9.	Three boxes A, B, C contain balls as shown below		ity that the sum on the uppermost faces of the dice.
5.	White Red Black		I : is an odd no. is 5/18
	A 2 2 1		II : is a no. greater than 20 is 1/9
	B 3 4 2		Which of the above statements (I, II) are true
	C 4 2 3		1. I only 2. II only
	A die is thrown to decide which box is to be chosen.		3. both I and II 4. neither I nor II
	A is chosen if 1 or 2 turns up; B is chosen if 3 or 4	16.	A, B are two events in a random experiment such that
	turns up; C is chosen if 5 or 6 turns up. Having		$0 < P(A) < 1 \text{ and } P(B) \neq 1.$
	chosen the box, a ball is chosen at random from it		$P(A) = P(A) - P(A \cap B)$
	I. Probability for the ball to be red is 16/44		Assertion (A) :- $P\left(\frac{A}{B^{e}}\right) = \frac{P(A) - P(A \cap B)}{1 - P(B)}$
	II : If the drawn ball is of red colour, the probability		(\mathbf{B}) $\mathbf{I}-\mathbf{P}(\mathbf{B})$
	that it is from box B is 5/8.		(A) P(A I B)
	Which of the above statement(s) is/are correct 1. I only 2. II only		Reason (R):- $P\left(\frac{A}{B}\right) = \frac{P(A I B)}{P(B)}$
	1. I only2. II only3. both I and II4. neither I nor II		
10.	I : A man is known to speak truth 3 out of 4 times.		1. both A and R are true and R is the correct explana- tion of A
	He throws a die and reports that it is 6. The prob-		2. both A and R are true and R is not the correct expla-
	ability that it is actually 1 is 1/6		nation of A
	II: A man is known to speak truth 2 out of 3 times. He		3. A is true but R is false
	throws a die and reports that it is 1.The 4. A player		4. A is false but R is true
1	tosses two fair coins. He wins Rs. 5/- if two heads oc-	17.	A, B are two events of a simple space
1	cur, Rs. 2/- if one head occurs and Rs. 1/- if no head		Assertion (A) : A, B are mutually exclusive
1	occurs. Then how much should he pay to play the game		$\Rightarrow P(A) \le P(\overline{B})$
1	if it is to be fair probability that it is actually 1 is 2/6.		Reason (R):- A, B are mutually exclusive
1	Which of the following statement is correct		$\Rightarrow P(A) + P(B) \le 1$
1	1. only I2. only II3. both I and II4. neither I nor II		\rightarrow $\Gamma(A) + \Gamma(B) \ge 1$ 1. both A and R are true and R is the correct explana-
11.	The probability that Australia wins a match against		tion of A
I '''	India in a cricket match is 1/3. India and Australia		2. both A and R are true and R is not the correct expla-
	play 3 matches		nation of A
	I. The probability that Australia wins atleast one match		3. A is true but R is false
	is 4/27		4. A is false but R is true
	II : The probability that Australia looses all the three	18.	A and B be two independent events of a sample
	matches is 8/27		space such that $P(A) = 0.2$, $P(B) = 0.5$
	Which of the above statements is correct		LIST-I LIST-II A) P(B/A) 1. 0.2
	1. I only2. II only		B) P(A/B) 2. 0.1
10	3. both I and II 4. neither I nor II		C) $P(A \cap B)$ 3.0.3
12.	I : A single die is rolled twice in succession. The		
1	probability that the number showing on the second toss is greater than that on the first rolling is 4/27.		D) $P(A \cup B)$ 4.0.6
1	II : The probability that a boy gets a scholarships is		5. 0.5
	0.8 and another boy B is 0.9. the probability that		The correct match for List-I from List-II
	atleast one of them gets the scholarship is 0.98.		
	Which of the above statements is true		1. 4 5 3 1 2. 5 1 2 4
1	1. I only 2. II only		2. 5 1 2 4 3. 3 1 2 4
1	3. both I and II 4. neither I nor II		4. 2 1 4 5
13.	The probability for a contractor to get a road con-	19.Ar	electrical shopkeeper purchases bulbs from three
1	tract is 2/3 and get a building contract is 5/9. The		manufacturers A, B, C. He purchases 25% of his
1	probability to get at least one contract is 4/5.		stock from A, 45% from B and 30% from C. In the
1	I : The probability that we gets both the contracts is 18/45		past purchases he found 2% of C's bulbs, 1% of B's
1	I8/45 II : The probability that he gets exactly one contract		bulbs, 1% of A's bulbs were defective. Assuming that, the shopkeeper chooses a bulb and found it to
1	is 17/45		be defective
1	Which of the above statements is are true		LIST-I LIST-II
1	1. I only 2. II only		A) The probability of choosing 1) 0.0025
	3. both I and II 4. neither I nor II		A and purchasing a d bulb
14.	An unbiased coin is tossed to get 2 points for turn-		from it is
1	ing up a head and one point for the tail. If three unbi-		B) The probability of choosing 2) 0.0045
1	ased coins are tossed simultaneously, then the prob-		B and purchasing a defective bulb from it is
1	ability of getting		C) The probability of choosing 3) 0.0060
1	I : a total of odd no. of points is 2/3		C and purchasing a defective
1	II : a total of 4 or 5 is 3/4		bulb from it is
1	Which of the above statements is / are correct		D) The probability that the 4) 0.65
1	1. I only 2. II only 3. both Land II 4. other Land II		defective bulb was purchased
15.	3. both I and II 4. either I nor II Six faces of a unbiased die are numbered with 2, 3, 5, 7,		from C is
1 13.	11 and 13. If two such dice are thrown then the probabil-		5) 0.46

