25. The portion of the curve corresponding to the variation
of x from 0 to 5 lies in the first quadrant. Hence, we conclude
that the curvilinear trapezoid bounded by the lines x=0; x=25;
y=0, and y=1'25—x® is a quarter of the circle x*-+ y*=25; and
its area is equal to 2

4
Hence,

I= Sl/25—x2 dx = 25“

6.1.9. Evaluate the integral, proceeding from its geometric
meaning:
5

=S (4x—1)dx.
i
6.1.10. Prove that

Izgl/a‘z—-x2 dx=%xl/a2—x2 —{—%2 arcsin% 0< x<a).
0

g Solution. The integral

x

=Sl/az——x_2dx
b

expresses the area Sy y, of the por-
tion of a circle of radius a lying in
the first quadrant (see Fig. 59).
This area equals the sum of the
areas of the triangle OMx and the
sector OAM.

Somz="2 ==V a—x.
Fig. 59 om=5=5V
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The area of the sector

|
SOAM= ? azt,

. X
where sint = -

Hence,
S a? . X
OAM=?arCSlnE"
and consequently,
LR Vo yp SR inX
I—QVa x4 5~ arcsin—-.

6.1.11. Proceeding from the geometric meaning of the integral,
show that
2n 1 |
(a) S sinxdx=0; (b) S =%t dx =2 Se_xz dx.
0 *i ;

Solution. (a) The graph of the function y=sin®x is shown in
Fig. 60. Let us show that the area situated above the x-axis is
equal to that lying below this axis. Indeed, let n<Cx<C2n, then

x=mn++x, where 0<{x,<n and sin® x=sin®(nw+4x,) =—sin®x,.
Therefore, the second half of the
graph is obtained from the first one ;¥
by shifting it to the right by =
and using the symmetry about the St \ e o
x-axis. Hence, 7 z
2n ‘ \5/
S sin®x dx=0.
0 Fig. 60

6.1.12. Given the function f(x)=x* on the interval [—2, 3],
find the lower (s,) and the upper (S,) integral sums for the given
interval by subdividing it into n equal parts.

6.1.13. Proceeding from the geometric meaning of the definite
integral, prove that:

2n

(a) \sin2xdx=0; (b) Scos“xdx:O;
0

3
() \ @x+1)dx=6; (d) Sl/g—xzdx=973.
23

=l Py
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6.1.14. Passing to the limit from the integral sums, compute the
integral

4
1= xax,
1
by subdividing the interval [1, 4]:

(a) into equal parts;
(b) by points forming a geometric progression. In both cases

choose §; as:
(1) left-hand end-points of the subintervals;

(2) right-hand end-points of the subintervals;
(3) mid-points of the subintervals [x;, x;,,].

§ 6.2. Evaluating Definite Integrals by the
Newton-Leibniz Formula

The following is known as the Newton-Leibniz formula:

b
§ 1) de=F ()P =F ()—F (a),

where F(x) is one of the antiderjvatives of the function f(x), i.e.
Fri=Ffx) (@<x<b).

6.2.1. Evaluate the integral

V3
dx
1=S =
1

1+

Solution. Since the function F(x)=arctanx is one of the anti-
derivatives of the function f(x)=—l#, using the Newton-Leibniz
formula we get

V3
3 fad 14 n

_ dx . ]/'3_ ——‘— I .1
I= Sl—_i_x—z——arctanx[] =arctan}/ 3 arctanl == —7 =g,
1

6.2.2. Compute the integrals:

2
. . Cosx , . dx
(a) \ sin2xdx; (b) s dx; (c) OS

S| a

o|at— |y
w
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6.2.3. Given the function
[x for 0<x <,

f(x)=\ Vx for 1<x<2.
2

Evaluate g f (x) dx.
0

Solution. By the additivity property of the integral

2 1 2 I

Sf(x)dx:Sf(x)dx—}—Sf( )dx—')xldx—}— l/xdx——
6 0 i
3 ‘ 2 = 1 2 I
5| +357 | =3+ -z,
0 I
6.2.4. Evaluate the integral
2
=S[l——-x|dx.
0

Solution. Since

f 1—x for 0<<x <,
]x 1 for 1 <x<2,

we obtain, taking advantage of the additivity property of the integral,

[l —x|=

2 1 2
S| l——x]dng(h—x)dx—l—g(x—l)dx=
0 i

0

1
(1 —x)?
T2 + 2
0

6.2.5. Evaluate the integral

b
_ (" 1x]
I——S—-x—dx,
b

Solution. If 0<la < b, then f(x)=if—'=l, therefore Sf(x)dx:

X

where a < b.

b
—b—a. If a<b<0, then f(x)=—1 and §f(x)dx=—b—(—a)=
N b

=a—-b. Finally, if a <0<¥b, then divide the integral Sf(x)dx
a
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into two integrals:
b

Sf(x)dx—Sf(x)dx+Sf(x dv="b—(—a).
The above three cases may be represented by a single formula:

Dl dx=1b|—]al.

RC—o

Note. When evaluating integrals with the aid of the Newton-Leib-
niz formula attention should be paid to the conditions of its legi-
timate use. This formula may be applied to compute the definite
integral of a function continuous on the interval [a, b] only when
the equality F’(x)={f(x) is fulfilled in the whole interval [a, b]
[F (x) is an antiderivative of the function f(x)]. In particular, the
antiderivative must be a function continuous on the whole interval
[a, b]. A discontinuous function used as an antiderivative will lead
to the wrong result.

6.2.6. Find a mistake in the following evaluation:
V3
V3
0

- arc tan —2x—2
—|—x2 2 X
0

=3 [3f€tan( —V 3)—arctan0] = -z

1 2 ! 1
where <—2-arc tan ]_xxz) == (x=~1).

Solution. The result is a priori wrong: the integral of a function
positive everywhere turns out to be negative. The mistake is due
to the fact that the function i2arc tanli—xxz has a discontinuity
of the first kind at the point x=1:

. 1 2x Fud 1 2x
lim sarctan—==7; lim Sarctan
x->1-0 l—x 4 x->|+02 I —x2

==
=7

The correct value of the integral under consideration is equal to
dx Vs _ — _n
ES Tz =are tanx , = arc tan)/ 3—arc tan 0 = T

Here the Newton-Leibniz formula is applicable, since the function
F (x) = arc tan x is continuous on the interval [0, %] and the equality

F’ (x)=f(x) is fulfilled on the whole interval.
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6.2.7. Find a mistake in the following evaluation of the integral:

n a
dx . dx _
1+ 2 sin 'Zx—,g cos® x--3sinzx
0 0
n dx
cos? x 1 t ) T
=\ T =735 arc tan (V' 3tanx) , =0.
0

(The integral of a function positive everywhere turns out to be
zero!)

Solution. The Newton-Leibniz formula is not applicable here,

since the antiderivative F(x)=— arctan()/ 3tanx) has a discon-

3
tinuity at the point x=%. Indeed,

lim F(x)= lim V._ ——arc tan l/3tanx

n
x->—2~—0 x—~7—0

1 I
=T_—arctan(—{—oo)=2 V3

lim F(x)= l|m V_ ——arc tan () 3tanx) =

g
x»7+0 X -> =

T

V3’

V_ arc tan (—oo) =

N}

The correct result can be obtained in the following way:

n

a
Scoszx—|—3 sin2x S cot*x—|—3 smz
0 0

It can also be found with the aid of the functlon F(x
V_ arctan () 3tanx). For this purpose divide the interval of

> 2
take into consideration the above-indicated limit values of the func-
tion F (x) as x-—-»izt-¢0. Then the antiderivative becomes a conti-

nuous function on each of the subintervals, and the Newton-Leibniz

integration [0, n] into two subintervals, [0 ——] and [%, n] , and

9‘
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formula becomes applicable:

+

OQ—,‘DN)I'-'!

n
Scos x—}—3 sin? x
0

NESr T ]

= _arctan () 3tanx) lnT + 7‘3— arctan ()/ 3 tanx) |7
0

V3 T
-z L(3-0)+(0~(-2))] -7

6.2.8. Compute the integral

5 l/l—l—c2052x dx
0

2 3
Solution. )/ G — ]/2°°§ ¥ —|cosx|=

{ cos X, 0<Cx

b}

NI

— COs X, —} <L m
Therefore

Jt
n 7
s ‘/H’CQOS% 5 cosxdx -+
0 b

(——— cos x)dx =

o|at—ia

=sinx {7 2 4 (—sinx) % n =(1—0)+(0—(—1)=2.

Note. 1f we ignore the fact that cosx is negative in {_-g, n]

and put
l/l—{—c;s 2x — cosx,

we get the wrong result:

an

Scosxdx_smx =0.
0
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6.2.9. Evaluate the integral
100n

= S V' 1T—cos 2x dx.

