Relations and Functions

Types of Relations

Equivalence Relation

Arelation R in a set A is called reflexive if (a, a) € R for every a € A.

[od]
For example: A relation R in set A [ 21 defined by R ={sin a = sin b; a, b € A} is a reflexive
relation since Sina=sinavae 4

Arelation R in a set A is called symmetric if (a1, az) € R implies that (az, a1) € R, for all a1, az € A.

-[03]
For example: A relation in the set 2l defined by R = {sin a = sin b; a, b € A} is a symmetric

relation. Since for a, b € 4, sin a = sin b implies sin b = sin a. So, (a, b) € R= (b, a) ER.

Arelation Rin a set A is called transitive if (a1, a2) € R, and (a2, a3) € R together imply that (a1, as)
€ R, for all a1, a2, as € A.

s
4= [U,—}
For example: A relation in the set 2l defined by R={sina =sin b, a, b € A} is a transitive
relation. Since for a, b, c € 4, let (a, b), (b, c) ER.
= sina =sin b and sin b =sin ¢
= sina=sinc

= (a,c)ER

A relation R in a set A is said to be an equivalence relation if R is reflexive, symmetric and transitive.

a-05]
For example: Relation R in the set 21 defined by R ={sina =sin b; a, b € A} is an

equivalence relation.
Equivalence Classes

Every arbitrary equivalence relation R in a set X divides X into mutually disjoint subsets (4:) called
partitions or subdivisions of X satisfying the following conditions:



All elements of A; are related to0020each other for all i.
No element of Ai is related to any element of A; whenever i # .
AiVAj=Xand AiNnAj=d,i#]

These subsets (4:) are called equivalence classes.

For an equivalence relation in a set X, the equivalence class containing a € X, denoted by [a], is the
subset of X containing all elements b related to a.

Trivial Relations

Trivial relations are of two types:
Empty relation

Universal relation

A relation in a set A is called an empty relation if no element of A is related to any element of 4,
ie, R=dcAxA

For example: Consider a relation R in set A = {2, 4, 6} defined by R = {(a, b): a + b is odd,
where a, b € A}. The relation R is an empty relation since for any pair (a, b) € A x A, a + b is always

even.

A relation R in a set A is called a universal relation if each element of A4 is related to every element
ofA4,ie, R=AxA.

For example: Let A be the set of all students of class XI. Let R be a relation in set A defined by R =
{(a, b): the sum of the ages of a and b is greater than 10 years}. The relation R is a universal relation
because it is obvious that the sum of the ages of two students of class XI is always greater than 10
years.

Solved Examples

Example 1

Check whether the relation R in the set of all vowels defined by R = {(u, u), (u, a), (a, u)} is reflexive,
symmetric or transitive?

Solution:

The relation R is defined in the set {qa, ¢, i, 0, u} as R = {(u, u), (u, a), (a, u)}.



The relation R is not reflexive as (a, a), (e, €) (i, i), (o, 0) & R.

Now, (u, a) and (a, u) ER

Hence, R is symmetric.

Now, (u, u) (u, a) € Rimplies (u, a) ER

Also, (u, a), (a, u) € Rimplies (u, u) €R

Hence, R is transitive.

Thus, the relation R is symmetric and transitive but not reflexive.
Example 2

Show that the relation R defined in the set of real numbers as R={(a,b) a=bora=-bfora, b € R}
is an equivalence relation. Also, find its equivalence classes.

Solution:

Arelation Rin Ris defined as R={(a, b):a=bora=-b, fora, b € R}
Clearly, (a, a) € R for every a € R, since a = a.
~ Ris reflexive.

Now, let (a, b) € Rfora, b €R
=a=bora=-b

=>b=aorb=-a

= (b,a) ER

~ R is symmetric.

Now, let (a, b), (b, c) ER, fora, b,ce R
~a=bora=-bandb=corb=-c

Casel

a=b,b=c

=>dad=cC



= (a,c) ER

Case Il

= (a,c) ER
Case II1

a=-b,b=c

= (a,c)ER

Thus, (a, b), (b,c) ER= (a,c) ER

~ R is transitive.

Hence, R is an equivalence relation.

Equivalence class of 0 = [0] = {0}

Equivalence class of 1 = [1] = {1, - 1}

Equivalence class of 2 = [2] = {2, - 2} and so on...
There are an infinite number of equivalence classes.
Foreverya €R, [a] ={a, - a}.