	The corre	ect Match	for LIST-I fro		Γ-II is
		A	B	С	D
	1.	4	5	2 3 1	3
	2. 3.	5 2	2 3	3 1	1 5
	3. 4.	2 1	3 2	3	5 5
20.		•	_	-	and B whose
20.	Aprobici	in is give	·		
	ahanaaa	of o olving	$\frac{1}{1}$		tively then
	Chances		g it are $\frac{1}{3}, \frac{1}{5}$	respec	suvery them
	LIST-I				LIST-II
		bility that			1) 7/15
		em is solv			
		bility that			2) 4/15
		em not so			2) C/1E
		bility that by A onl	the problem		3) 6/15
			the problem	1	4) 2/15
		d by B or		I	4)2/10
		,	,		5) 8/15
	The corr	rect matc	h for LIST-I		
		А	В	С	D
	1.	2 3	1	5	4
	2.	3 1	5	1	4
	3. 4.	1 2	5 1	2 5	4 3
21.			ı ts of a samp		-
21.		P(B) > C		ne spac	e such that
LIST		, (()) * 0		LIS	T-II
	(A · · D)	l where (
	. ,		and B are	I) P	(AIB)
ind	lependent	events			
B) P	$(A \cup B)$	where A a	nd B are	2) 1	
	dependent				
	(A/B) + P(/			3) 1-	P(A ¹).P(B ¹)
D) P	(A) . P(B/A	.)			-P(A)][1-P(B)]
		oct mate	h for LIST-I	5) 0	
	The con	A	B	C	D
		4	3	-	1
	1.			_	
	1. 2.	5	4	3	_
	2. 3.	5 4	4 3	3 2	2 5
	2. 3. 4.	5 4 4	4 3 3	2 3 2 5	1
22.	2. 3. 4.	5 4 4	4 3	-	1
22.	2. 3. 4. A, B are	5 4 4 two even	4 3 ts of a samp	le spac	1 ce such that
22.	2. 3. 4. A, B are	5 4 4 two even	4 3 3	le spac	1 ce such that
22.	2. 3. 4. A, B are P(A) =	5 4 4 two even	4 3 ts of a samp	le spac	1 se such that
22.	2. 3. 4. A, B are P(A) = LIST-I	5 4 two event $\frac{3}{2}P(B) =$	4 3 ts of a samp	le spac	1 ce such that
22.	2. 3. 4. A, B are P(A) = LIST-I A) P(A/B B) P(B/A	5 4 4 two event $\frac{3}{2}P(B) =$ $\frac{3}{2}P(B) =$	4 3 ts of a samp	le spac	1 ce such that 5 LIST-II 1) 3/5 2) 1/2
22.	2. 3. 4. A, B are P(A) = LIST-I A) P(A/B B) P(B/A C) P(A ¹ /I	5 4 4 two event $\frac{3}{2}P(B) =$ $\frac{3}{2}P(B) =$ $\frac{3}{2}B^{1} =$	4 3 ts of a samp	le spac	1 ce such that LIST-II 1) 3/5 2) 1/2 3) 4/15
22.	2. 3. 4. A, B are P(A) = LIST-I A) P(A/B B) P(B/A	5 4 4 two event $\frac{3}{2}P(B) =$ $\frac{3}{2}P(B) =$ $\frac{3}{2}B^{1} =$	4 3 ts of a samp	le spac	1 ce such that 5 LIST-II 1) 3/5 2) 1/2 3) 4/15 4) 2/5
22.	2. 3. 4. A, B are P(A) = LIST-I A) P(A/B B) P(B/A C) P(A ¹ /I D) P(B ¹ //	$5 \\ 4 \\ 4$ two event $\frac{3}{2}P(B) =$ (3) = (3) =	4 3 3 ts of a samp $= \frac{1}{2}, P(A I)$	B) = $\frac{2}{15}$	1 ce such that 5 LIST-II 1) 3/5 2) 1/2 3) 4/15 4) 2/5 5) 9/20
22.	2. 3. 4. A, B are P(A) = LIST-I A) P(A/B B) P(B/A C) P(A ¹ /I D) P(B ¹ //	5 4 4 two event $\frac{3}{2}P(B) =$ $\frac{3}{2}P(B$	$\frac{4}{3}$ its of a samp $=\frac{1}{2}, P(A I I)$ ch for LIST	ble space $B) = \frac{2}{15}$	1 ce such that LIST-II 1) 3/5 2) 1/2 3) 4/15 4) 2/5 5) 9/20 LIST-II is
22.	2. 3. 4. A, B are P(A) = LIST-I A) P(A/B B) P(B/A C) P(A ¹ /I D) P(B ¹ // The column	5 4 4 two even $\frac{3}{2}P(B) =$ $\frac{3}{2}P(B)$	$\frac{4}{3}$ its of a samp $=\frac{1}{2}, P(A I I)$ ch for LIST- B	ble space $B) = \frac{2}{15}$ <i>I from</i>	1 ce such that 5 LIST-II 1) 3/5 2) 1/2 3) 4/15 4) 2/5 5) 9/20 LIST-II is D
22.	2. 3. 4. A, B are P(A) = LIST-I A) P(A/B B) P(B/A C) P(A ¹ /I D) P(B ¹ //	5 4 4 two even $\frac{3}{2}P(B) =$ $\frac{3}{2}P(B)$	$\frac{4}{3}$ its of a samp $=\frac{1}{2}, P(A I)$ ch for LIST- B 3	ble space $B) = \frac{2}{15}$ <i>I from</i>	1 ce such that 5 LIST-II 1) 3/5 2) 1/2 3) 4/15 4) 2/5 5) 9/20 LIST-II is D 1
22.	2. 3. 4. A, B are P(A) = LIST-I A) P(A/B B) P(B/A C) P(A ¹ /I D) P(B ¹ // The cold 1. 2. 3.	5 4 4 two even $\frac{3}{2}P(B) =$ $\frac{3}{2}P(B)$	$\frac{4}{3}$ its of a samp $=\frac{1}{2}, P(A I I)$ ch for LIST- B	ble space $B) = \frac{2}{15}$ <i>I from</i>	1 ce such that 5 LIST-II 1) 3/5 2) 1/2 3) 4/15 4) 2/5 5) 9/20 LIST-II is D
