Relations and Functions

Types of Relations

Equivalence Relation

- A relation *R* in a set *A* is called reflexive if $(a, a) \in R$ for every $a \in A$.
- For example: A relation R in set A relation $a = \sin a \forall a \in A$ defined by $a = \sin a = \sin b$ is a reflexive relation since $\sin a = \sin a \forall a \in A$.
- A relation *R* in a set *A* is called symmetric if $(a_1, a_2) \in R$ implies that $(a_2, a_1) \in R$, for all $a_1, a_2 \in A$.
- For example: A relation in the set relation. Since for $a, b \in A$, $\sin a = \sin b$ implies $\sin b = \sin a$. So, $(a, b) \in R \Rightarrow (b, a) \in R$.
- A relation R in a set A is called transitive if $(a_1, a_2) \in R$, and $(a_2, a_3) \in R$ together imply that $(a_1, a_3) \in R$, for all $a_1, a_2, a_3 \in A$.
- For example: A relation in the set relation. Since for $a, b, c \in A$, let $(a, b), (b, c) \in R$.

$$\Rightarrow$$
 sin $a = \sin b$ and sin $b = \sin c$

$$\Rightarrow$$
 sin $a = \sin c$

$$\Rightarrow$$
 $(a, c) \in R$

- A relation *R* in a set *A* is said to be an equivalence relation if *R* is reflexive, symmetric and transitive.
- For example: Relation R in the set equivalence relation. $A = \left[0, \frac{\pi}{2}\right]$ defined by $R = \{\sin a = \sin b; a, b \in A\}$ is an equivalence relation.

Equivalence Classes

• Every arbitrary equivalence relation R in a set X divides X into mutually disjoint subsets (A_i) called partitions or subdivisions of X satisfying the following conditions:

- All elements of A_i are related to 0020 each other for all i.
- No element of A_i is related to any element of A_j whenever $i \neq j$.
- $A_i \cup A_j = X$ and $A_i \cap A_j = \Phi$, $i \neq j$

These subsets (A_i) are called equivalence classes.

• For an equivalence relation in a set X, the equivalence class containing $a \in X$, denoted by [a], is the subset of X containing all elements b related to a.

Trivial Relations

- Trivial relations are of two types:
- Empty relation
- Universal relation
- A relation in a set *A* is called an empty relation if no element of *A* is related to any element of *A*, i.e., $R = \Phi \subset A \times A$.
- For example: Consider a relation R in set $A = \{2, 4, 6\}$ defined by $R = \{(a, b): a + b \text{ is odd}, where } a, b \in A\}$. The relation R is an empty relation since for any pair $(a, b) \in A \times A$, a + b is always even.
- A relation R in a set A is called a universal relation if each element of A is related to every element of A, i.e., $R = A \times A$.
- For example: Let A be the set of all students of class XI. Let R be a relation in set A defined by $R = \{(a, b):$ the sum of the ages of a and b is greater than 10 years}. The relation R is a universal relation because it is obvious that the sum of the ages of two students of class XI is always greater than 10 years.

Solved Examples

Example 1

Check whether the relation R in the set of all vowels defined by $R = \{(u, u), (u, a), (a, u)\}$ is reflexive, symmetric or transitive?

Solution:

The relation R is defined in the set $\{a, e, i, o, u\}$ as $R = \{(u, u), (u, a), (a, u)\}$.

The relation R is not reflexive as (a, a), (e, e) (i, i), $(o, o) \notin R$.

Now, (u, a) and $(a, u) \in R$

Hence, *R* is symmetric.

Now, (u, u) $(u, a) \in R$ implies $(u, a) \in R$

Also, (u, a), $(a, u) \in R$ implies $(u, u) \in R$

Hence, *R* is transitive.

Thus, the relation *R* is symmetric and transitive but not reflexive.

Example 2

Show that the relation R defined in the set of real numbers as $R = \{(a, b) | a = b \text{ or } a = -b \text{ for } a, b \in \mathbf{R}\}$ is an equivalence relation. Also, find its equivalence classes.

Solution:

A relation *R* in **R** is defined as $R = \{(a, b): a = b \text{ or } a = -b, \text{ for } a, b \in \mathbf{R}\}$

Clearly, $(a, a) \in R$ for every $a \in \mathbf{R}$, since a = a.