0
Solution. We have

V1T—cos2x=)'2 |sinx|.
Since |sinx| has a period n, then
1000 100n

S V1—cos2xdx=)2 S | sinx|dx =
0 0

=100 7 { sinxdx=200p/2.
0

6.2.10. Evaluate the integrals:

-1 -2

dx . . dx
(@) I'= QW» (b) /——Ssxg—_l',
. T
s X g . X .
(c) I= 5‘ sm‘?dx, (d) 1_65 mdx,
2
2 —J? .
€ d sin —
) I:Sﬁ;; () 1=S adx;
1
l T
x3dx |
@ 1/ (\5 2% (h) 120 I8 °
; d
. xdx )
) I= Oj]/x—l—l+l/-5x—|—l ’
T
G0 1I1= S J/ cos x— cos? x dx;
7
vy
(k) 1 =S I—}—xz)

i
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§ 6.3. Estimating an Integral.
The Definite Integral as a Function of Its Limits

L If f(r)<<o(x) for aCx<h, then
b b

(i< [ o dx.
a a

In particular,

b

b
§Fax| < §1F00dx.

b
2. mb—a) << Sf(x)dng(b—a),

where m is the least value, and M the greatest value of the func-
tion f(x) on the interval [a, b] (estimation of an integral).
3. If the function f(x) is continuous on the interval [a, b], then

b
(fde=f@®©0—a), a<t<b

(mean-value theorem).
4. If the functions f(x) and ¢(x) are continuous on [a, b], and
¢ (x), in addition, retains its sign on this interval, then
b

Sﬂwwum»—ﬂaﬁwu dx, a<E<b

a

(generalized mean-value theorem).

Sf(t )dt = [ (x); Sf(t f(x)at each point x of
continuity of the function f(x).
6.3.1. Estimate the following integrals:

3

3
(a) /=S1/3+ Fdy,  (b) 1=S it
T

1

2
215
) /=S .
0

Solution. (a) Since the function f(x)=} 3+ x* increases mono-
tonically on the interval [1, 3], then m=2, M=}/30, b—a=2.
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Hence, the estimation of the integral has the form

3
2.2< (V3 xdx <302,

I

3
4< (V3 FPdx<21/ 30 ~ 10.95.
1

(b) The integrand f(x)=5i—';x- decreases on the interval [2— , %l ,
since its derivative

0s x— sin x x—tanx) cos x
HOEES ===

= = < 0.
Hence, the least value of the function:

nei(3) 22

2n

its greatest value being

Therefore

n
)
022 & KL < | 02 gy < V2 o 04,
Ed
4

6.3.2. Estimate the absolute value of the integral
19

sinx
S s dx.
10

Solution. Since |sinx|<C1, for x> 10 the inequality

f—;[‘j—s < 107% is fulfilled.
Therefore
19
sin x - -
mmdx < (19—10) 1078 < 1072

(the true value of the integral ~—107%).
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6.3.3. Which of the two integrals

1 1

S V xdx, S x*dx
0 0
is the greater?

Solution. As is known, Jx > x* for 0 < x < 1. Therefore

1
0V xdx > (xean.
0 0

6.3.4. Prove the inequalities:

1
(@) o<\x“ <gi ) 1< (ear<e.
X8 <
0

Solution. (a) Since 0 <
then

< x" for 0 <<x<1,

X
?/H-xs
1

dx x8
0<5 il <§x7dx::—
1/ 1+ x8 8

1 1

0 8"

(b) Since for 0 < x <1 there exists the inequality 1 < e*’ <e,
then

1 1 1

de< Se"zdx< Sedx.
0

0 0
Hence the inequality under consideration holds true.

6.3.5. Prove the inequality

e-Rsinxdy -~ .%(l—e’R) (R>0).

S|

Solution. Since the function f(x) =~Si—n-’i decreases on (O, g) [see

Problem 6.3.1 (b)], then for O<x\ —2-
f(x)=

ny_2
(2 Tnt
Hence, on this interval sin x > -f;x, therefore
e-R sin x <e ot
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and

n 7
2 2

3 R
Se“Rs"""dx<Se dx———§% [e m XJO =§T;—é(l——e‘R).
(]

6.3.6. Prove that for any functions f(x) and g (x), integrable on
the interval (a, b), the Schwarz-Bunyakovsky inequality takes place:

b b
<|/§f2<x)dx (g (v dx

Solution. Consider the function

F(x)=[f (x)—Ag (x)]?,
where A is any real number. Since F (x) >0, then

b

{1 g

a

b
{ [f () —2g(x)]*dx >0,

or
b b

nggZ(x)dx—QxSf(x)g( deng(x)dx>0
The expression in the left side of the latter inequality is a quad-
ratic trinomial with respect to A. It follows from the inequality that
at any A this trinomial is non-negative. Hence, its discriminant is
non-positive, i. e.
b

2 b
{Si(x)g(x)dx} —Sf* x)dxg g% (x)dx < 0.

<]/ P x)dx g (1) dx,
which completes the proof.

6.3.7. Estimate the integral from above

Hence

Sf(x)g x) dx

1

(* sinx
I—— mzdx.
0

Solution. By the generalized mean-value theorem we have
1

=—sing(0<E<]),

0

1

1
sin x . dx .
S H_x,dx—smgg-l——_{_—;_smgarctanx
] ]
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Since the function sinx increases on the interval [0, 1] then
sin& < siin 1. Whence we get an upper estimate of the integral:

1

sin x .

S —|—x2 —sin | ~ 0.64.
0

It is possible to get a better estimation if we apply the same
theorem in the form

1 1

SITX gy = ! - Ssinxdxz

. —cos 1)< 1—cos 1 ~ 0.46.
x2 1 )
0 ! E []

1
T (1

6.3.8. Proceeding from geometric reasoning, prove that:
(a) if the function f(x) increases and has a concave graph in the
interval [a, 0], then

b
(b—a)f (@) < [ F(rdr < (p—a) AL

(b) if the function f(x) increases and has a convex graph in the
interval [a, b], then

b
(b—a)HATO < (o de < 0—a) ] ).

Solution. (a) Without limitation of generality we may assume
f (x) > 0. Concavity of the graph of a function means, in particu-
lar, that the curve lies below the chord
through the points A(a,f(a)) and
B (b, (b)) (see Fig. 61). Therefore the

f8) area of trapezoid aABb is greater than
that of the curvilinear trapezoid boun-
#(a) l ded above by the graph of the func-
: { tion, i. e.
0 a i
’ §F () dx < Sqam=(6—a)-LALLO,
Fig. 61 a

The inequality
b
(b—a)f(a) < Sf(x)dx

a
is obvious.

1
6.3.9. Estimate the integral SV]—]—x‘dx using

0
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(a) the mean-value theorem for a definite integral,
(b) the result of the preceding problem,

(c) the inequality V' 1T+ x* < 1 —1—%4,
(d) the Schwarz-Bunyakovsky inequality (see Problem 6.3.6).
Solution. (a) By the mean-value theorem

— (VT xax =)/ TFE, where 0<E 1.
1]

But
I<VI+E<V?,
whence
1< 1<V 2~1.414.

(b) The function f(x)=) 1T+x* is concave on the interval [0, 1],
since

" 2x2 (x44-3)
["(x)= W>0 0<x<lI.

On the basis of the preceding problem we get

1
1<S|/1 T x4dx<'+’/2 1.207.

0

1 1
©) 1</=§V1‘de<§<1+’§)dx=1+,—'0=1.1.

(d) Put f(x)=)1+Fx4, g(x) =1 and take advantage of the Schwarz-
Bunyakovsky inequality

1 1 1
=SV1 +xtde=1< 1/S(l+x4)dx-g 12dx =
0 0 0
=}/1.2 ~ 1.095.

6.3.10. Find the derivative with respect to x of the following
functions:

Sl V' 1T+ x*dx

x3

(@ F={Intd (x>0)

x2

<
!

(b) F(x)=\ cos(t*)dt (x> 0).

"l"‘t/;
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Solution. (a) Write the given integral in the following way:

§lntdt —;—Slntdt: (intdat—(inear,

x 4

where ¢ > 0 is an arbitrary constant.

Now let us find the derivative F’(x) using the rule for differen-
tiating a composite function and the theorem on the derivative of
an integral with respect to the upper limit:

F;(x)z[glntdt] (x3);—[Slntdt] (x2), = In x* 3x2 — Inx? 2 =

c x3 x?
= (9x*— 4x) In x.

