

Basic level

1.	When a body is moving on a s	[MP PET 2002]				
	(a) Static friction	(b) Dynamic friction	(c) Limiting friction	(d) Rolling friction		
2.	Which one of the following is not used to reduce friction [Kerala (Eng					
	(a) Oil	(b) Ball bearings	(c) Sand	(d) Graphite		
3.	A block of mass 10 <i>kg</i> is placed on an inclined plane. When the angle of inclination is 30°, the block just begins to slide down the plane. The force of static friction is					
	(a) 10 <i>kg wt</i>	(b) 89 <i>kg wt</i>	(c) 49 <i>kg wt</i>	(d) 5 <i>kg wt</i>		
4.	A vehicle of mass m is moving the road be μ , then the stopping	g on a rough horizontal road with ng distance is	momentum <i>P</i> . If the coefficient	of friction between the tyres and [CBSE PMT 2001]		
	(a) $\frac{P}{2\mu m g}$	(b) $\frac{P^2}{2\mu m g}$	(c) $\frac{P}{2\mu m^2 g}$	(d) $\frac{P^2}{2\mu m^2 g}$		
5.	A box is lying on an inclined p	lane what is the coefficient of sta	tic friction if the box starts slidir	ng when an angle of inclination is		
	() (172		() 0.720	[KCET (Engg./Med.) 2000]		
	(a) 1.1/3	(b) 1.732	(c) 2.732	(d) 1.677		
6.	A brick of mass 2 kg begins to	slide down on a plane inclined at a	an angle of 45° with the horizon	tal. The force of friction will be		
				[CPMT 2000]		
	(a) 19.6 sin 45°	(b) 19.6 cos 45°	(c) 9.8 sin 45°	(d) 9.8 cos 45°		
7.	To avoid slipping while walking	g on ice, one should take smaller si	teps because of the	[BHU 1999]		
	(a) Friction of ice is large		(b) Larger normal reaction			

26	Friction							
	(c) Friction of ice is small		(d) Smaller normal rea	ction				
8.	Two bodies having the same mass, 2 kg each have different surface areas $50 m^2$ and $100 m^2$ in contact with a horizontal plane. If the coefficient of friction is 0.2, the forces of friction that come into play when they are in motion will be in the ratio							
				[EAMCET (Med.) 1999]				
	(a) 1:1	(b) 1:2	(c) 2:1	(d) 1:4				
9.	Starting from rest, a body	v slides down a 45° inclined pl	ane in twice the time it takes	to slide down the same distance in the				
	absence of friction. The co	efficient of friction between the b	oody and the inclined plane is	[CBSE PMT 1990]				
	(a) 0.33	(b) 0.25	(c) 0.75	(d) 0.80				
10.	Brakes of very small contac	Brakes of very small contact area are not used although friction is independent of area, because friction						
	(a) Resists motion		(b) Causes wear and te	par				
	(c) Depends upon the na	ture of materials	(d) Operating in this ca	ase is sliding friction				
11.	The angle between frictional force and the instantaneous velocity of the body moving over a rough surface is							
	(a) Zero		(b) <i>π</i> /2					
	(C) π		(d) Equal to the angle	of friction				
12.	What happens to the coefficient of friction, when the normal reaction is halved							
	(a) Halved		(b) Doubled					
	(c) No change		(d) Depends on the na	ture of the surface				
13.	What can be inferred regarding the limiting frictional force in the following four figures							
	R A A mg		R C mg					
14.	(a) $F_A = F_B = F_C = F_D$ A force of 98 Newton is re	(b) $F_A > F_B > F_C > F_D$ quired to drag a body of mass 10	(c) $F_A < F_B < F_C < F_D$ 10 kg on ice. The coefficient of t	(d) $F_A = F_B < F_C < F_D$ riction will be				
	(a) 0.98	(b) 0.89	(c) 0.49	(d) 0.1				