	2. 3. 4. A, B are P(A) = LIST-I A) P(A/B B) P(B/A C) P(A ¹ /I D) P(B ¹ // The cold 1. 2. 3. 4.	5 4 4 two event $\frac{3}{2}P(B) =$ $\frac{3}{2}P(B$	$\frac{4}{3}$ its of a samp $=\frac{1}{2}, P(A I I)$ ch for LIST- B 3 4 3 4	ble space $B) = \frac{2}{15}$ $F(from) = \frac{1}{15}$ $C = \frac{1}{15}$ C	1 ce such that 1) 3/5 2) 1/2 3) 4/15 4) 2/5 5) 9/20 <i>LIST-II is</i> D 1 2 5 1
22.	2. 3. 4. A, B are P(A) = LIST-I A) P(A/B B) P(B/A C) P(A ¹ /I D) P(B ¹ // The cold 1. 2. 3. 4.	5 4 4 two event $\frac{3}{2}P(B) =$ $\frac{3}{2}P(B$	$\frac{4}{3}$ its of a samp $= \frac{1}{2}, P(A I I)$ ch for LIST- B 3 4 3 4	ble space $B) = \frac{2}{15}$ $F(from) = \frac{1}{15}$ $C = \frac{1}{15}$ C	1 ce such that 5 LIST-II 1) 3/5 2) 1/2 3) 4/15 4) 2/5 5) 9/20 LIST-II is D 1
	2. 3. 4. A, B are P(A) = LIST-I A) P(A/B B) P(B/A C) P(A ¹ /I D) P(B ¹ // The cold 1. 2. 3. 4. If A, B, C a	5 4 4 two event $\frac{3}{2}P(B) =$ $\frac{3}{2}P(B$	$\frac{4}{3}$ $\frac{3}{3}$ $\frac{1}{2}, P(A I)$ $\frac{1}{2}, P(A I)$ $\frac{1}{2}$ $\frac{1}{2}, P(A I)$ $\frac{1}{3}$	ble space $B) = \frac{2}{15}$ $H from C$ C 2 3 2 5 $t events$	1 ce such that 1) 3/5 2) 1/2 3) 4/15 4) 2/5 5) 9/20 <i>LIST-II is</i> D 1 2 5 1 s of an experi-
	2. 3. 4. A, B are P(A) = LIST-I A) P(A/B B) P(B/A C) P(A ¹ /I D) P(B ¹ // The cold 1. 2. 3. 4.	5 4 4 two event $\frac{3}{2}P(B) =$ $\frac{3}{2}P(B$	$\frac{4}{3}$ $\frac{3}{3}$ $\frac{1}{2}, P(A I)$ $\frac{1}{2}, P(A I)$ $\frac{1}{2}$ $\frac{1}{2}, P(A I)$ $\frac{1}{3}$	ble space $B) = \frac{2}{15}$ $H from C$ C 2 3 2 5 $t events$	1 ce such that 1) 3/5 2) 1/2 3) 4/15 4) 2/5 5) 9/20 <i>LIST-II is</i> D 1 2 5 1
	2. 3. 4. A, B are P(A) = LIST-I A) P(A/B B) P(B/A C) P(A ¹ /I D) P(B ¹ // The cold 1. 2. 3. 4. If A,B,C a ment	5 4 4 two event $\frac{3}{2}P(B) =$ $\frac{3}{2}P(B$	4 3 3 ts of a samp $=\frac{1}{2}$, P(A I 1) ch for LIST B 3 4 3 4 independent that	ble space $B) = \frac{2}{15}$ $H from C$ C C C C C C C C C	1 ce such that LIST-II 1) 3/5 2) 1/2 3) 4/15 4) 2/5 5) 9/20 LIST-II is D 1 2 5 1 s of an experi- $B^{c} \cap C^{c}) = \frac{1}{4}$
	2. 3. 4. A, B are P(A) = LIST-I A) P(A/B B) P(B/A C) P(A ¹ /I D) P(B ¹ // The cold 1. 2. 3. 4. If A,B,C a ment	5 4 4 two event $\frac{3}{2}P(B) =$ $\frac{3}{2}P(B$	4 3 3 ts of a samp $=\frac{1}{2}$, P(A I 1) ch for LIST B 3 4 3 4 independent that	ble space $B) = \frac{2}{15}$ $H from C$ C C C C C C C C C	1 ce such that LIST-II 1) 3/5 2) 1/2 3) 4/15 4) 2/5 5) 9/20 LIST-II is D 1 2 5 1 s of an experi- $B^{c} \cap C^{c}) = \frac{1}{4}$
	2. 3. 4. A, B are P(A) = LIST-I A) P(A/B B) P(B/A C) P(A ¹ /I D) P(B ¹ /I D) P(B ¹ /I The con 1. 2. 3. 4. If A,B,C a ment $P(A^c \cap B^{1})$	5 4 4 two event $\frac{3}{2}P(B) =$ $\frac{3}{2}P(B$	$\begin{array}{c} 4\\ 3\\ 3\\ \text{ts of a samp} \end{array}$	ble space $B) = \frac{2}{15}$ $F(A \cap C^{c})$	1 25 LIST-II 1) 3/5 2) 1/2 3) 4/15 4) 2/5 5) 9/20 LIST-II is D 1 2 5 1 s of an experi- $B^{c} \cap C^{c}) = \frac{1}{4}$ $= \frac{1}{4}$ then the
	2. 3. 4. A, B are P(A) = LIST-I A) P(A/B B) P(B/A C) P(A ¹ /I D) P(B ¹ /I D) P(B ¹ /I The con 1. 2. 3. 4. If A,B,C a ment $P(A^c \cap B^{1})$	5 4 4 two event $\frac{3}{2}P(B) =$ $\frac{3}{2}P(B$	4 3 3 ts of a samp $=\frac{1}{2}$, P(A I 1) ch for LIST B 3 4 3 4 independent that	ble space $B) = \frac{2}{15}$ $F(A \cap C^{c})$	1 25 LIST-II 1) 3/5 2) 1/2 3) 4/15 4) 2/5 5) 9/20 LIST-II is D 1 2 5 1 s of an experi- $B^{c} \cap C^{c}) = \frac{1}{4}$ $= \frac{1}{4}$ then the