¢

(b) F(x) = S cos (£2)dt + Scos(t“)dt—

1
1 Vi
— S cos (£2) dt + S cos (£?)dt;

% , 1\ Vx
F’(x)=-—{g cos (12 d J <7>x+[ Scos(tz)dt] (V x), =

1
x?

! | 1
-—COS?E(—E)-*—COSX'm-— OSP+'2—V.—}COSX.
6.3.11. Find the derivative with respect to x of the following
functions:

2X

(a) F(x)=S L dt; (b) F(x)=Sl/l+t4dt.

0

6.3.12. Find the points of extremum of the function F (x) =Ss—i—:"dt

in the domain x > 0. *

Solution. Find the derivative

i =| fintar| s,

0
The critical points are:

x=nn (n=1, 2, ...), where sinx=0.
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Find the second derivative at these points:

X cos x—sinx
Fr(x) =250,

F’ (nn)=n—ln-cos (nm) = nln(—l)";& 0.

Since the second derivative is non-zero at the points x=nn
(n=1, 2, ...), these points are points of extremum of the function,
namely: maxima if n is odd, and minima if n is even.

6.3.13. Find the derivative of y, with respect to x, of the func-
tion represented parametrically:

I 3
ngf/_zln zdz, y= S z*In z dz.
1 Vi

Solution. As is known, y;=£’7.
xt

Find x; and y;:

5 !
x;=<g v/ 21n zdz\ (13);=tInt3.3t2 =9 Int;
/3

1

(¢ ) - - 1 1y
;== 22Inzdz ) =—tinVt ——==——VtInt;
!/t \Vgt_ 4 v (V )t V D) Vt 4 ‘ n
whence
=362 F (t >0).
—— Vilnt
4
6.3.14. Find the limits:
S sin YV x dx S (arc tan x)2 dx
. 0 . . 0 .
@ M= ) lim s
x 2
<Se"2dx>
© lim 22—,
X+ ®
Se’l""'dx
0

x’

Solution. (a) At x==0 the integral Ssin )V xdx equals zero; it is

0
easy to check the fulfilment of the remaining conditions that ensure
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the legitimacy of using the L’Hospital rule. Therefore

x? x? ’

S sin V'x dx [g sin ¥ xdx] (%)«
. . . 2xsinx 2
lim & = [im &2 A -
- ) 3¢ e =3

(¢) We have an indeterminate form of the type % Use the

L’Hospital rule:

/x 2 X
g ex* dx> 2 S ex* dy-ex?
X+ © x>+ ® e=*
gezxzdx
0
x
QSexzdx
. . e"2
= lim —° = lim 2 —4—=0.
X+ > ex X+ er.2x

6.3.15. Find the derivative Z—z of the following implicit functions:

e~ dt + S sin? tdt =0;
0

y
;
y
(by ( eldt+ ( sin¢dt =0;
oge Ssm
)
5

(=1

Yy
V'3—2sin?zdz+ S costdt =0.
0

(©

Solution. (a) Differentiate the left side of the equation with
respect to x, putting y =y (x):

y ’ x2 ’
[Se"zdt] .%+[Ssin2tdt] (x2), =0;
Yy

0 0 x2
_,2dy L .
ey d—x+sm2x2'2x_0.
Hence, solving the equation with respect to %, we get

d —2xe*¥ sin? x2.
dx
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(c) Differentiate the left side of the equation with respect to x,
putting y=y (x):

X ’ y ’
[SVS—? sin®z dz} —|—l:5 costdt]yj—i:O.
0

4

2

Whence

T dy dy V3 —2sintx
2 . -
1/3—2sin x+tcosy =0, == — sy

6.3.16. Find: (a) the points of extremum and the points of
inflection on the graph of the function

S(t—l)(t— )2dt;

0

(b) curvature of the line defined by the parametric equations:

( X = al/nScos dt,
-

aV'n j sin 5‘—;— dt
0
(the Cornu spiral).

Solution. (a) The function is defined and continuously differen-
tiable throughout the entire number scale. Its derivative

ly=(x—1)(x—2)

equals zero at the points x, =1, x, =2, and when passing through
the point x, it changes sign from minus to plus, whereas in the
neighbourhood of the point x, the sign remains unchanged. Conse-
quently, there is a minimum at the point x, =1, and there is no
extremum at the point x, =2.

The second derivative

r=3x2—10x48

vanishes at the points x, = 3 , ¥,=2 and changes sign when pas-

sing through these points. Hence, these points are the abscissas cf
the points of inflection.

(b) We have
tZ

, — nif? , — . m
Xy=al meos 5, yt-—-al/nsm-2—-,
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hence,
.y a0 (g VAt
yxz-;—:tan—Q—, Ypx = X’ = LR
t t acos“T
whence the curvature
Ke— 1ot _ Yt
= =

1+@)21°
6.3.17. Prove that the function L (x), defined in the interval
(0, o0) by the integral
L(X): d—l9
{
1
is an inverse of the function e*.

Solution. Let us take the derivative

L'()=—~ (x>0).

Since the derivative is positive, the function y-=L(x) increases
and, hence, has an inverse function

x=L""(y)
The derivative of this inverse function is equal to

dx 1

=——_—x’

dy L' (v)
whence it follows (see Problem 3.1.10) that
x=_Ce.
To find C, substitute x =1. Since
L(l)=0, ie. yl,.,=0,

then
l=Ce"=C,

which proves our assertion:
x=L""(y)=¢e".
6.3.18. Given the graph of the function y =f(x) (Fig. 62), find
the shape of the graph of the antiderivative /= §f(t)dt.
0

Solution. On the interval [0, a]. the given function is posi-
tive; consequently, the antiderivative increases. On the interval
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[0, %] the derivative of the given function is positive; hence, the

curve [ =/ (x) is concave. On the interval [%, a] the derivative

of the given function is negative; consequently, the curve /=1 (x)
is convex, the point x:% being a point of inflection. The inter-
val [a, 2a] is considered in a similar way. The point x,=0 is a
point of minimum, since the derivative /' (x)=f(x) changes its
sign from minus to plus; the point x,=a is a point of maximum,
since the sign of the derivative changes from plus to minus.

=~
1S]
ol
SN
3]
E |
g

0 s L
/I 2 2 [0 2 o 3 2

2 2

Fig. 62 Fig. 63

The antiderivative /(x} is a periodic function with period 2a,
since the areas lying above and below the x-axis are mutually
cancelled over intervals of length 2a. Taking all this into account,
we can sketch the graph of the antiderivative (see Fig. 63).

6.3.19. Find the polynomial P (x) of the least degree that has
a maximum equal to 6 at x=1, and a minimum equal to 2 at
x=3.

Solution. The polynomial is an everywhere-differentiable function.
Therefore, the points of extremum can only be roots of the deriva-
tive. Furthermore, the derivative of a polynomial is a polynomial.
The polynomial of the least degree with roots x;,=1 and x,=3
has the form a(x—1)(x—3). Hence,

P(x)=a(x—1)(x—3)=a(x*—4x -1 3).
Since at the point x==1 there must be P (l)=6, we have

P(x)= §P’ (x)dx -6 =a §(x2——4x-{—3)dx—|-6=

1 1
—a (’;—3—2x2+3x— 1 -;-) 6.

The coefficient a is determined from the condition P (3) =2, whence
a=3. Hence,

Px)y=x*—6x*+9x- 2.
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6.3.20. Find the polynomial P (x) of the least degree whose graph
has three points of inflection: (—1, —1), (1, 1) and a point with
abscissa 0 at which the curve is inclined to the axis of abscissas
at an angle of 60°.

Solution. Since the required function is a polynomial, the abscis-
sas of the points of inflection can only be among the roots of the
second derivative. The polynomial of the least degree with roots
—1, 0, | has the form ax (x*—1). Consequently,

P’ (x) =a (x®*—x).

Since at the point x=0 the derivative P’ (0)=tan 60°=)3, we
have

P = Prwar+V3=a(—5)+V3.
0
Then, since P(l)=1, we get

=SP'(x)dx+1=a(’-2%—’-‘§+§)> V3 x—=1)+1.
1

The coefficient a is determined from the last remaining condition

60(1/37—1)

P(—1)=—1, whence a= . Hence,

P(x)= VS L(3x®—10x%) +-x /3.