- **15.** A 60 kg body is pushed with just enough force to start it moving across a floor and the same force continues to act afterwards. The coefficients of static and sliding friction are 0.5 and 0.4 respectively. The acceleration of the body is
 - (a) $6m/\sec^2$ (b) $4.9m/\sec^2$ (c) $3.92m/\sec^2$ (d) $1m/\sec^2$

16. A particle is projected along a line of greatest slope up a rough plane inclined at an angle of 45° with the horizontal. If the coefficient of friction is $\frac{1}{2}$, then the retardation is

(a)
$$\frac{g}{\sqrt{2}}$$
 (b) $\frac{g}{2\sqrt{2}}$ (c) $\frac{g}{\sqrt{2}} \left[1 + \frac{1}{2} \right]$ (d) $\frac{g}{\sqrt{2}} \left[1 - \frac{1}{2} \right]$

17. A block moves down a smooth inclined plane of inclination θ . Its velocity on reaching the bottom is ν . If it slides down a rough inclined plane of same inclination its velocity on reaching the bottom is ν/n , where *n* is a number greater than 0. The coefficient of friction μ is given by

(a)
$$\mu = \tan \theta \left[1 - \frac{1}{n^2} \right]$$
 (b) $\mu = \cot \theta \left[1 - \frac{1}{n^2} \right]$ (c) $\mu = \tan \theta \left[1 - \frac{1}{n^2} \right]^{\frac{1}{2}}$ (d) $\mu = \cot \theta \left[1 - \frac{1}{n^2} \right]^{\frac{1}{2}}$

18. Consider a car moving along a straight horizontal road with a speed of 72 km/hr. If the coefficient of static friction between the tyres and the road is 0.5, the shortest distance in which the car can be stopped is $(g = 10 m / s^2)$

(a) 30 m (b) 40 m (c) 72 m (d) 20 m

- 19. All the surfaces shown in the figure are rough. The direction of friction on *B* due to *A* is
 - (a) Zero
 - (b) To the left
 - (c) Upwards
 - (d) Downwards
- **20.** A body of mass *M* just starts sliding down an inclined plane (rough) with inclination θ , such that $\tan \theta = 1/3$. The force acting on the body down the plane in this position is
 - (a) Mg (b) $\frac{Mg}{3}$ (c) $\frac{2}{3}Mg$ (d) $\frac{Mg}{\sqrt{10}}$

Advance level

21. Consider the following statements

Assertion (A): It is difficult to move a cycle along the road with its brakes on.

Reason (*R*) : Sliding friction is greater than rolling friction.

28	Friction						
	Of these statements			[AIIMS 2002]			
	(a) Both A and R are true and the R is a correct explanation of the A						
	(b) Both A and R are true	ue but the <i>R</i> is not a correct expla	anation of the A				
	(c) A is true but the R is	s false					
	(d) Both A and R are fal	lse					
	(e) A is false but the R i	s true					
22.	A body is sliding down	A body is sliding down an inclined plane having coefficient of friction 0.5. If the normal reaction is twice that of the resultant					
	downward force along th	ne incline, the angle between the	inclined plane and the horizor	ital is [EAMCET (Engg.) 2000]			
	(a) 15°	(b) 30°	(c) 45°	(d) 60°			
23.	A block of mass 2 kg rests on a rough inclined plane making an angle of 30° with the horizontal. The coefficient of static friction						
	between the block and the plane is 0.7. The frictional force on the block is [IIT-JEE 19						
	(a) 9.8 <i>N</i>	(b) $0.7 \times 9.8 \times \sqrt{3} N$	(c) $9.8 \times \sqrt{3} N$	(d) $0.7 \times 9.8 N$			
24.	A body of weight <i>W</i> is ly move the body along the	<i>r</i> ing at rest on a rough horizonta e surface will be	al surface. If the angle of friction	n is $ heta$, then the minimum force required to			
	(a) W tan $ heta$	(b) $W\cos\theta$	(c) $W \sin \theta$	(d) $W \cos \theta$			
25.	A block of mass M is placed on a rough horizontal surface as shown in the figure. A force $F = Mg$ acts on the block. It is inclined to						
	the vertical at an angle $ heta$. The coefficient of friction is μ . The block can be pushed along the surface only when						
	(a) $\tan \theta \ge \mu$						
	(b) $\cot \theta \ge \mu$			F = Mg			
	(c) $\tan \theta / 2 \ge \mu$			M			
	(d) $\cot \theta / 2 \ge \mu$						
26.	A plane is inclined at ar	n angle $ heta$ with the horizontal. A	A body of mass <i>m</i> rests on it.	If the coefficient of friction is μ , then the			
	minimum force that has	minimum force that has to be applied parallel to the inclined plane to make the body just move up the inclined plane is					