24.	1.P(A) < P(B) < P(C) $2.P(B) < P(A) < P(C)$ $3.P(A) < P(C) < P(B)$ $4.P(B) < P(C) < P(A)$ A bag contains 12 two rupee coins, 7 one rupeecoins and 4 half a rupee coins. If three coins areselected at random, p= probability that the sum ofthe three coins is maximum, q= probability that thesum of the three coins is minimum, r=probabilitythat each coin is of different value.Arrange p,q and r in increasing order of magnitude. $1. p,q,r$ $2.q,p,r$ $3.r,q,p$ $4.r,p,q$					
			KEY			
	1. 2	2.3	3. 2	4.4	5. 1	
	6.1	7.2	8.2	9.4	10.4	
	11.2	12.2	13.2	14.2	15. 1	
	16. 1	17.1	18.2	19.4	20.3	
	21. 1	22.4	23.1	24.3		
LEVEL - V COMPREHENSIVE QUESTIONS						

- I. If A, B are two non empty finite sets then the cartesian product of A, B is denoted by A x B. Any subset of cartesian product of two sets is a relation. A function is a relation between two sets. But every relation need not be a function. Injective functions are the functions such that the distinct objects will have distinct images. If the function is such that codomain is equal to range then the function is said to be the surjective function. Inverse functions are possible only if the functions are bijective
- 1. If A, B are two finite sets such that n(A)=3, n(B)=4and if a relation defined from A to B is taken at random probability that it is a function is