6.3.21. Taking advantage of the mean-value theorem for the
definite integral, prove that

(a) 3< \Vq+xdx <10,

]//1 +%sin2xdx<% ‘/%,

°L/".m[: o

b) F<

2
© i3 <SlO—|—3cosx< 7"

6.3.22. Using the Schwarz-Bunyakovsky inequality, prove that

i —
Sl/l +x3dx<—Vz—5—. Make sure that the application of the mean-

0
value theorem yields a rougher estimate.
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6.3.23. Find the derivatives of the following functions:
xzdl

l—-

2

X

(a) F(x):S'lntdz (x>0); (b) F(x)=
1

6.3.24. Find the derivative Z—i of functions represented paramet-
rically:

t Int
"lnz i
x=\— = \ e?dz,
2
2 5
sin ¢ Vi
. * sin 22
(b) x= Sarcsmzdz, yzs d
c? n

6.3.25. Find the points of extremum of the following functions:

(@) F(x) =Se (1—22) dt;
1
=3‘t2 5144,
s 2+4-et

§ 6.4. Changing the Variable in a Definite Integral

If a function x =g (#) satisfies the following conditions:

(I) ¢ (?) is a continuous single-valued function defined in [, B]
and has in this interval a continuous derivative ¢’ (¢);

(2) with ¢ varying on [a, B] the values of the function x=¢ (¢)
do not leave the limits of [a b];

(3) ¢(@)=a and ¢ (B)= .
then the formula for changtng the variable (or substitution) in the
definite integral is valid for any function f(x) which is continuous
on the interval [a, b]:

b

B
(iwae=(Flom] o @) at

a

Instead of the substitution x=¢ (f) the inverse substitution
=1 (x) is frequently used. In this case the limits of integration
a and B are determined directly from the equalities o =1 (a) and
B=1v(b). In practice, the substitution is usually performed with
the aid of monotonic, continuously differentiable functions. The
change in the limits of integration is conveniently expressed in
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the tabular form:

Vs
6.4.1. Compute the integral { V41— dx.
-V
Solution. Make the substitution x=2sinf, assuming that

—%gtg-’-;—. The function x=¢({)=2sin¢{ on the interval
r——g—, —g—] satisfies all the conditions of the theorem on changing

the variable in a definite integral, since it is continuously differen-
tiable, monotonic and

(=3)=—V3. o(3)-s
And so,
x=2sint; dx=2costdt, l/4—x2=2]cost|=2cost,

since cos? > 0 on the interval [——g—, %—]
Thus,

v n T
Vi—xdr=4 { costtdt=2 { (1+cos2tydt=
7

Vs 7

=2 [t—l—%sith]_?i:%‘-H/g.
3

4
6.4.2. Compute the integral X VX2 4.
2

Solution. Make the substitution

x=2sect, x|t
__ o sint X 9
dx_Qcostt’ g .
43

On the interval [O, ’3i] the function 2 sec ¢ is monotonic, there-
fore the substitution is valid.
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Hence,
n
s n 3
Vx2~_4 SV4sec {—4 ) Sintdt—
x4 J 16 sect ¢ cos'll -
n
3 &
il I e
=7 sin tcostdt--lzsm | = T -

<

6.4.3. Compute the integrals:

a )
9 . dx
) S.)Cz — X dx, (b) S Vm——_ﬁ—"

0 1

6.4.4. Compute the integrals:
e n
= i )
-’ cos x dx

@) 5 6—5 sin x+sinz x S 2+cosx
0 0

Solution. (a) Apply the substitution

sinx=t; x | ¢
cos x dx =dt,; 0olo
n .

Eak

The inverse function x=arcsint ngg%forogtg 1) satisfies
all conditions of the theorem on changing the variable. Hence,

n
2 1
cos xdx _ t——3 . 4
I'—;S 6—5sinx+tsinzx S 5t-i—tz 2 ln—3—‘
0 0
(b) Make the substitution t=tan%
2d¢ x ,t
x=2arctant, dx= o
14-¢2 0lo
1 ’
<5 |1

which is valid due to monotonicity of the function tan = on the

2
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= arc tan —— o2 arctan—l——arctanO ==
V3 V3l V3 < V3 ) 3V
6.4.5. Compute the integral
14
& d
X
S a® cos? x+ b2 sin? x (@>0, b>0).
0
Solution. Make the substitution
tanx =¢, x |t
x4 010
cos? x ’ .
LA
4
Hence,
14
T 1 1
dx _S dt _lS dt
§a2c052x+b2sin2x _o a‘z—[—bzt'z—bzo Z_Z‘HZ-
L Larctan®|! = Larctan?
5 arcta , —aparctan—.

If a=b=1, then Ell-)arctan—g- =arctanl = 4 , which exactly coin-

cides with the result of the substitution a=b=1 into the initial
integral

s
4
dx = ( dx — T
a?cos2 x4 b%sin®x T4
0

:'Q/'D.sl;:l

6.4.6, Compute the integrals:

Vy V— 4
14+x2 , . X .
(a) dx’ b) 5x V‘m’
Y/ (x—2)?
© §3+ l/(x 2)2 dx
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a

6.4.7. Compute the integral /= l—:_—sclgsf—dx

Solution. Reduce this integral to the sum of two integrals:

JT

xsinx xsinx
[- l—i—cos2 dx+ Sl—f—cos x =1,+1,.

To the integral

n
xsinx
12:5 1+c052xd
T
K3
apply the substitution
x=n—I{¢, x | ¢
dx=—dt, n n
Pl 2
By 0
Then
n
2
(n——t)sm(n—t) (n—1{)sint .,
__S THcos? (m—¢) dt = S 14 cos? ¢ dt =
a1 n
H 1 B t {
sin sin
=n +c032t Sl—l—cos”dt
0 0
Hence
7! ﬂ
2
. xsmxdx sin ¢ d! {sint dt
[=1+1,= l—|—cos* +n Sl—l—cos*t_ 1+cos?/ *

Since the first and the third integrals differ only in the notation
of the variable of integration, we have

I_HS sin 7 dt
- 1+cos2t *



280 Ch. VI. The Definite Inlegral

To this integral apply the substitution

u=cost, t u

du=—sintdt, 0 1
T ’

5 0

I=—n

u? anghfuz ZT'

_‘L/'Jo

Note. The indefinite integral (lisclgsi dx is not expressed in

elementary functions. But the given definite integral, as we have
shown, can be computed with the aid of an artificial method.

6.4.8. Evaluate the integral

1
jo ooy,

0

Solution. Make the substitution

x=tant, x | ¢
__at 0 0
" cos? !’ | n
&

Hence,

&l';l

:S In (1 +tan/)sec? ¢ dt — 1n(1-|—tant)df

sec? ¢

°L,~,‘,Iv;,

Transform the sum 14tant:

. n
B B2 B V 2sin (l—]-T>
l +-tan¢ =tan 3 +tant= ————F——.

cos !
Substituting into the integral, we obtain
T " :
1-.-;Si21n2dt+§1nsm<t+%)dt—glncoszdr-.:
[0 (:w ;[,
2
—tln? Insin( ¢+ 5 |df — \ Incos{dt =
e[+ finsin (1) e
f T
B B
=%ln2 —}—5 Insin (t —k%) dt—) In costdt;%ln2+ll— I,
0 0
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Now let us show that [7,=1,. To this end apply the substitution
l

t:—}—z, |

dt =—de,

¢
0
n
4

z

=
4
0

Tt

4
to the integral 12:Slncostdt.
0

Then

44

12=—§lncos (%—z)dz: §lnsin l%—(%—z)] dz =
T 0

4

Therefore
19

Note that in this problem, as well as in the preceding one, the
indefinite integral Slnl(_lk—;x)
ctions.

dx is not expressed in elementary fun-

6.4.9. Prove that for any given integral with finite limits a and 6
one can always choose the linear substitution x=pt+4q (p, g con-
stants) so as to transform this integral into a new one with limits
0 and 1.

Solution. We notice that t{he substitution x=pf-+4q satisfies
explicitly the conditions of the theorem on changing the variable.
Since ¢ must equal zero at x=a and ¢ must equal unity at x=b
we have for p and ¢ the following system of equations

a=p-0+4gq,
b=p‘l+q'
whence p=b—a, g=a. Hence,

b 1

(fwdr=p—a) {F[(0—a)t+a]dt.

a 0
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6.4.10. Compute the sum of two integrals

e (”'%>2dx.

-5

S e(x+5)2 dx_|_ 3

-4

wl—mwi

Solution. Let us transform each of the given integrals into an
integral with limits O and 1 (see the preceding problem).

To this end apply the substitution x=—¢—4 to the first inte-
gral. Then dx=—dt and

-5 1 I
l,= Se‘“s’)’ dx = — Se“t“)’dt =— Se“'“2 dt.
-4 0 0

Apply the substitution xz%’[—% to the second integral. Then

dt
=3 and

-

0

~
»
Il
w
]~ |
(13
©
—
*
i
|
~
-
Qu

Hence

1

L1, =—Sew-v gt 4 (eu-nrar —o.
0 0

. 2N
Note that neither of the integrals Se(”W dx and Seg (x 3> dx is
evaluated separately in elementary functions.