Types of Functions



e Afunction f: X = Yis said to be one-one (or injective) if the images of distinct elements
of X under fare distinct. In other words, a function fis one-one if for every x1, x2 € X, f (x1) = f (x2)
implies x1 = x2.

An example of a one-one function from X to Y is shown in the following diagram.

One—One

A function f: X — Yis said to be many-one if the image of distinct elements of X under fare not
distincti.e., a function that is not one-one is called a many-one function.

An example of a many-one function from X to Y is shown in the following diagram.

Many-One

In this case, two elements f{d) = f(e) = s.

e Afunction f: X = Yis defined as onto (or surjective) if every element of Y is the image of some
element of x in X under f. In other words, fis onto if and only if, y € Y, there exist x € X such that f(x)

:y_
e f:X - Yisontoifand only if the range of f= Y.

e An example of an onto function from X to Y is shown in the following diagram.



X ¥
A

Ol

e A function from X to Y that is not onto is shown in the following diagram.

Mot onto
e Afunction f: X - Yis said to be bijective if it is both one-one and onto.

A bijective function from X to Y is shown in the following diagram.

Rijective

Solved Examples

Example 1

Check whether the function h: R = R defined by h(x) = |2x— 5| is an injective function.

Solution:



The given function i.e., h: R — R is defined by

h(x) = 2x—5|
It can be observed that 5, 0 € R (considering domain). Hence, we have

)= 2x5-5|=[10-5|=5

h(5
h(0) = 2%x0-5|=]0-5|=5
= h(5) = h(0).

Hence, the given function i.e., h(x) is not an injective function.

Example 2

Check whether the function f: R = R defined by f{x) = x> + 4 is a bijective function.
Solution:

We know that a function is bijective if it is both one-one and onto.

Now, let x1, x2 € R such that f (x1) = f (x2). Accordingly,

fx1) =f(x2)

= x?+4=x'§ +4
5 L]
=x =x,

=X =X,

Therefore, the function fis a one-one function.

- 5
[t is clear that for every y € R, there exists (y=4) € Rsuch

1 17
f{i.v— 4)"} = {U-‘ —4}5} +d=(y—4)+4=y
that
Therefore, the function fis an onto function.

Hence, the given function fis a bijective function.

Example 3



Check whether the function f: N — N defined by f{x) = 4*is an onto function.
Solution:

The given function f: N — N is defined by

fix) = 4

We can clearly observe that 2 € N (co-domain). However, there does not exist any
element y € N (domain) whose image is 2.

Hence, the given function fis not an onto function.

Composition of Two functions

Let f: A — B and g: B — C be two functions. Accordingly, the composition of fand g is denoted
by gof and is defined as the function gof: A — C given by gof(x) = g(f(x)), for all x€A.

gaf

For example: If f: N — N is defined by f{x) = x + 1 for all xéN and g: N — N is defined by g(x) = x2 for
all xeN, then gof: N — N is given by

gof(x) =g(f(x)) =g(x+ 1) = (x + 1)2, where xeN.

Also, fog(x) = flg(x)) = f{x?) =x% + 1 for all xéN
If A - Band g: B— Care one-one, then gof: A — Cis also one-one.
If A - Band g: B— Care onto, then gof: A = C is also onto.

If the composite function gof'is one-one, then the function fis also one-one. However, the
function g may or may not be one-one.

If the composite function gofis onto, then the function g is also onto. However, the function f may
or may not be onto.

Solved Examples



Example 1

Let f: R = R be given by f(x) = 12x2 - x - 11 and g: R = R be given by g(x) = x2. Find fo(gog).
Solution:

Itis given that

fiR— Ris defined by f(x) = 12x2 - x - 11

g: R — Ris defined by g(x) = x2

Now, (gog) (x) = g(g(x))

=g9(x*)

= (x2)2
=x4

(fo(gog))(x) = fl(gog)(x))
= fixt)
= 12(x4)2 - x* - 11
=12x8 - x4 - 11

Example 2

3 e 3] =W B

_ _— If"x — - -

LetfR- 3] 5 R- L 3) pedefined by 11-3x andg:R- ' 3/ 5R- 13 bedefined
Ilx+5

by g(x) = 4+3% . Show that fog = Ia and gof = I, where Ia and Is are identity functions on A and B

5 smepen )
respectivelyand A =R - 3) andB=R- '3/,
Solution:

(fog)(x) = flg(x))

:f.(nﬂs]
L4+ 3x




4[III+EJ_5

L4+ 3x
]]_3[11.~:+5]
4+3x

 44x+420-20-15x
 44+33x-33x-15
_ 29x

29

=X

(g0A(¥) = 9(fx))

B 4::—5']
& 11-3x

e

11(4"‘_5 +5

=3 )

4+3[ dx -5 ]

11-3x
 44x-55+55-15x
44 -12x+12x—15
20y
"9

=X

Thus, (fog)(x) = x for all x € A = fog = Ia and (gof) (x) =x forallx € B= gof =1Is.
Hence proved.

Example 3

Let f: R —» R be defined as f(x) = 2x* ; 9: R— R be defined as g(x) =x + 2 and h: R = R be defined
as h(x) =4x + 9. Find fo(g + h) and (fog) + (foh).

Solution:
(g + h): R - Ris given by:
(g +h)(x)=g() +hx)

=(x+2)+(4x+9)
=5x+11



=~ fo(g +h)(x) = fl(g + h)(x))
=f(5x+11)

!
_ 2(Sx+11)

Now, (fog)(x) = flg(x))

=flx+2)
_ 2{.r+2}l

(foh)(x) = f{h(x))
=f4x +9)

|
_ 2(4x+9)

~(fog + foh) (x) = (fog)(x) + (foh)(x)

2(x+2)1 +2(4x+9);

= 2|:{ X+ 2]: + {4_r+‘-}}.:

Invertible Functions
Key Concepts

A function f: X — Yis said to be invertible if there exists a function g: Y- X such
that gof = Ix and fog = Iv.

The function g is called the inverse of fand it is denoted by f~1.

A function fis invertible if and only if fis one-one and onto.

If  X— Yandg: Y- Zare invertible functions, then gof'is also invertible and (gof)~1 = f1 0g-1
Solved Examples

Example 1



Determine whether the following functions have inverse or not. Find the inverse, if it exists.
(1) f:{10,12,15} - {3,7,9, 10, 14}is defined as f= {(12, 9), (15, 7), (10, 10)}.

(i) g:{2,4,6,8} = {1, 3,5} is defined as g : {(4, 3), (8, 3), (2, 1), (6, 5)}.

(iii) h: {11, 16}— {7, 14} is defined as h :{(11, 7), (16, 14)}.

Solution:

(i) The given function fis one-one. However, fis not onto since the elements 3, 14 € {3, 7, 9, 10, 14}
are not the image of any element in {10, 12, 15} under f.

Hence, function fis not invertible.

(ii) The given function g is onto. However, g is not one-one since, g(4) = g(8) = 3.
Hence, the function g is not invertible.

(iii) Clearly, the given function h is both one-one and onto. Hence, h is invertible.
The inverse of h is given by h-1 ={(7, 11), (14, 16)}.

Example 2

Determine whether the functions fand g, defined below, are inverses of each other or not.

,f{x}: ~3x
f:R-{4} > R-{-3}is given as x—4 and
dx
glx)=
g:R-{-3} > R- {4} is given as x+3
Solution:
1’ 4x w
: : .féh'] _h\T+q) —12x ~12x
f(}’? Xl= T = = . . = = =X
(og)(x) =1 (5(x) 'f|k:r+3 oy A-dx-12 -2
We have X+3
4[_ Jx W
: -3x x—4) —12x -12x
) x)= flx)= = — L= = =X
{E}{}[ ] g{~ { }} g[.‘f—‘l' [—3,‘( \,|+3 Av+3r—12 12
x—4)



Thus, {ﬁ:rg}{:r] =x¥Vxes, where B =R -{-3} and {gaj‘]l[.‘f] S Yvxe A’A =R -{4}.
~gof =1sand fog = Is.

Thus, functions fand g are the inverses of each other.

Example 3

Let f: R+ = [-3, ) be defined as f(x) = 4x2 - 5x — 3 where R+ is the set of all positive real numbers.
Show that fis invertible and find the inverse of f.

Solution:
fi R+ = [-3, ) is defined as f (x) = 4x2 - 5x - 3.
Let y be an arbitrary element of [-3, ).

Lety=4x2-5x-3

:}21—5= y+—" {}E—.’S:;%EED}
4 16 16
] 73 5
x=—/]v+—+=
2Y 16 8
~fis onto.