 \therefore R is reflexive.

Now, let $(a, b) \in R$ for $a, b \in \mathbf{R}$

$$\Rightarrow a = b \text{ or } a = -b$$

$$\Rightarrow b = a \text{ or } b = -a$$

$$\Rightarrow$$
 $(b, a) \in R$

 \therefore *R* is symmetric.

Now, let (a, b), $(b, c) \in R$, for $a, b, c \in \mathbf{R}$

$$\therefore a = b \text{ or } a = -b \text{ and } b = c \text{ or } b = -c$$

Case I

$$a = b$$
, $b = c$

$$\Rightarrow a = c$$

$$\Rightarrow$$
 $(a, c) \in R$

Case II

$$a = b$$
, $b = -c$

$$\Rightarrow a = -c$$

$$\Rightarrow$$
 $(a, c) \in R$

Case III

$$a = -b$$
, $b = c$

$$\Rightarrow a = -c$$

$$\Rightarrow$$
 $(a, c) \in R$

Case IV

$$a = -b$$
, $b = -c$

$$\Rightarrow a = c$$

$$\Rightarrow$$
 $(a, c) \in R$

Thus,
$$(a, b)$$
, $(b, c) \in R \Rightarrow (a, c) \in R$

 \therefore *R* is transitive.

Hence, *R* is an equivalence relation.

Equivalence class of $0 = [0] = \{0\}$

Equivalence class of $1 = [1] = \{1, -1\}$

Equivalence class of $2 = [2] = \{2, -2\}$ and so on...

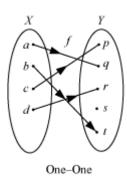
There are an infinite number of equivalence classes.

For every $a \in \mathbb{R}$, $[a] = \{a, -a\}$.

Types of Functions

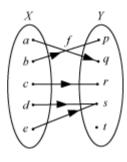
• A function $f: X \to Y$ is said to be **one-one** (or **injective**) if the images of distinct elements of X under f are distinct. In other words, a function f is one-one if for every $x_1, x_2 \in X$, $f(x_1) = f(x_2)$ implies $x_1 = x_2$.

An example of a one-one function from *X* to *Y* is shown in the following diagram.



A function $f: X \to Y$ is said to be **many-one** if the image of distinct elements of X under f are not distinct i.e., a function that is not one-one is called a many-one function.

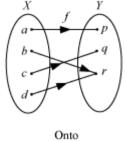
An example of a many-one function from *X* to *Y* is shown in the following diagram.



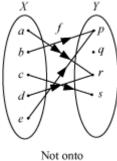
Many-One

In this case, two elements f(d) = f(e) = s.

- A function $f: X \to Y$ is defined as **onto** (or **surjective**) if every element of Y is the image of some element of X in X under Y. In other words, Y is onto if and only if, $Y \in Y$, there exist $X \in X$ such that Y is Y in Y in Y in Y is defined as **onto** (or **surjective**) if every element of Y is the image of some element of Y is the image of Y in Y is the image of Y is
- $f: X \to Y$ is onto if and only if the range of f = Y.
- An example of an onto function from *X* to *Y* is shown in the following diagram.

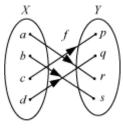


A function from *X* to *Y* that is not onto is shown in the following diagram.



A function $f: X \to Y$ is said to be **bijective** if it is both one-one and onto.

A bijective function from *X* to *Y* is shown in the following diagram.



Bijective

Solved Examples

Example 1

Check whether the function $h: \mathbb{R} \to \mathbb{R}$ defined by h(x) = |2x-5| is an injective function.

Solution:

The given function i.e., $h: \mathbf{R} \to \mathbf{R}$ is defined by

$$h(x) = \begin{vmatrix} 2x - 5 \end{vmatrix}$$

It can be observed that 5, $0 \in \mathbf{R}$ (considering domain). Hence, we have

$$h(5) = |2 \times 5 - 5| = |10 - 5| = 5$$

$$h(0) = |2 \times 0 - 5| = |0 - 5| = 5$$

$$h(5) = h(0)$$
.

Hence, the given function i.e., h(x) is not an injective function.

Example 2

Check whether the function $f: \mathbf{R} \to \mathbf{R}$ defined by $f(x) = x^5 + 4$ is a bijective function.