6.4.11. Prove that the integral

T(

ﬂ’ sin 2kx
J sinx
0

equals zero if k is an integer.
Solution. Make the substitution

=
~

x=mn—I1,
dx = —dt,

a o
o A

Then at %k an integral number we get:

§ sin ‘ka i 5‘ sin 2k (m—1{) dt — S‘ sin 2kt dt
0 0

sin x sin (w—¢) sint
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Since the definite integral does not depend on notation of the vari-
able of integration, we have

I =—1, whence [ =0.

6.4.12. Compute the integral

<
wl

dx

I/I-—-xz '

w]_‘,wml

Solution. Apply the substitution x=sint (the given function is
not monotonic), dx=cos¢dt. The new limits of integration ¢, and
¢, are found from the equa-

V3

2

tions L=sin t; =sin ¢.

2

7 A

We may put t, =+ and ¢,= 21 ——————————

=%, but other values may AVZER
also be chosen, for instance, 0l & = 7 oz =\ ¢
tl=5—JT and ¢,= 6 3 3 b

In both cases the variable Fig. 64
x=sint runs throughout the
entire interval[%, 12—3—} (see Fig. 64), the function sin# being

monotonic both on [%, %] and [2n 5n]

36
Let us show that the results of the two integrations will coincide.
Indeed,

3 il a
2 3 3 P
g’ dx _S‘ cos ¢ df s.—i{-——ln tanL 5
xVIi—x sinfcos? ) sin 2 ||
1 T fu g
) 6 6
=IntanZ—Intan X = In 2+l_/3.
6 12 V3

On the other hand, taking into consideration that cost? is negative

on the interval [%, %J , we obtain
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V3 2n 57
2 3 6
s dx _S‘ costdt (" dt
V1 —x2 sin ¢ (—cos £) sint
! b 2
P} 6 3
5
5n tan — x -
=lr1|tan—t2- o =1In ]i =In 2+.‘{3.
3 taﬂ-3— V-3

5n

Note. Do not take ¢, =-, t2=i3t—, since, with ¢ varying on

the interval [E lr)f] , the values of the function x =sin ¢ lie beyond

3' 6
V_3]'

the limits of the interval [—;—, 5

6.4.13. Prove that the function L (x) defined on the interval

\IQ-.

(0, o0) by the integral L (x S
1

L(X1x2)= (1)+L<x2)»
X
L (x—l) =L (x)—L (x,).
Solution. By the additivity property

11)‘2

dt at | y
L (x, xz)—' T S j 7
1 X,

Let us change the variable in the second integral

t ‘ 2

t=x2,
dt =x,dz, X1 :
XXy | X,

Then

Lixr) = | F4+ | Z=L(x)+L (x).
1

. X .
Putting here x,x,=x,; x2=x—‘°;, we obtain

Lx) =L (x)4L (;‘—f) ,ie. L (’;—j) =L (1) —L (x,).

possesses the following properties:
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m
It is also easy to obtain the other corollary L<x7> =—','zl L(x) for

any integral m and n.
Indeed, for positive m and n this follows from the relations

L(67) e (67) L= (7).

and for a negative exponent, from
L(1)=0, L(x“)=l.<%>=L(1)—-L(x)=—L(x).

Now, taking advantage of the continuity of the integral as a fun-

ction of the upper limit, we get the general property L (x?®)=al (x).

Note. As is known, L(x)=Inx. Here we have obtained the prin-

cipal properties of the logarithm proceeding only from its determi-
nation with the aid of the integral.
3

6.4.14. Transform the integral S(x—?)'zdx by the substitution
0
(x—2)*==t.

Solution. A formal application of the substitution throughout the
interval [0, 3] would lead to the wrong res_ult, since the inverse
function x=¢(¢) is double-valued: x=2i_l/ ¢, i.e. the function x
has two branches: x,=2—f; x, =2V . The former branch can-
not attain values x > 2, the latter values x << 2. To obtain a cor-

rect result we have to break up the given integral in the following
way:

3 2 3
S (x—2)2dx = S (x— 2)*dx+ S (x—2)?dx,
0 0 5

and to put x=2—)"7 in the first integral, and x=2-}"7 in the
second. Then we get

2 0 4
’ dt 1 T 8
Ilzj(x—Q)ldxz— gt;—_[:;jl/tdt:?,
0 4 0
: - dt 1 l 1
h={—par={t = (Vid=g
2 0 0

Hence, /=

w]| o
+
| —
I
‘CO
£
=
IS
=
o
N
)
o
-
-
o
!
-
-
)
w
o
=
P
-
o
0
=
o
)
I
o
@,
<
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verified by directly computing the initial integral:

3
: =2 1 8
Y e—2prdr =" L*‘s‘ﬁ‘—?’

f=1

6.4.15. Compute the integrals:
5

1
dx .
@ I'= S 1+V 7c { 1/3x+|’
L
3 1
X . —(vVor—= 4y
© I= Sm (d)I—SVQX—x dx;
o 0
4
I
Csinxy
sin x COoSs X
() 12(5 3+ sin2x ’
) I=jx2 ]/Z—I;dx, a>0;
0

1
(2) I—Sl/an —x2dx; (h) [ =l§(+x)z.

6.4.16. Applying a suitable change of the variable, find the fol-
lowing definite integrals:

2 a

dx X dx
@ '5 Vifl+Vietie' ®) b§x+ a?—x?

Via® +0b2)/2

28‘ . xdx
O)erm @ ) vVemae—s
V(3az+b%)/2

2
6.4.17. Consider the integral S% It is easy to conclude
—2

that it is equal to §. Indeed,
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On the other hand, making the substitution xrsti, we have
X 1
dxz—%, 9 _l_ ’
I )
1
2l 7
1
z 1
dt 1 i n
4+x2= S — (4t2+1—7arctan2t =7
4+ lz Y I-T

_z_ 2
This result is obviously wrong, since the integrand ;—=>0, and,
consequently, the definite mtegral of this function cannot be equal

. Find the mistake.

to a negative number -7
2n

6.4.18. Consider the integral /= SET—SXWV Making the substi-

0

tution tan —;—:t we have
2dt —0.

Kﬂ dx .

5—2 cos x_S ) | —12

0 0(1—1-1)(5 21+t>

The result is obviously wrong, since the integrand is positive

and, consequently, the integral of this function cannot be equal to
zero. Find the mistake.
6.4.19. Make sure that a formal change of the variable = x+

leads to the wrong result in the integral S /x*dx. Find the
-2

Bk

mistake and explain it.
6.4.20. Is it possible to make the substitution x=sec? in the

1
integral / = S Vxt+1 dx?
0
1

6.4.21. Given the integral { )/ T—x*dr. Make the substitution
0
x=sint. Is it possible to take the numbers & and % as the limits

for t?
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6.4.22. Prove the equality

a

§ Feode=1F ) +F(—x0)]dx

-a 0

for any continuous function f(x).
2n

6.4.23. Transiorm the definite integral { f (x)cosxdx by the sub-
0

stitution sinx =t¢.

§ 6.5. Simplification of Integrals Based on the
Properties of Symmetry of Integrands
1. If the function f(x) is even on [—a, a], then
( Foode=2f)d
-a 0
2. If the function f(x) is odd on [—a, a], then

S f (x)dx—=0.
3. If the function f(x) is periodic with period T, then
b b+nT

(ryde= § fodr,

a a+nT

where n is an integer.
1

6.5.1. Compute the integral S | x|dx.
=1
Solution. Since the integrand f(x)=|x| is an even function, we

have
1 1 1

S | x|dx=2 S |x|dx=2 Sxdx:x2
g 0 0
6.5.2. Compute the integral

7

x4sinx
g T2 dx.

1

b =1

Solution. Since the integrand is odd, we conclude at once that
the integral equals zero.
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6.5.3. Evaluate the integrais
J

(a) X f (x) cos nx dx;

(b) Sf(x) sin nxdx,
if: (1) f(x) is an even function; (2) f(x) is an odd function.

5
. x° sin? x
6.5.4. Calculate the integral \ ——5—dx.
;S;x +2x%+

5a
4

sin 2x
cos? xsind x

6.5.5. Compute the integral S

g
Solution. The integrand is a periodic function with period m, since

_ sin 2 (x 4-) o sin 2x .
Flor+n) = cost (x+m)fsind(x+m) cos? x-Fsin® x—f (x)-

Therefore it is possible to subtract the number n from the upper
and lower limits:

5 41 he
T T T
sin 2x dx _S’ sin2xdx S‘ tan x dx
cost x+sintx ) costx-sintx cos? x (1 +tantx) *
fid 0 0
Make the substitution
X 14
=tanx, 0 0
_dx n ’
coszx’ vy |
44
T 1 )
tan x dx _(2ta —arctan?| =%
2 g cos%c(l-i—tarrix)——0 [T retanitj, =
0
6.5.6. Prove the equality
a a
g cos xf (x?)dx ==2 g cos xf (x?) dx.
-a 0

Solution. 1t is sufficient to show that the integrand is even:
cos (—x) f [(—x)?] = cos xf (x?).
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6.5.7. Compute the integral

V2

S‘ 257+ 3x85— 10x5 — 7x3—l2x2+x+ld
X242

-V3

Solution.