1)
$$\frac{1}{64}$$
 2) $\frac{1}{32}$ 3) $\frac{1}{8}$ 4) $\frac{1}{16}$

2. A is a set such that n(A)=4 and a function is taken at random from all the functions that can be defined on A it self probability that it is a one-one function

$$\frac{1}{8}$$
 2) $\frac{3}{32}$ 3) $\frac{4}{9}$ 4) $\frac{9}{16}$

3. If P, Q are two subsets of A and n(A)=5, then the probability that P, Q are disjoint sets is

1)
$$\left(\frac{3}{4}\right)^2$$
 2) $\left(\frac{3}{4}\right)^3$ 3) $\left(\frac{1}{4}\right)^5$ 4) $\left(\frac{3}{4}\right)^5$

4. If A, B are two finite sets such that n(A)=4, n(B)=2. From the functions that can be defined from B to A if a function is selected at random probability that for that function, inverse function exists is

1)
$$\frac{1}{16}$$
 2) $\frac{1}{2}$ 3) 0 4) $\frac{1}{4}$

The arrangement of real or complex numbers in rectangular array is called a matrix. If in a matrix no.of rows is 'm' and no.of columns is 'n' then the matrix is said to be of type mxn. A sub matrix is the

II.

1)

matrix obtained by deleting some rows or columns or both rows and columns from the given matrix. If all the elements of a matrix, each is zero then the matrix is called null matrix. If all the elements in the principal diagonal of a square matrix are same and other elements each is zero then the matrix is called a scalar matrix. Associated with every square matrix there exists a real number called determinant of the matrix. Singular matrices are having the determinant value zero.

1. By using the elements 0, 1 only, 2 x 2 matrices are formed and if a matrix is chosen at random probability that the matrix is a non singular matrix

1)
$$\frac{3}{16}$$
 2) $\frac{3}{8}$ 3) $\frac{1}{16}$ 4)

- From all the submatrices of a matrix of type 3x4 a matrix is chosen at random probability that it is of type 2 x 2 is
 - 1) $\frac{1}{35}$ 2) $\frac{2}{35}$ 3) $\frac{6}{35}$ 4) $\frac{4}{35}$
- 3. By using the elements 0, 1 only 2 x 2 matrices, are formed and if a matrix is chosen from them then the probability that the matrix is a scalar matrix is

1)
$$\frac{1}{16}$$
 2) $\frac{3}{16}$ 3) $\frac{3}{8}$ 4)