Solution:

We know that a function is bijective if it is both one-one and onto.

Now, let $x_1, x_2 \in \mathbf{R}$ such that $f(x_1) = f(x_2)$. Accordingly,

$$f(x_1) = f(x_2)$$

$$\Rightarrow x_1^5 + 4 = x_2^5 + 4$$

$$\Rightarrow x_1^5 = x_2^5$$

$$\Rightarrow x_1 = x_2$$

Therefore, the function f is a one-one function.

It is clear that for every $y \in \mathbf{R}$, there exists $(y-4)^{\frac{1}{5}} \in \mathbf{R}$ such

$$f\left[(y-4)^{\frac{1}{5}}\right] = \left[(y-4)^{\frac{1}{5}}\right]^5 + 4 = (y-4) + 4 = y$$
that

Therefore, the function f is an onto function.

Hence, the given function f is a bijective function.

Example 3

Check whether the function $f: \mathbb{N} \to \mathbb{N}$ defined by $f(x) = 4^x$ is an onto function.

Solution:

The given function $f: \mathbf{N} \to \mathbf{N}$ is defined by

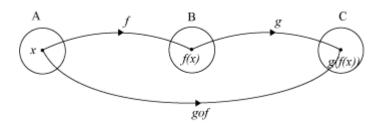
$$f(x) = 4^x$$

We can clearly observe that $2 \in \mathbb{N}$ (co-domain). However, there does not exist any element $y \in \mathbb{N}$ (domain) whose image is 2.

Hence, the given function *f* is not an onto function.

Composition of Two functions

Let $f: A \to B$ and $g: B \to C$ be two functions. Accordingly, the composition of f and g is denoted by $g \circ f$ and is defined as the function $g \circ f$: $A \to C$ given by $g \circ f(x) = g(f(x))$, for all $x \in A$.



• For example: If $f: \mathbb{N} \to \mathbb{N}$ is defined by f(x) = x + 1 for all $x \in \mathbb{N}$ and $g: \mathbb{N} \to \mathbb{N}$ is defined by $g(x) = x^2$ for all $x \in \mathbb{N}$, then $g \circ f: \mathbb{N} \to \mathbb{N}$ is given by

$$gof(x) = g(f(x)) = g(x + 1) = (x + 1)^2$$
, where $x \in \mathbb{N}$.

Also,
$$fog(x) = f(g(x)) = f(x^2) = x^2 + 1$$
 for all $x \in \mathbb{N}$

- If $f: A \to B$ and $g: B \to C$ are one-one, then $gof: A \to C$ is also one-one.
- If $f: A \to B$ and $g: B \to C$ are onto, then $g \circ f: A \to C$ is also onto.
- If the composite function *gof* is one-one, then the function *f* is also one-one. However, the function *g* may or may not be one-one.
- If the composite function *gof* is onto, then the function *g* is also onto. However, the function *f* may or may not be onto.

Solved Examples

Example 1

Let $f: \mathbf{R} \to \mathbf{R}$ be given by $f(x) = 12x^2 - x - 11$ and $g: \mathbf{R} \to \mathbf{R}$ be given by $g(x) = x^2$. Find fo(gog).

Solution:

It is given that

 $f: \mathbf{R} \to \mathbf{R}$ is defined by $f(x) = 12x^2 - x - 11$

 $g: \mathbf{R} \to \mathbf{R}$ is defined by $g(x) = x^2$

Now, (gog)(x) = g(g(x))

 $=g(x^2)$

 $= (x^2)^2$ $= x^4$

(fo(gog))(x) = f((gog)(x))

$$= f(x^4)$$

$$= 12(x^4)^2 - x^4 - 11$$

$$= 12x^8 - x^4 - 11$$

Example 2

Let $f: \mathbf{R} - \left\{\frac{11}{3}\right\} \to \mathbf{R} - \left\{-\frac{4}{3}\right\}$ be defined by $f(x) = \frac{4x - 5}{11 - 3x}$ and $g: \mathbf{R} - \left\{\frac{-4}{3}\right\} \to \mathbf{R} - \left\{\frac{11}{3}\right\}$ be defined

by $g(x) = \overline{4+3x}$. Show that $f \circ g = I_A$ and $g \circ f = I_B$, where I_A and I_B are identity functions on A and B respectively and $A = \mathbf{R} - \left\{\frac{-4}{3}\right\}$ and $B = \mathbf{R} - \left\{\frac{11}{3}\right\}$.

