

DPP No. 4

Total Marks : 36

Max. Time : 39 min.

Topics : Kinetic Theory of Gases ,Thermodynamics, Projectile Motion, Friction, Geometrical Optics, String Waves

 Type of Questions		M.M., Min.
Single choice Objective ('–1' negative marking) Q.1 to Q.3	(3 marks 3 min.)	[9, 9]
Multiple choice Objective ('–1' negative marking) Q.4	(4 marks 4 min.)	[4, 4]
Subjective Question ('–1' negative marking) Q.5	(4 marks 5 min.)	[4, 5]
Comprehension ('-1' negative marking) Q.6 to Q.8	(3 marks 3 min.)	[9, 9]

 A gas undergoes an adiabatic process and an isothermal process. The two processes are plotted on a P-V diagram. The resulting curves intersect at a point P. Tangents are drawn to the two curves at P. These make angles of 135° & 121° with the positive V-axis. If tan 59° = 5/3, the gas is likely to be:

(A) monoatomic(C) triatomic

(B) diatomic(D) a mixture of monoatomic & diatomic gases

- A particle is projected from a point P (2, 0, 0)m with a velocity 10 m/s making an angle 45° with the horizontal. The plane of projectile motion passes through a horizontal line PQ which makes an angle of 37° with positive x-axis, xy plane is horizontal. The coordinates of the point where the particle will strike the line PQ is: (Take g = 10 m/s²)
 (A) (10, 6, 0)m
 (B) (8, 6, 0)m
 (C) (10, 8, 0)m
 (D) (6, 10, 0)m
- **3.** A ray of light is incident at an \angle of 30° on a plane mirror M₁. Another plane mirror M₂ is inclined at angle θ to M₁. What is the value of angle θ so that light reflected from M₂ is parallel to M₁.

4. A variable force F = 10 t is applied to block B placed on a smooth surface. The coefficient of friction between A & B is 0.5. (t is time in seconds. Initial velocities are zero, A is always on B)

- (A) block A starts sliding on B at t = 5 seconds
- (B) the heat produced due to friction in first 5 seconds is 312.5J
- (C) the heat produced due to friction in first 5 seconds is (625/8) J
- (D) acceleration of A at 10 seconds is 5 m/s².

5. A point source S is centered in front of a 70 cm wide plane mirror. A man starts walking from the source along a line parallel to the mirror in a single direction. Maximum distance that can be walked by man without losing sight of the image of the source is _____.

COMPREHENSION

A sinusoidal wave is propagating in negative x-direction in a string stretched along x-axis. A particle of string at x = 2m is found at its mean position and it is moving in positive y direction at t = 1 sec. If the amplitude of the wave, the wavelength and the angular frequency of the wave are 0.1 meter, $\pi/4$ meter and 4π rad/sec respectively.

6.	The equation of the wave is			
	(A) $y = 0.1 \sin (4\pi(t - 1) + 8(x - 2))$	(B) $y = 0.1 \sin ((t-1)-(x - 2))$		
	(C) $y = 0.1 \sin (4\pi(t - 1) - 8(x - 2))$	(D) none of these		
7.	The speed of particle at $x = 2$ m and $t = 1$ sec is			
	(A) 0.2π m/s	(B) 0.6π m/s		
	(C) 0.4π m/s	(D) 0		

8. The instantaneous power transfer through x=2 m and t= 1.125 sec, is

<u>Answers Key</u>

- **1.** (A)
- **2.** (A)
- **3.** (A)
- **4.** (A,D)
- 5.70 cm
- **6.** (A)
- 7. (C)
- 8. (D)

Hints & Solutions

1. (A)

The slope of isothermal curve at point of intersection

is
$$\frac{dP}{dV} = -\frac{P}{V} = \tan 135^\circ$$
 ...(1)

The slope of adiabatic curve at point of intersection is

$$\frac{dP}{dV} = -\frac{\gamma P}{V} = \tan 121^{\circ} \qquad(2)$$

from (1) and (2)
 $\gamma = \tan 59^{\circ} = 1.66 = 5/3$

.: gas is monoatomic

2. Range = 10 m. For point where particle strikes line PQ

 $\therefore x \text{ coordinate} = 10 \cos 37^\circ + 2 = 10\text{m}$ y coordinate = 10 sin 37° = 6m z coordinate = 0m

4.

 $f_{max} = \mu \times 3g$ = 0.5 × 30 = 15 N

block A starts sliding when friction force becomes max. i.e. $f_{max} = 15$ at that instant (F.B. D.)

both will move with same acceleration So $15 = 3a \Rightarrow a = 5m/s^2$ F - 15 = 7a $10t - 15 = 7 \times 5$ 10t = 50 $\Rightarrow t = 5 \text{ sec}$ Work done by friction in 5 seconds

W =
$$\int F.ds$$

= $\int 10t.ds$ (a = $\frac{F}{m} = \frac{10t}{10} = t$)

From figure if man moves from source to point A

 $\left(\frac{70}{2} + \frac{70}{2} = 70 \text{ cm}\right)$. Then he can see image If man moves from source to point B $\left(\frac{70}{2} + \frac{70}{2} = 70 \text{ cm}\right)$. then he can not loose sight of image

image.

- 6. The equation of wave moving in negative x-direction, assuming origin of position at x = 2 and origin of time (i.e. initial time) at t = 1 sec. y = 0.1 sin (4πt + 8x) Shifting the origin of position to left by 2m, that is, to x = 0. Also shifting the origin of time backwards by 1 sec, that is to t = 0 sec. y = 0.1 sin [(4πt + 8(x 2)])
- As given the particle at x = 2 is at mean position at t = 1 sec.
 ∴ its velocity v = ωA = 4π × 0.1 = 0.4 π m/s.
- 8. Time period of oscillation $T = \frac{2\pi}{\omega} = \frac{2\pi}{4\pi} = \frac{1}{2}$ sec.

Hence at t = 1.125 sec, that is, at $\frac{T}{4}$ seconds after

t = 1 second, the particle is at rest at extreme position. Hence instantaneous power at x = 2 at t = 1.125 sec is zero.