4]
2x7 4 3x8 — 10x5 — 7x3—12x3+x—l—ld _
S x2+42 -
-VZ
V2 V3
- S 2x ——10x5—7x3—|-xdx+ S‘ 3x2 (x4 — 4)+Idx_
-V

PN P
3 V3

e 1
=042 (5 [3(x4—2x2) +x—2+—1] dx =

6
=—x®—4x? arctan

2 X
5 Tyzaetays
In calculating we expanded the given integral into the sum of
two integrals so as to obtain an odd integrand in the first integral
and an even integrand in the second.

6.5.8. Compute the integral

V2=_15f_5 -§+ T
0

cosx In l_"xdx

I
w]_L/)tol—-

Solution. The function f(x)=cosx is even. Let us prove that the

function cp(x):ln“r—;‘ is odd:

—1In ('“) A

¢ (—x)= 1+x

1—x

Thus, the integrand is the product of an even function by an odd
one, i.e. an odd function, therefore

1

S cos x In I'I""’dx 0.

2] =

6.5.9. Prove the validity of the following equalities:



§ 6.5. Simplification of Integrals 291

1
: + 4
(a) S xtsin® xdx=0; (b) S eosxdy =2 g ecosx dx;
n 1 0
-2 -

2

e ¥ |

sinmxcosnxdx=0 (m and n natural numbers);

(c)

(d) S sin xf (cos x) dx =0.

6.5.10. Prove the equality

h b
Sf(x)dx=Sf(a+b—x)dx.

Solution. In the right-hand integral make the substitution

X l t
x=a-+b—1t, dx= —dt, a b
b a
Then we obtain
b a b b
(flato—nydx=—(Fyat=rydt={iwar.
a b a a

Note. The relation established between the integrals can be explai-
ned geometrically.

The graph of the function f(x), considered on the interval [a, b],
is symmetrical to that of the function f(a-+b—x), considered on

the same interval, about the straight line x=fi2_ﬁ. Indeed, if the

point A lies on the x-axis and has the abscissa x, then the point A’,
which is symmetrical to it about the indicated straight line, has
the abscissa x’ =a-+b—x. Therefore, f(a+b—x')=f[a+b— (a+
+b—x)] =f (x). But symmetrical figures have equal areas which are
expressed by definite integrals. And so, the proved equality is an
equality of areas of two symmetrical curvilinear trapezoids.

6.5.11. Prove the equality
7 1

§f(x)g(t-——x)dx=§g(x)f(t—x)dx.
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Solution. Apply the substitution #—x=z in the right-hand integral;

then we have
0

—§g<t—z>f<z>dz=0§f(z)g(t—z)dz.

6.5.12. Prove the equality \ sin”xdx=\ cos” xdx and apply the

S —y ""l:‘
Og/-;wl:

obtained result in computing the following integrals:
T
2
sin? x dx.

C—n|a

S cos? x dx and
0

Solution. On the basis of Problem 6.5.10 we have

cos™ x dx.

°L/>w|:l

n ]
i 2
S sin” x dx = S sin™ ( )dx
0 0
Hence, in particular,
ki3 KL
2 2
I = S sin? x dx = S cos? x dx;
0 0

add these integrals:

19
2 )

=S (sin2x+cos2x)dx=5 dx=12t-‘;
0

hence, | = %

6.5.13. Prove the equality

f (sin x) dx.

e/ ml Q

§ f(sinx)dx=2
0

Solution. Since

§f(sin x)dx:S2 f(sinx)dx+
0 0

f (sinx) dx,

&'gt/}:l
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it is sufficient to prove that

f(sinx)dx=\ f(sinx)dx.

wlhu 23
OL/},\-,I:I

In the left integral make the substitution

X | t
x=n—{¢, - n
dx= —dt, bl 5
T 0

Then

n 0
S f (sin x) dx:—S f[sin(m—1)] dt =
T

=
2

f (sin x) dx.

S|

s
2
=S f(sint)dt =
0
6.5.14. Prove the equality

n a

gxf(slnx =%Sf(smx) dx.

0 0

Solution. In the left integral make the substitution

X t

x=n—t,
dx = —dt, 0 T
) 0

Then we obtain
n 0
Sxf (smx)dx=—g(n—t)f[sin (n—1¢)]dt =
0 x
n 11

= { af sintydt — § ¢f (sint)at.
0 0

Whence
2 S xf(sinx)dx=mn g f (sin x) dx,
0 0

which is equivalent to the given equality.
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6.5.15. Using the equality

sin (n-{——é—)x |
—-—x—=—2——{—cosx—|-c052x+ ...-cosnx,
2sin —
2
prove that
n sm(n—i——é—>x
dx = m.
sin—x-
0 2

6.5.16. Prove that if cp(x)=-;—ao+a, cos x+ b, sin x+a, cos 2x+-

+b,sin2x+4 ... +4a, cosnx+b,sinnx, then
2n 2n

(a) S ¢ (x)dx=mna, (b) S @ (x) cos kx dx = may,
0 0
2n

(©) S ¢ (x)sinkxdx=mb, (k=1, 2, ..., n).

0

§ 6.6. Integration by Parts. Reduction Formulas

If u and v are functions of x and have continuous derivatives,

then
b

b
Su(x)v’ ®)dx=u(x)v(x) \:—Sv(x) u' (x)dx

or, more briefly,

b , O
Sudv=uv a—gvdu.
a a

|
6.6.1. Compute the integral Sxe"dx.
0
Solution. Let us put
x=u, e* dx = dv;
du=dx; v=e¢*,
which is quite legitimate, since the functions u=x and v=e* are
continuous and have continuous derivatives on the interval [0, 1].
Using the formula for integration by parts, we obtain
1

§ xe* dx = xe*

1 1
—-ge"dx=e—e" 0o =1
o %
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6.6.2. Compute the integral /= \ e®*sinbxdx.

Og/)e.l;;.

Solution. Let us put
u=sinbx, dv=e**dx;
du=bcosbxdx, v=%e‘"‘.

Since the functions u=sinbx, v=-l—e‘“‘ together with their deri-

vatives are continuous on the mterval [0, =], the formula for in-
tegration by parts is applicable:

1 . i
I =—e**sinbx |o
a 0

b
— e** cosbx dx =

o ofx

a]e-

JT

B b

S e**cosbxdx=—— I,.
a

0

Now let us integrate by parts the integral /,. Put

u=cosbx, dv=e**dx,
du= —bsinbx dx, v=%e‘”‘.
Then
11
/ 3
il b .
= e**cos bx |b +7S e‘“‘smbxdx)=
\ 0 /
an an
_ b< e’ 1> b2 b(e”+1) by
T @\ Ta  a/  a? a? T e
Hence

In particular, at a=b=1 we get

19
Se"sinxdx:—;-(e"—}—l).
0
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6.6.3. Compute the integral Sln“xdx.
1
nz

T
6.6.4. Compute the integral Ssin V x dx.
0

Solution. First make the substitution

Vix=t, X t
x =12, 0 0
dx =2t dt, n2 n
T 2
Whence
fatd n
B H
S 3in l/;dx=25 tsintdt.
0 0
Integrate by parts the latter integral.
Put
t=u, sin ¢ dt =dv;
du=dt; U= —CoS .

Then

44 J
2 . 2 n

2f tsintdt=2| —tcost[z+( costat |=2sint|7=2.
0 0

1
. (" arc sin x
.6.5. C te the int = .

6.6.5. Compute the integral 5\ ViTs dx

n

2
6.6.6. Compute the integral S x?sin x dx.

0

a
6.6.7. Compute the integral 1,,=S(a2—x2)"dx, where n is a na-
0
tural number.

Solution. The integral can be computed by expanding the integrand
(a*—x?)" according to the formula of the Newton binomial, but it
involves cumbersome calculations. It is simpler to deduce a formula
for reducing the integral [/, to the integral I,_,. To this end let
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us expand the integral /, in the following way:
a a
l,= S (@ —x>)""Y (@ —x?)dx=a?l,_,— S x(@—x)""1xdx
0 0
and integrate the latter integral by parts:
u=x; (A®—x*)""1xdx=do,

du=dx; v= —;—n (@>—x*)" (ns=0).