Solution:

$$(fog)(x) = f(g(x))$$

$$= f\left(\frac{11x+5}{4+3x}\right)$$

$$=\frac{4\left(\frac{11x+5}{4+3x}\right)-5}{11-3\left(\frac{11x+5}{4+3x}\right)}$$

$$= \frac{44x + 20 - 20 - 15x}{44 + 33x - 33x - 15}$$
$$= \frac{29x}{29}$$

$$(gof)(x) = g(f(x))$$

$$= g\left(\frac{4x-5}{11-3x}\right)$$

$$= \frac{11\left(\frac{4x-5}{11-3x}\right)+5}{4+3\left(\frac{4x-5}{11-3x}\right)}$$

$$= \frac{44x-55+55-15x}{44-12x+12x-15}$$

$$= \frac{29x}{29}$$

$$= x$$

Thus, $(f \circ g)(x) = x$ for all $x \in A \Rightarrow f \circ g = I_A$ and $(g \circ f)(x) = x$ for all $x \in B \Rightarrow g \circ f = I_B$.

Hence proved.

Example 3

Let $f: \mathbf{R} \to \mathbf{R}$ be defined as $f(x) = 2x^{\frac{1}{3}}$; $g: \mathbf{R} \to \mathbf{R}$ be defined as g(x) = x + 2 and $h: \mathbf{R} \to \mathbf{R}$ be defined as h(x) = 4x + 9. Find fo(g + h) and (fog) + (foh).

Solution:

(g + h): $\mathbf{R} \to \mathbf{R}$ is given by:

$$(g+h)(x)=g(x)+h(x)$$

$$= (x + 2) + (4x + 9)$$
$$= 5x + 11$$

$$fo(g + h)(x) = f((g + h)(x))$$

$$= f(5x + 11)$$

$$= 2(5x + 11)^{\frac{1}{3}}$$
Now, $(fog)(x) = f(g(x))$

$$= f(x + 2)$$

$$= 2(x + 2)^{\frac{1}{3}}$$

$$(foh)(x) = f(h(x))$$

$$= f(4x + 9)$$

$$= 2(4x + 9)^{\frac{1}{3}}$$

$$fog + foh)(x) = (fog)(x) + (foh)(x)$$

$$= 2(x + 2)^{\frac{1}{3}} + 2(4x + 9)^{\frac{1}{3}}$$

$$= 2\left[(x + 2)^{\frac{1}{3}} + (4x + 9)^{\frac{1}{3}}\right]$$

Invertible Functions

Key Concepts

- A function $f: X \to Y$ is said to be invertible if there exists a function $g: Y \to X$ such that $g \circ f = I_X$ and $f \circ g = I_Y$.
- The function g is called the inverse of f and it is denoted by f^{-1} .
- A function *f* is invertible if and only if *f* is one-one and onto.
- If $f: X \to Y$ and $g: Y \to Z$ are invertible functions, then gof is also invertible and $(gof)^{-1} = f^{-1} og^{-1}$

Solved Examples

Example 1

Determine whether the following functions have inverse or not. Find the inverse, if it exists.

(i) $f: \{10, 12, 15\} \rightarrow \{3, 7, 9, 10, 14\}$ is defined as $f = \{(12, 9), (15, 7), (10, 10)\}$.

(ii) $g : \{2, 4, 6, 8\} \rightarrow \{1, 3, 5\}$ is defined as $g : \{(4, 3), (8, 3), (2, 1), (6, 5)\}$.

(iii) $h: \{11, 16\} \rightarrow \{7, 14\}$ is defined as $h: \{(11, 7), (16, 14)\}$.

Solution:

(i) The given function f is one-one. However, f is not onto since the elements 3, $14 \in \{3, 7, 9, 10, 14\}$ are not the image of any element in $\{10, 12, 15\}$ under f.

Hence, function *f* is not invertible.

(ii) The given function g is onto. However, g is not one-one since, g(4) = g(8) = 3.

Hence, the function g is not invertible.

(iii) Clearly, the given function *h* is both one-one and onto. Hence, *h* is invertible.