- (a) $mg\sin\theta$ (b) $\mu mg\cos\theta$
- (c) $\mu mg \cos\theta mg \sin\theta$ (d) $\mu mg \cos\theta + mg \sin\theta$
- 27. A block of mass *m* is placed on another block of mass *M* which itself is lying on a horizontal surface. The coefficient of friction between the two blocks is μ_1 and that between the block of mass *M* and horizontal surface is μ_2 . What maximum horizontal force can be applied to the lower block so that the two blocks move without separation
 - (a) $(M + m)(\mu_2 \mu_1)g$
 - (b) $(M m)(\mu_2 \mu_1)g$
 - (c) $(M m)(\mu_2 + \mu_1)g$

 $M \xrightarrow{F}$

Block

Slab

M

 M_2

(d) $(M + m)(\mu_2 + \mu_1)g$

- **28.** A block of mass M_1 is placed on a slab of mass M_2 . The slab lies on a frictionless horizontal surface. The coefficient of static friction between the block and slab is μ_1 and that of dynamic friction is μ_2 . A force *F* acts on the block M_1 . Take $g = 10 \text{ ms}^{-2}$. If $M_1 = 10 \text{ kg}$, $M_2 = 30 \text{ kg}$, $\mu_1 = 0.5$, $\mu_2 = 0.15$ and F = 40 N, what will be the acceleration with which the slab will move
 - (a) 5 ms⁻²
 - (b) 2 ms⁻²
 - (c) 1 ms⁻²
 - (d) Zero

29. In the above problem if F = 100 N, what will be the acceleration with which the slab will move (a) $5 ms^{-2}$ (b) $2 ms^{-2}$ (c) $1 ms^{-2}$ (d) None of these

- **30.** A block X of mass 4 kg is lying on another block Y of mass 8 kg. As shown in the figure. When the force acting on X is 12 N, block X is on the verge of slipping on Y. The force F in Newton necessary to make both X and Y move simultaneously will be
 - (a) 36
 - (b) 3.6
 - (c) 0.36
 - (d) 3.6
- **31.** Two masses 10 kg and 5 kg are connected by a string passing over a pulley as shown. If the coefficient of friction be 0.15, then the minimum weight that may be placed on 10 kg to stop motion is
 - (a) 18.7 kg
 - (b) 23.3 *kg*
 - (c) 32.5 *kg*
 - (d) 44.3 kg
- **32.** Two blocks of mass M_1 and M_2 are connected with a string which passes over a smooth pulley. The mass M_1 is placed on a rough inclined plane as shown in the figure. The coefficient of friction between the block the inclined plane is μ . What should be the maximum mass M_2 so that block M_1 slides downward:
 - (a) $M_2 = M_1(\sin\theta + \mu\cos\theta)$
 - (b) $M_2 = M_1(\sin\theta \mu\cos\theta)$
 - (c) $M_2 = M_1 / (\sin \theta + \mu \cos \theta)$
 - (d) $M_2 = M_1 / (\sin \theta \mu \cos \theta)$