We obtain
a
L=l +gx@—2y | =g (@ —wrdi—al, ,— 5 1,
0 0
Whence
I,= 22,,2—3_] n-1
This formula is valid at any real n other than 0 and ——%.
In particular, at natural n, taking into account that
a
l,= S dx ==a,
we get ’
[, =a" (2?:”4521’;;53)_(21’;(_2:)_3)64523 =at (2512:?!1!)!! '
where

2n)!1 =2-4.6 ... (2n),
@n+ D =1.3-5... 2n+1).

6.6.8. Using the result of the preceding problem obtain the fol-
lowing formula:

C[ll 2 c? u C,r‘z . (2n)!!
1—-T+—5"—'—7"-—|—-. -+ (=1) 2n+1"" @n+DN°

where C% are binomial coefficients.

Solution. Consider the integral

1
B n . (2n)!!
l,,—§(l—x2) dX—m.
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Expanding the integrand by the formula of the Newton binomial
and integrating within the limits from 0 to 1, we get:

1
S(l—xz)" dx =

(1 —=Clx*+Coxt— C3x8 + ... +(—1)"Cix®>") dx =

Chx3 Crxd CZx’ (—1)n x2n+1 |1

X——3—+— 2R e oy mal P

0

. Ch , Cn Ch (—1)n
=l==+5— "+ tomrr

which completes the proof.
6.6.9. Compute the integral

H =

z
2
m sin”x dx = S cos™x dx
0

QMMlg

(m a natural number).
Solution. The substitution
sinx=t{,
cos x dx = dt,

vla of %
o

reduces the second integral to the integral

m-1 ! m—1
(1—sin?x) @ cosxdx_g(l—tz)—rdt,
0

Hy=

OMN’I:‘

considered in Problem 6.6.7 with a==1 and n="—’—2_—'. Therefore,

the reduction formula
Ho=""LH, , (m#0, m1)

is valid here, since
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p Iftm is an odd number, the obtained reduction formula reduces
m 0

H,=\ cosxdx=1,

Oe_—y IQI';I

therefore

(m— )t
Hm= —”-1”—— .

If m is an even number then the reduction formula transforms
H, into

SE)

k11
)
Hy=\ de=+,
)
therefore
m—DhH!=n
mll 2"

Hm=

6.6.10. Compute the integral

n
I=stin’”xdx
0

(m a natural number).

Solution. Taking advantage of the results of Problems 6.5.14 and
6.5.13, we get

sin™ x dx,

°c—’§w!§

F19 T
. t .
[= st:n’"xdx:ESSin”‘xdx:n
] 0

which, taking into consideration the result of Problem 6.6.9, gives

a =D iy is even
/ S inm v d 2 mi! ?
=\ xsin®xdx = _
§ nmm“l)” if m 1s odd.

1

6.6.11. Compute the integral I,,=Sx”‘(lnx)"dx; m>0, n is a
0
natural number.

Solution. First of all note that, though the integrand f (x) =x™ (In x)”
has no meaning at x =0 it can be made continuous on the interval
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[0, 1] for any m >0 and n >0, by putting f(0)=0. Indeed,

ﬁ n
lim x* (Inx)" = llm ( "1nx> =0
x—->+0
by virtue of Problem 3.2.4.
Hence, in particular, it follows that the integral 7, exists at
m >0, n>0. To compute it we integrate by parts, putting

u=(lnx)", dv ==x™dx,
n(ln x)n-1 xm+1
d x dx, m-1
Hence,
1 1
m+1 (] n|l
1n=§x”'(lnx)”dx=x m—(f—nlx) o_mil(‘)vam(]nx)n—ldx:_z%l""l'

The formula obtained reduces /, to 7,_,. In particular, with a na-
tural n, taking into account that

we get

6.6.12. Compute the integral 7/, ,= Sx"‘(l—- x)" dx,
0

where m and n are non-negative integers.
Solution. Let us put
(l—x)*=u; x™dx=dv,;
xm+1

du=—n(l—x)""1dx; V=

Then

m+ 1
Im‘"=[;+l(l )] m+|Sxm+1(l x)"- ldx_m_l__llm+1,n—1'

The obtained formula is valid for all n >0, and m > —1. I n
is a positive integer, then, applying this formula successively n
times, we get

1

=" __nh=l) 4 —
myn T m 1] m+1""1"(m—|—l)(m+2) m+2,n—2
_n(n—1N...[n—(n—1)]
T (mE+1)(m+2).. (mtn) mtnee
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But

xm+n+l |1 1

m+n+1 o =m~{—n-{—l *

1
— m+n —
1m+n.0—Sx dx“‘
0

Hence,
n(n—1)(n—2)...3.2-1
(m4-1) (m+2)...(m~+-n) (m+n+1)"
The obtained result, with m a non-negative integer, can be written
in the form

Im,n=

I . min!
mon = A
6.6.13. Compute the integrals:
1 1
(a) S arc tan }/ xdx; (b) S (x—1)e~*dx;

0

1

(d) S x arc tan x dx;
0

_—~
o
N
s|la—w|a ©

w

— }(
e
=

_~
)
~

T
xin(l4+x)de; (6 § In(14tanx)dy;
0

16
(@) \ sin2xarctan(sinx)dx; (h) Sarc tan ]/l/}——l dx.

i
6.6.14. Prove that
1

1
S(arc cos x)*dx = n(—g-)n—l— n(n—1) S (arccosx)®"2dx (n>1).
0 0

6.6.15. Prove that if f” (x) is continuous on [a, b], then the fol-
lowing formula is valid
b

{ xf" (x) dx = [oF (0)—F ()] —[af* (@) —[ (@)

a

Omwlg ey

§ 6.7. Approximating Definite Integrals
1. Trapezoidal formula. Divide the interval [a, b] into n equal

parts by points x,=a- kh, where h=b——,§£, k=0, 1, ..., n, and
apply the formula
b

§F@de m 222 5100+ 00+ oo )+ T (5] -

o
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The error R in this formula is estimated as follows:

|R| < Mol —a?

o, where M,=a<sggblf” )|

(assuming that the second derivative is bounded).
2. Simpson’s formula. Divide the interval [a, b] into 2n equal

parts by points x,=a--kh, where h=”2_—na, and apply the formula

h
§7 G m 2224 (1) +F (ran) 4 1F (0) 7 ()

ot F Ko ) 2 [F (o) +F () 4+ -+ F (Ko o) ]

Assuming that f'V(x) exists and is bounded, the error in this formula
is estimated in the following way:

M, (b—a)®
| RIS Ty gage» Where M,= sup |F¥(9)].
1
6.7.1. Approximate the integral Izslj_xx using the trapezoidal
0

formula at n=10.

Solution. Let us tabulate the values of the integrand, the ordi-
nates y,=f(x,)(i=0, 1, ..., 10) being calculated within four de-
cimal places.

1 1

X 1+x Y=y xi 1+x =T
0.0000 1.0000 1.0000 0.6000 1.6000 0.6250
0.1000 1.1000 0.9091 0.7000 1.7000 0.5882
0.2000 1.2000 0.8333 0.8000 1.8000 0.5556
0.3000 1.3000 0.7692 0.9000 1.9000 0.5263
0.4000 1.4000 0.7143 1.0000 2.0000 0.5000
0.5000 1.5000 0.6667

Using the trapezoidal formula, we obtain

J=( % Nl(w+o.9091+0.8333+

14+x ~10 2
4+0.7692 4+ 0.7143 - 0.6667 + 0.6250 + 0.5882 + 0.5556 -
+ 0.5263) — - 6.9377 = 0.60377 ~0.6938.

Oy
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Estimate the error in the result obtained. We have f” (x) = T
Since 0<C{x<C 1, then |f"(x)|<<2. Consequently, we may take the
number 2 as M, and estimate the error:

1
|RI< 7osager = gop < 0-0017.

12><102

We calculated the ordinates accurate to four decimal places, and

the round-off error does not exceed ——— 0. 00005 (149x1)=0.00005 <more

0.00005 00005

precisely, ———.9=0.000045, since the ordinates y, and y,, are

exact numbers . Thus, the total error due to using the trapezoidal

formula and rounding off the ordinates does not exceed 0.0018.
Note that when computing the given integral by the Newton-
Leibniz formula we obtain

1

1— ln(l—l—x) =1In2 = 0.69315.

Thus, the error in the result obtained does not exceed 0.0007, i. e.
we have obtained a result accurate to three decimal places.
1.5

6.7.2. Evaluate by Simpson’s formula the integral Se(%c-dx

0'5
accurate to four decimal places.