- 4. From all the rectangular sub matrices of a matrix of type 4x4 a matrix is chosen at random then the probability that it is 2x4 matrix is
 - 1) $\frac{3}{14}$ 2) $\frac{13}{14}$ 3) $\frac{1}{4}$ 4) $\frac{1}{16}$
- III. There are three routes A, B, C from the house to the office on any day the selection of each route is independent of the others. On a rainy day the probabilities that the officer is late to the office if he

selected the routes A, B, C are

respectively. Using the above data, answer the following questions

1. What is the probability that the officer is late to the office?

1)
$$\frac{13}{30}$$
 2) $\frac{13}{90}$ 3) $\frac{13}{150}$ 4) $\frac{13}{180}$

2. If the officer is late to the office, then find the proability that he travelled through route B or route C?

1)
$$\frac{4}{13}$$
 2) $\frac{9}{13}$ 3) $\frac{5}{13}$ 4)

3. What is the probability that the officer reached the office right on time on that day?

1)
$$\frac{77}{90}$$
 2) $\frac{7}{9}$ 3) $\frac{77}{150}$ 4) $\frac{73}{150}$

4. If the officer reached the office right on time what is the probability that he selected the route A?

1)
$$\frac{15}{77}$$
 2) $\frac{52}{77}$ 3) $\frac{25}{77}$ 4) $\frac{62}{77}$

KEY						
I.	1. 1	2.2	3.4	4.3		
II.	1. 2	2. 3	3. 1	4. 1		
III.	1. 2	2. 4	3. 1	4.3		
REVIO	US FA	MCFT		STIONS		

PREVIOUS EAMCET QUESTIONS 2006

1. If A and B are two independent events such that

$$P(B) = \frac{2}{7}$$
, $P(A \cup B^c) = 0.8$ then P(A)=

2. A number 'n' is chosen at random from {1,2,3,...1000}. The probability that 'n' is a number that leaves remainder 1 when divided by '7' is...

1.
$$\frac{71}{500}$$
 2. $\frac{143}{1000}$ 3. $\frac{72}{500}$ 4. $\frac{71}{1000}$

In the random experiment of tossing two un biased dice.Let 'E' be the event of getting the sum 8 and 'F ' be the event of getting even numbers on both the dice then

$$| : P(E) = \frac{7}{36}$$
 $|| : P(F) = \frac{1}{3}$

Which of the following is correct statement

- 1. Both I and II are true2.Neither I nor II are true3. I is true , II is false4.I is false, II is true
- Seven balls are drawn simultaneously from a bag containing 5 white and 6 green balls. The probability of drawing 3 white and 4 green balls is

1.
$$\frac{7}{1^{1}c_{7}}$$
 2. $\frac{{}^{5}c_{3} + {}^{6}c_{4}}{{}^{11}c_{7}}$ 3. $\frac{{}^{5}c_{2} \times {}^{6}c_{2}}{{}^{11}c_{7}}$ 4. $\frac{{}^{6}c_{3} \times {}^{5}c_{4}}{{}^{11}c_{7}}$

2005

4.

- 5. A coin and a six faced die, both unbiased, are thrown simultaneously. The probability of getting a head on the coin and an odd number on the die is
- 1. 1/2 2. 3/4 3. 1/4 4. 2/3 6. A number n is chosen at random from S = {1, 2, 3,, 50}. Let

$$\mathbf{A} = \left\{ \mathbf{n} \in \mathbf{S} : \mathbf{n} + \frac{50}{\mathbf{n}} > 27 \right\},$$

$$B = \{n \in S : n \text{ is a prime}\}$$
 and

 $C = \{n \in S : n \text{ is a square}\}$. The correct order of their probabilities is

1.
$$P(A) < P(B) < P(C)$$
 2. $P(A) > P(B) > P(C)$

3.
$$P(B) < P(A) < P(C)$$
 4. $P(A) > P(C) > P(B)$

7. Box A contains 2 black and 3 red balls while box B contains 3 black and 4 red balls. Out of these two boxes one is selected at random and the probability of choosing box A is double that of box B. If a red ball is drawn from the selected box, then the probability that it has come from box B is

1. 21/41 2. 10/31 3. 12/31 4. 13/41

2004

An unbiased coin is tossed to get 2 points for turning up a head and one point for the tail. If three unbiased coins are tossed simultaneously, then the prob. of getting a total of odd no. of points is