The inverse of h is given by $h^{-1} = \{(7, 11), (14, 16)\}.$

Example 2

Determine whether the functions f and g, defined below, are inverses of each other or not.

$$f: \mathbf{R} - \{4\} \to \mathbf{R} - \{-3\}$$
 is given as $f(x) = \frac{-3x}{x-4}$, and

$$g: \mathbf{R} - \{-3\} \to \mathbf{R} - \{4\} \text{ is given as } g(x) = \frac{4x}{x+3}$$

Solution:

$$(fog)(x) = f(g(x)) = f\left(\frac{4x}{x+3}\right) = \frac{-3\left(\frac{4x}{x+3}\right)}{\frac{4x}{x+3}-4} = \frac{-12x}{4x-4x-12} = \frac{-12x}{-12} = x$$

We have

$$(gof)(x) = g(f(x)) = g\left(\frac{-3x}{x-4}\right) = \frac{4\left(-\frac{3x}{x-4}\right)}{\left(\frac{-3x}{x-4}\right) + 3} = \frac{-12x}{-3x + 3x - 12} = \frac{-12x}{-12} = x$$

Thus,
$$(f \circ g)(x) = x \forall x \in B$$
, where $B = \mathbb{R} - \{-3\}$ and $(g \circ f)(x) = x \forall x \in A$, $A = \mathbb{R} - \{4\}$.

∴ $gof = I_A$ and $fog = I_B$.

Thus, functions f and g are the inverses of each other.

Example 3

Let $f: \mathbb{R}_+ \to [-3, \infty)$ be defined as $f(x) = 4x^2 - 5x - 3$ where \mathbb{R}_+ is the set of all positive real numbers. Show that f is invertible and find the inverse of f.

Solution:

f: \mathbb{R}_+ → [-3, ∞) is defined as $f(x) = 4x^2 - 5x - 3$.

Let *y* be an arbitrary element of $[-3, \infty)$.

Let
$$y = 4x^2 - 5x - 3$$

$$\Rightarrow y = \left(2x - \frac{5}{4}\right)^2 - 3 - \frac{25}{16} = \left(2x - \frac{5}{4}\right)^2 - \frac{73}{16}$$

$$\Rightarrow \left(2x - \frac{5}{4}\right)^2 = y + \frac{73}{16}$$

$$\Rightarrow 2x - \frac{5}{4} = \sqrt{y + \frac{73}{16}}$$

$$\left[y \ge -3 \Rightarrow y + \frac{73}{16} \ge 0\right]$$

$$x = \frac{1}{2}\sqrt{y + \frac{73}{16}} + \frac{5}{8}$$

 $\therefore f$ is onto.

Hence, Range $f = [-3, \infty)$.

Let us define $g: [-3, \infty) \to \mathbb{R}_+$ as

$$g(y) = \frac{1}{2}\sqrt{y + \frac{73}{16}} + \frac{5}{8}$$

Now, we have

$$(gof)(x) = g(f(x)) = g(4x^2 - 5x - 3) = g\left(2x - \frac{5}{4}\right)^2 - \frac{73}{16} = \frac{1}{2}\sqrt{2x - \frac{5}{4}} + \frac{5}{8} = x - \frac{5}{8} + \frac{5}{8} = x$$

$$(fog)(y) = f(g(y)) = f\left(\frac{1}{2}\sqrt{y + \frac{73}{16}}\right) + \frac{5}{8} = \left[2 \times \left(\frac{1}{2}\sqrt{y + \frac{73}{16}}\right) + \frac{5}{8}\right] - \frac{5}{4} = x - \frac{5}{8} + \frac{5}{8} = x$$

$$\therefore gof = I_{R_+} \text{ and } fog = I_{[-3,\infty)}$$

Thus, *f* is invertible and its inverse is given by

$$f^{-1}(y) = g(y) = \frac{1}{2} \left(\sqrt{y + \frac{73}{16}} \right) + \frac{5}{8}$$

Binary Operations

Definition of Binary Operation Properties

• A binary operation * on a set A is a function * from $A \times A \rightarrow A$. We denote *(a, b) by a * b.

For example, the operation * defined on **N** as $a * b = a^2b$ is a binary operation since * carries each pair (a, b) to a unique element a^2b in **N**.