Solution. To give a value of 2n which ensures the requlred accu-
1
racy, we find f1V(x). Successively differentiating f(x)=2 xx, we get

PV (x) = £ (0.0001xt —0.004x3 +0.12x2 — 2.4x + 24) = 2

eO 1x
where P (x) is the polynomial in parentheses. On the interval
[0.5, 1.5] the function ¢ (x)=e’!* increases amd therefore reaches
its greatest value at x=1.5: ¢ (1.5)=¢"1® < 1.2. The upper estimate
of the absolute value of the polynomial P (x) divided by x® can be
obtained as the sum of moduli of its separate terms. The greatest
value of each summand is attained at x=0.5, therefore

P (x) 0.0001 , 0.004  0.12
XB X + x2 + xa + + x5 \

< 0.0002 —I— 0.016 4 0.96 + 38.4 - 768 << 808.

And so, |f"(x)] < 1.2x808 < 1000. Hence, the number 1000 may
be taken as M,.

<
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We have to compute the integral accurate to four decimal places.
To ensure such accuracy it is necessary that the sum of errors of
the method, operations and final rounding off should not exceed
0.0001. For this purpose we choose a value of 21 (which will de-
termine the step of integration h) so that the inequality

|R| < -0.0001=5.10"
is satisfied.

Solving the inequality

1531 000 _
130 @t <0 x107%

we obtain
2n > 19.

Let us take 2n = 20; then the step of integration h will be equal to

b—a 1
h=—'27=§()= 0.05.

A more accurate calculation shows that at 21 =20

|R| < 3-5x 1075,

If we calculate y; within five decimal places, i. e. with an error
not exceeding 107°, then the error of the final rounding off will
also be not greater than 10-% Thus, the total error will be less
than 4.5x107° < 0.0001.

Now compile a table of values of the function y=eo'% for the va-

lues of x from 0.5 to 1.5 with the step h=0.05. The calculations
are carried out within five decimal places.

{ xi 0.1x; 20- 1% Yi
0 0.50 0.050 1.05127 92.10254
1 0.55 0.055 1.05654 1.92098
2 0.60 0.060 1.06184 1.76973
3 0.65 0.065 1.06716 1.64178
4 0.70 0.070 1.07251 1.53216
5 0.75 0.075 1.07788 1.43717
6 0.80 0.080 1.08329 1.35411
7 0.85 0.085 1.08872 1.28085
8 0.90 0.090 1.09417 1.21574
9 0.95 0.095 1.09966 1.15754
10 1.00 0.100 1.10517 1.10517
11 1.05 0.105 1.11071 1.05782
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[ X7 0.1x e0-1%; Ui

12 1.10 0.110 1.11628 1.01480
13 1.15 0.115 1.12187 0.97554
14 1.20 0.120 1.12750 0.93958
15 1.25 0.125 1.13315 0.90652
16 1.30 0.130 1.13883 0.87602
17 1.35 0.135 1.14454 0.84781
18 1.40 0.140 1.15027 0.82162
19 1.45 0.145 1.15604 0.79727
20 1.50 0.150 1.16183 0.77455

For pictorialness sake we use the tabular data
following calculation chart:

to compile the

Yi

! x4 at ﬁigoa"d at an odd: at an even ¢
0 0.50 2.10254
1 0.55 1.92098
2 0.60 1.76973
3 0.65 1.64178
4 0.70 1.53216
5 0.75 1.43717
6 0.80 1.35411
7 0.85 1.28085
8 0.90 1.21574
9 0.95 1.15754
10 1.00 1.10517
11 1.05 1.05782
12 1.10 1.01480
13 1.15 0.97554
14 1.20 0.93958
15 1.25 0.90652
16 1.30 0.87602
17 1.35 0.84781
18 1.40 0.82162
19 1.45 0.79727
20 1.50 0.77455

Sums 2.87709 12.02328 10.62893

Using Simpson’s formula, we get

1.5

en.1%
X

0.5

dx~ g5 (2.87709 4 % 12.02328 +

+2x10.62893) = g - 72.22807 = 1.2038.
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6.7.3. The river is 26 m wide. The table below shows the succes-
sive depths of the river measured across its section at steps of 2 m:

X 0'2 4 6'8 10 [ 12| 14]16]18]20|22] 24|26

y 0.3 l 0.9(1.712.1 l 2.813.413.3|3.0(3.5 2.9‘].7 1.2 0.8‘0‘6

Here x denotes the distance from one bank and y, the correspond-
ing depth (in metres). Knowing that the mean rate of flow is
1.3 m/sec, determine the flowrate per second Q of the water in the
river.

Solution. By the trapezoidal formula the area S of the cross-sec-
tion

26
S = Sydxz? [%(0.3—{-0.6)—*—0.9-]— 17421428434+
0

+3.343.043.54+2.9+1.7+ 1.2+0.8] —55.5 (m?).
Hence,
Q=55.5x1.3 ~ 72 (m?sec).

It is impossible to estimate the error accurately in this case. Some
indirect methods of estimation enable us to indicate approximately
the order of the error. The error in S is about 3 m?, hence, the
error in Q is about 4 m?3/sec.

6.7.4. Compute the following integrals:

sinx

— ~dx accurate to three decimal places, using Simpson’s

(a)

a[::g,\’wla

formula;
1

(b) Se"‘z dx accurate to three decimal places, by the trapezoidal
0
formula.

6.7.5. By Simpson’s formula, approximate the integral

1.36

1= { fwax,

1.0
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if the integrand is defined by the following table:

X 1.05 1.10 1.15 1.20 1.25 1.30 1.35

f(x) 2.36 2.50 2.74 3.04 3.46 3.98 4.6

§ 6.8. Additional Problems
6.8.1. Given the function
l—x at 0<<x<],
fx)= 0 at 1 <x<<?2,
2—x)* at 2<x<3.

Check directly that the function

x

F={fwat

0

is continuous on the interval [0, 3] and that its derivative at each
interior point of this interval exists and is equal to f(x).

6.8.2. Show that the function

( xInx

—, at 0<x <1,
f(x)={ 0 at x=0
{ —1 at x=1
is integrable on the interval [0, I].

6.8.3. Can one assert that if a function is absolutely integrable
on the interval [a, b], then it is integrable on this interval?

6.8.4. A line tangent to the graph of the function y=f(x) at the
point x =a forms an angle % with the axis of abscissas and an

angle % at the point x=b.
b

Evaluate Sf” (x)dx, if f"(x) is a continuous function.
a

6.8.5. Prove that

E (x) (E (x)

SE(x)dx= =D L E () [x—E ().
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J

6.8.6. Given the integral S dx

TFcos?x” Make sure that the fun-
0

ctions

1 ¥V 2cosx .
F, (x)-———lf_2 arc cos—‘/1+coszx and F, (x)= V__ arc tan

tan x
Vs
are antiderivatives for the integrand. Is it possible to use both an-

tiderivatives for computing the definite integral by the Newton-
Leibniz formula? If not, which of the antiderivatives can be used?

6.8.7. For f(x) find suchan antiderivative which attains the given
magnitude y=y, at x=ux, (Cauchy’s problem).

b

6.8.8. At what value of £ is the equality Se“dx e* (b—a) ful-
filled? Show that ’

6.8.9. Investigate the function defined by the definite integral
F={yT=fa.

0

6.8.10. Show that the inequalities

1

0.692 < { xrdr <1
0
are valid.

6.8.11. With the aid of the inequality x >sinx> %x (0<x<

J'l:

%) show that 1<Swd <§-

6.8.12. Using the inequality sinx}x—%(x}O) and the Schwarz-
Bunyakovsky inequality, show that

1.096 < { Vxsinxdx < 1.111.

e/ '°|:'

6.8.13. Assume that integrable functions p, (x), p, (x), ps (x), p, (%)
are given on the interval [a, b], the function p, (x) is non-negative,
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and the functions p, (x), ps(x), p,(x) satisfy the inequalily

P3 (X) << Py (%) < py (%)
Prove that
b b b

[ o7 0 dx < S py () dr < §pu (0 py (0

a

6.8.14. Let the function f(x) be positive on the interval [a, b].
Prove that the expressnon
h

S“”” o

reaches the least value only if f(x) is constant on this interval.
6.8.15. Prove that

Tt
1 ) ]?
arc tan x ¢
S “?Ssintdt
b ]

6.8.16. Prove that one of the antiderivatives of an even function
is an odd function, and any antiderivative of an odd function is
an even function.

6.8.17. Prove that if f(x) is a continuous periodic function with
a+T

period T, then the integral /= S f(x)dx does not depend on a.
a

6.8.18. Prove that if u=u(x), v=v(x) and their derivatives
through order n are continuous on the interval [a, b], then

b
S uo™ dx = [uo"* D — v D L (=) g ] f 4
a

b
+(—1)" S u' v dx.