Hence, Range f=[-3, o).

Let us define g: [-3, ©) = R+ as

Now, we have



(ry ==y < [ (1 =3 <) <«
L[ 73] s 1 [ 73] s} s 73 73 73
foe v = Fle())=F | = v+ |+ 1_ Zx:[ Sl PP D B B S
(o) (¥)= 1 (2(v)) "f.\.\zh" mJ L2V 40 16 16 16

sogof =1, and fog =1 ,

Thus, fis invertible and its inverse is given by
I 73] 5
J I{J’}ZE{J‘JZE[ }‘+—]+§

Binary Operations
Definition of Binary Operation Properties
A binary operation * on a set 4 is a function * from A x A - A. We denote *(a, b) by a * b.
For example, the operation * defined on N as a * b = a?b is a binary operation since * carries

each pair (a, b) to a unique element a2b in N.

Properties of Binary Operation

A binary operation * on a set A is called commutative, ifa *b =b *q, for every a, b € A.

For example, *: R x R - R defined by a *b =11 (a + b + ab) is commutative sincea * b = 11(a
+b+ab)and b *a=11(b +a + ba). Therefore,a *b=b *a.

A binary operation * on a set A is called associative, if (a *b) *c=a* (b * ¢), for every a, b, c € A.
For example, *: N x N - N defined by a * b =5 + a + b is associative.
a*(b*c)=10+a+b+c=5+(5+a+b)+c=((a*b)*c

For a binary operation *: A x A — A, an element e € 4, if it exists, is called its identity element,
ifa*e=a=e*aq,foreverya € A.

For example: 1 is the identity for multiplication on R.



Given a binary operation *: A x A — A with the identity element e in 4, an element a € A is said to be
invertible with respect to the operation *, if there exists an element b€4, such thata*b=e=b*q,
and b is called the inverse of a and is denoted by a 1.

For example: —-a is the inverse of a for the addition operation on R, where 0 is the identity
element.

Binary Operation Table

When the number of elements in set A is small, we can express a binary operation * on A through a
table called operation table.

For an operation *: A x A = A4, if A = {az, az... an}, then the operation table will have n rows

and n columns with (i, j)* entry being ai * a;.

Given any operation with n rows and n columns with each entry being an element of 4 =

{ai, az ... an}, we can define a binary operation * on A given by a;* a;= entry in ith row and j*» column
of the operation table

Example: We can define a binary operation * on 4 = {a, b, c} as follows:

* a b c
a a b c
b b a c
c c c c

Here,a*b=b=b*a
a*c=c=c*a
b*c=c=c*b

-~ The operation * is commutative.



Solved Examples
Example 1:

A binary operation A x A — A, where A = {qa, b, c}, is defined as follows:

* a b c
a a a a
b a b c
c a c b

Determine whether the operation * is commutative and associative. Also, find the identity for the
operation *, if it exists.

Solution:

From the table, it can be observed that

a*b=a=b*a

a*c=a=c*a

b*c=c=c*b

The given binary operation * is commutative since for all x, y, € A ={aq, b, c}.
x*y=y*x

Now, considera *(b*c)=a*c=a

(a*b)*c=a*c=a

Thus,a*(b*c)=(a*b)*c

Similarly, we can prove that (x *y) *z=x* (y *z) forall x, y, z € A.




Thus, the given binary operation * is associative.

Also, we can observe that for any element x € A, we havex*a=x=a *x.
Thus, a is the identity element for the given binary operation *.
Example 2:

2a43b

Determine whether the binary operation on the set R, defined by a *b = 4 ,a,b€ER,is
commutative or not.

Solution:

2a+5h

a*h=

We have *: R x R = R defined by 4  abeR.
We know that a binary operation * defined on set A is commutative, ifa *b = b * a &mnForE q, b €A.

a4+ 5h 2b 4+ 5a

Now,a*b= 4 andb*a= 4

~a*b#b*a
Hence, the given binary operation * is not commutative.
Example 3:

A binary operation * on the set {5, 6, 9} is defined by the following table:

* 5 6 9
5 5 6 9
6 6 9 5




Compute (5*9) *6and 5 * (9 * 6). Are they equal?
Solution:

From the given binary operation table, we have (5*9) =9
~(5*9)*6=9*6=5

Then, (9*6) =5

25*%(09*6)=5*5=5

Thus, (5*9) *6 =5 * (9 * 6)