10 kg

30 Friction

A car starts from rest to cover a distance s. the coefficient of friction between the road and the tyres is μ . The minimum time in which the car can cover the distance is proportional to							
(a) <i>μ</i>	(b) $\sqrt{\mu}$	(c) $\frac{1}{\mu}$	(d) $\frac{1}{\sqrt{\mu}}$				
An engine of mass 50,000 <i>kg</i> and the coach, and if the drivi	An engine of mass 50,000 kg pulls a coach of mass 40,000 kg. If there is a resistance of 1 N per 100 kg acting on both the engin and the coach, and if the driving force of the engine be 4,500 N, then the acceleration of the engine is						
(a) $0.08 m / s^2$	(b) Zero	(c) $0.04 m / s^2$	(d) None of these				
In the above question, then te	ension in the coupling is						
(a) 2,000 N	(b) 1,500 N	(c) 500 N	(d) 1000 N				
An aeroplane requires for take off a speed of 72 km/h . The run of the ground is 100 m . The mass of the plane is 10 ⁴ kg and the coefficient of friction between the plane and the ground is 0.2. The plane accelerates uniformly during take off. What is the acceleration of the plane							
(a) 1 <i>m/s</i> -	(b) 2 <i>m/s</i> ²	(c) 3 <i>m/s</i> ²	(d) 4 <i>m/s</i> ²				
The force required to just move a body up an inclined plane is double the force required to just prevent it from sliding down. If q is angle of friction and θ is the angle which incline makes with the horizontal then							
(a) $\tan \theta = \tan \phi$	(b) $\tan \theta = 2 \tan \phi$	(c) $\tan \theta = 3 \tan \phi$	(d) $\tan \phi = 3 \tan \theta$				
A body is on a rough horizontal plane. A force is applied to the body direct towards the plane at an angle ϕ with the vertical. If θ is the angle of friction then for the body to move along the plane							
(a) $\phi > \theta$	(b) $\phi < \theta$	(C) $\phi = \theta$	(d) ϕ can take up any value				
In the arrangement shown W_1 W_2	$= 200 N, W_2 = 100 N, \mu = 0.25$	for all surfaces in contact. Th	e block W_1 just slides under the block				
	A call starts from first to cover which the car can cover the di (a) μ An engine of mass 50,000 kg and the coach, and if the drivi (a) 0.08 m / s ² In the above question, then the (a) 2,000 N An aeroplane requires for tak coefficient of friction betwee acceleration of the plane (a) 1 m/s ² The force required to just mo is angle of friction and θ is the (a) tan θ = tan ϕ A body is on a rough horizont the angle of friction then for t (a) $\phi > \theta$ In the arrangement shown W_1 W_2	A call statist from first to cover a distance is proportional to (a) μ (b) $\sqrt{\mu}$ An engine of mass 50,000 kg pulls a coach of mass 40,000 kg. and the coach, and if the driving force of the engine be 4,500 A (a) 0.08 m / s ² (b) Zero In the above question, then tension in the coupling is (a) 2,000 N (b) 1,500 N An aeroplane requires for take off a speed of 72 km/h. The ru coefficient of friction between the plane and the ground is 0 acceleration of the plane (a) 1 m/s ² (b) 2 m/s ² The force required to just move a body up an inclined plane is is angle of friction and θ is the angle which incline makes with th (a) $\tan \theta = \tan \phi$ (b) $\tan \theta = 2 \tan \phi$ A body is on a rough horizontal plane. A force is applied to the the angle of friction then for the body to move along the plane (a) $\phi > \theta$ (b) $\phi < \theta$ In the arrangement shown $W_1 = 200 N$, $W_2 = 100 N$, $\mu = 0.25$ W_2	A can starts from test to cover a distance s the coefficient of incluin between the road and which the car can cover the distance is proportional to (a) μ (b) $\sqrt{\mu}$ (c) $\frac{1}{\mu}$ An engine of mass 50,000 <i>kg</i> pulls a coach of mass 40,000 <i>kg</i> . If there is a resistance of 1 <i>N</i> and the coach, and if the driving force of the engine be 4,500 <i>N</i> , then the acceleration of the (a) 0.08 <i>m</i> / s ² (b) Zero (c) 0.04 <i>m</i> / s ² In the above question, then tension in the coupling is (a) 2,000 <i>N</i> (b) 1,500 <i>N</i> (c) 500 <i>N</i> An aeroplane requires for take off a speed of 72 <i>km</i> / <i>h</i> . The run of the ground is 100 <i>m</i> . The coefficient of friction between the plane and the ground is 0.2. The plane accelerates unacceleration of the plane (a) 1 <i>m</i> /s ² (b) 2 <i>m</i> /s ² (c) 3 <i>m</i> /s ² The force required to just move a body up an inclined plane is double the force required to is angle of friction and θ is the angle which incline makes with the horizontal then (a) tan $\theta = \tan \phi$ (b) tan $\theta = 2 \tan \phi$ (c) tan $\theta = 3 \tan \phi$ A body is on a rough horizontal plane. A force is applied to the body direct towards the plane the angle of friction then for the body to move along the plane (a) $\phi > \theta$ (b) $\phi < \theta$ (c) $\phi = \theta$ In the arrangement shown $W_1 = 200 N$, $W_2 = 100 N$, $\mu = 0.25$ for all surfaces in contact. The W_2				