Properties of Binary Operation

• A binary operation * on a set A is called commutative, if a * b = b * a, for every $a, b \in A$.

For example, *: $\mathbf{R} \times \mathbf{R} \to \mathbf{R}$ defined by a * b = 11 (a + b + ab) is commutative since a * b = 11(a + b + ab) and b * a = 11(b + a + ba). Therefore, a * b = b * a.

• A binary operation * on a set A is called associative, if (a * b) * c = a * (b * c), for every $a, b, c \in A$.

For example, *: $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by a * b = 5 + a + b is associative.

$$a*(b*c) = 10 + a + b + c = 5 + (5+a+b) + c = ((a*b)*c$$

• For a binary operation *: $A \times A \rightarrow A$, an element $e \in A$, if it exists, is called its identity element, if a * e = a = e * a, for every $a \in A$.

For example: 1 is the identity for multiplication on **R**.

• Given a binary operation *: $A \times A \rightarrow A$ with the identity element e in A, an element $a \in A$ is said to be invertible with respect to the operation *, if there exists an element $b \in A$, such that a * b = e = b * a, and b is called the inverse of a and is denoted by a^{-1} .

For example: -a is the inverse of a for the addition operation on \mathbf{R} , where 0 is the identity element.

Binary Operation Table

- When the number of elements in set *A* is small, we can express a binary operation * on *A* through a table called operation table.
- For an operation *: $A \times A \rightarrow A$, if $A = \{a_1, a_2... a_n\}$, then the operation table will have n rows and n columns with (i, j)th entry being $a_i * a_j$.
- Given any operation with n rows and n columns with each entry being an element of $A = \{a_1, a_2 \dots a_n\}$, we can define a binary operation * on A given by $a_i * a_j =$ entry in ith row and jth column of the operation table

Example: We can define a binary operation * on $A = \{a, b, c\}$ as follows:

*	а	b	С
а	а	b	С
b	b	а	С
С	С	С	С

Here,
$$a * b = b = b * a$$

$$a * c = c = c * a$$

$$b * c = c = c * b$$

∴ The operation * is commutative.

Solved Examples

Example 1:

A binary operation $A \times A \rightarrow A$, where $A = \{a, b, c\}$, is defined as follows:

*	а	b	С
а	а	а	а
b	а	b	С
С	а	С	b

Determine whether the operation * is commutative and associative. Also, find the identity for the operation *, if it exists.

Solution:

From the table, it can be observed that

$$a*b=a=b*a$$

$$a * c = a = c * a$$

$$b * c = c = c * b$$

The given binary operation * is commutative since for all $x, y, \in A = \{a, b, c\}$.

$$x * y = y * x$$

Now, consider a * (b * c) = a * c = a

$$(a * b) * c = a * c = a$$

Thus,
$$a * (b * c) = (a * b) * c$$

Similarly, we can prove that (x * y) * z = x * (y * z) for all $x, y, z \in A$.

Thus, the given binary operation * is associative.

Also, we can observe that for any element $x \in A$, we have x * a = x = a * x.

Thus, *a* is the identity element for the given binary operation *.

Example 2:

Determine whether the binary operation on the set **R**, defined by $a*b=\cfrac{2a+5b}{4}$, $a,b\in\mathbf{R}$, is commutative or not.

Solution:

We have *:
$$\mathbf{R} \times \mathbf{R} \to \mathbf{R}$$
 defined by $a * b = \frac{2a + 5b}{4}$, $a, b \in \mathbf{R}$

We know that a binary operation * defined on set *A* is commutative, if a * b = b * a & mnForE a, $b \in A$.

Now,
$$a * b = \frac{2a + 5b}{4}$$
 and $b * a = \frac{2b + 5a}{4}$

$$a * b \neq b * a$$

Hence, the given binary operation * is not commutative.

Example 3:

A binary operation * on the set {5, 6, 9} is defined by the following table:

*	5	6	9
5	5	6	9
6	6	9	5
9	9	5	6

Compute (5 * 9) * 6 and 5 * (9 * 6). Are they equal?

Solution:

From the given binary operation table, we have (5 * 9) = 9

$$\therefore (5*9)*6=9*6=5$$

Then,
$$(9 * 6) = 5$$

$$.5*(9*6) = 5*5 = 5$$

Thus,
$$(5*9)*6=5*(9*6)$$