 1/2
 1/4
 1/8
 3/8

SR. MATHEMATICS

13

PROBABILITY

200	00	
20.	The probability of choosing at random a number d visible by 6 or 8 from among 1 to 90 numbers is	i-
21.	1. $\frac{1}{6}$ 2. $\frac{11}{90}$ 3. $\frac{1}{30}$ 4. $\frac{23}{90}$ The probability of two events A and B to occur ar 0.25 and 0.40 respectively. The probability that bot A and B occur is 0.15. The probability that neither a nor B occurs is	h
199	1. 0.35 2. 0.65 3. 0.5 4. 0.75	
22.	The probability of getting a total score of 7 when tw unbiased dice are thrown simultaneously is	o
	1. $\frac{7}{36}$ 2. $\frac{29}{36}$ 3. $\frac{1}{6}$ 4. $\frac{5}{6}$	
23.	One of the two events A and B must occur.	lf
	$P(A) = \frac{2}{3} P(B)$, the odds in favour of B are	
24.	1. 1:3 2. 2:1 3. 2:3 4. 3:2 A single letter is selected at random from the wor PROBABILITY. The probability that it is a vowel is	
	1. $\frac{3}{11}$ 2. $\frac{4}{11}$ 3. $\frac{2}{11}$ 4. $\frac{1}{11}$	
199	8	
25.	If A and B are two mutually exclusive events suc	h
	that $P(A) = \frac{1}{2}P(B)$ and $A \cup B = S$, the sample	е
	space, then P(A) =	
	1. $\frac{2}{3}$ 2. $\frac{1}{3}$ 3. $\frac{1}{4}$ 4. $\frac{3}{4}$	
26.	A problem in EAMCET examination is given to thre students A, B and C, whose chances of solving	
	are $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ respectively. The probability that the prob	-
	lem will be solved is	
	1. $\frac{3}{4}$ 2. $\frac{1}{24}$ 3. $\frac{1}{4}$ 4. $\frac{23}{24}$	
27.	Two dice are thrown at a time and the sum of th numbers on them is 6. The probability of getting th number 4 on any one of them is	
	1. $\frac{2}{5}$ 2. $\frac{1}{5}$ 3. $\frac{2}{3}$ 4. $\frac{1}{3}$	
400		

1997

1. $\frac{1}{6}$

28. The probability of choosing at random a number that is divisible by 6 or 8 from among 1 to 90 is

2.
$$\frac{11}{90}$$
 3. $\frac{1}{30}$ 4. $\frac{23}{90}$

29. If A and B are two events such that
$$P(A \cup B) = \frac{5}{6}$$
,

$$P(A \cap B) = \frac{1}{3}, P(A) = \frac{2}{3}$$
, then A and B are

- 1. dependent events 2. independent events
- 3. mutually exclusive events
- 4. mutually exclusive and independent events

30. Two unbiased six faced dice are thrown. The probability that the sum of the numbers on their faces is a prime number greater than 5 is 1.
$$P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C)$$

1. $\frac{1}{6}$ 2. $\frac{1}{2}$ 3. $\frac{2}{9}$ 4. $\frac{4}{9}$
1996
31. The key for a door is in a bunch of 10 keys. Aman ditempts to open the door by tying keys at random discording the wrong key. The probability that the door is opened in fifth trial is $\frac{1}{10}$ 2. $\frac{2}{10}$ 3. $\frac{3}{10}$ 4. $\frac{4}{10}$
32. Two dice are roled simulaneously. The probability that the sum of the two numbers on the dice is a prime number is $\frac{3}{10}$ 4. $\frac{4}{10}$
32. Two dice are roled simulaneously. The probability that the sum of the two numbers on the dice is a prime number is $\frac{3}{12}$ 4. None $\frac{1}{12}$ 3. 2.04 3. 0.55 4. None $\frac{1992}{13}$
34. The probability that a unmber selected at random from the set of numbers $(1, 2, 3, 4, \ldots 100)$ is a cube is $\frac{1}{12}$ 2. $\frac{2}{25}$ 3. $\frac{3}{25}$ 4. $\frac{4}{25}$
35. When two dice are thrown the probability fatting a sum of 10 or 11 is $\frac{1}{12}$ 2. $\frac{2}{25}$ 3. $\frac{3}{25}$ 4. $\frac{4}{25}$
36. If A and B are two events such that $P(A) = 0.4$. $\frac{1}{12}$ $\frac{3}{12}$ $\frac{2}{13}$ $\frac{3}{13}$ $\frac{4}{12}$ $\frac{3}{13}$ $\frac{3}{12}$ 4. $\frac{1}{12}$
37. The probability that A can solve a problem in mathematics is $\frac{2}{3}$ and that of B can solve it is $\frac{3}{4}$. If both of them try to solve the problem in independent thruther size $\frac{1}{12}$ $\frac{3}{10}$ $\frac{3}{12}$ $\frac{4}{12}$ $\frac{3}{12}$ $\frac{3}{12}$ $\frac{4}{12}$ $\frac{3}{12}$ $\frac{3}{12}$ $\frac{3}{11}$ $\frac{3}{11}$ $\frac{1}{10}$ when two dice are thrown the probability of at the order is $\frac{1}{12}$ $\frac{3}{12}$ $\frac{3}{12}$ $\frac{3}{11}$ $\frac{3}{11}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{3}{12}$ $\frac{3}{12}$ $\frac{4}{12}$ $\frac{3}{12}$ $\frac{3}{11}$ $\frac{3}{11}$ $\frac{1}{10}$ when two dice are thrown the probability of a tender divers is $\frac{1}{12}$ $\frac{3}{10}$ $\frac{3}{12}$ $\frac{3}{11}$ $\frac{1}{10}$ when two dice are thrown the probability of a tender was that is errormain sunulateneous. The probability that the contex is $\frac{3$