- (a) A pull of 50N is to be applied on W_1
- (b) A pull of 90N is to be applied on W_1
- (c) Tension in the string AB is $10\sqrt{2}N$
- (d) Tension in the string AB is $20\sqrt{2}N$
- 40. A board of mass m is placed on the floor and a man of mass M is standing on the board as shown. The coefficient of friction between the board and the floor is μ . The maximum force that the can exert on he represes that the board does not slip on the floor is
 - (a) $F = \mu(M+m)g$
 - (b) $F = \mu m g$

<u>{45°</u>

(c)
$$F = \frac{\mu Mg}{\mu + 1}$$

(d)
$$F = \frac{\mu (M + m)g}{\mu + 1}$$

41. A body slides over an inclined plane forming an angle of 45° with the horizontal. The distance x travelled by the body in time t is described by the equation $x = kt^2$, where k = 1.732. The coefficient of friction between the body and the plane has a value

(a)
$$\mu = 0.5$$
 (b) $\mu = 1$ (c) $\mu = 0.25$ (d) $\mu = 0.75$

- 42. Two blocks *A* and *B* of masses *m* and *M* respectively are placed on each other and their combination rests on a fixed horizontal surface *C*. A light string passing over the smooth light pulley is used to connect *A* and *B* as shown. The coefficient of sliding friction between all surfaces in contact is μ . If *A* is dragged with a force *F* then for both *A* and *B* to move with a uniform speed we have
 - (a) $F = \mu(M+m)g$
 - (b) $F = \mu mg$
 - (c) $F = \mu(3M+m)g$
 - (d) $F = \mu(3m + M)g$
- **43.** A force of 100 *N* is applied on a block of mass 3 *kg* as shown in figure. The coefficient of friction between the surface of the block is 1/4. The friction force acting on the block is
 - (a) 15 N downwards
 - (b) 25 N upwards
 - (c) 20 N downwards
 - (d) 20 N upwards

${\cal A}$ nswer Sheet (Practice problems)

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
b	с	d	d	b	a	с	a	с	b
11.	12.	13.	14.	15.	16.	17.	18.	19.	20.
с	с	a	d	d	с	a	b	с	d
21.	22.	23.	24.	25.	26.	27.	28.	29.	30.
a	с	a	a	с	d	d	с	d	a
31.	32.	33.	34.	35.	36.	37.	38.	39.	40.
b	b	d	с	a	b	с	a	b, d	d
41.	42.	43.							
a	d	с							