_							
49.	7 coupons are numbered 1 to 7. Four are drawn one by one with replacement. The probability that the least number appearing on any selected coupon is greater than or equal to 5 is 1. $\left(\frac{3}{7}\right)^4$ 2. $\frac{6}{7^3}$ 3. 5,3, $\frac{4}{7^3}$ 4. $\left(\frac{3}{4}\right)^4$	60. I	lf two bal 4 black a drawn ba	alls are of	wn from a balls, then different c	bag conta the prob colours is	4. $\frac{3}{13}$ aining 3 white, ability that the 4. None
199 50.	Three mangoes and three apples are in a box. If two fruits are chosen at random, the probability that one	61.	The char contain 5	nce that a 53 sunday	leap year ⁄s is	selected	at random will
	is a mango and the other is an apple is 1. $\frac{3}{5}$ 2. $\frac{5}{6}$ 3. $\frac{1}{36}$ 4. None	1986					4. None ly exclusive
51.	A card is drawn out of a pack of 52 cards numbered 2 to 53. The probability that the number on the card is a prime number less than 20 is		and e_X P(A) = 2	haustive $2P(B) = 3B$	e^{r} events $P(C)$ then	s A, B n P(A) =	and C. If
109	1. $\frac{5}{13}$ 2. $\frac{3}{13}$ 3. $\frac{2}{13}$ 4. $\frac{1}{13}$	1985	1. $\frac{1}{11}$	2. $\frac{2}{11}$	3.	$\frac{23}{11}$	4. $\frac{6}{11}$
198 52.	A card is drawn at random from a pack of 100 cards numbered 1 to 100. The probability of drawing a number which is a square is	i	is				e 53 tuesdays 4. None
53.	1. $\frac{1}{10}$ 2. $\frac{9}{10}$ 3. $\frac{2}{25}$ 4. $\frac{23}{25}$ Three balls are drawn from a collection of 7 white,	64. ⁻	The prob	ability of o	drawing a	card which	4. None ch is at least a ack of cards is
55.	12 green and 4 red balls. The probability that each is of different colour is	1984	1. $\frac{1}{4}$	2. $\frac{1}{13}$	- 3.	$\frac{4}{13}$	4. None
	1. $\frac{7 \times 12 \times 4}{{}^{23}c_3}$ 2. $\frac{(7+12+4)}{{}^{23}c_3}$	65. /	probabili	ty of draw	ing a red	or a black	
	3. $\frac{(7 \times 12 \times 4)}{23^3}$ 4. None		,	2. $\frac{5}{7}$,	4. $\frac{4}{7}$ thematics and
54.	At a selection, the probability of selection of A is $\frac{1}{7}$		2 differer random.	nt Chemis	try books	are place	ed in a shelf at s of each kind
	and that of B is $\frac{1}{5}$. The probability that both of them would not be selected is		1. $\frac{\angle 5 \angle 4}{\angle 1}$	$\frac{2}{1}$	2.	$\frac{\angle 3 \angle 5 \angle 1}{\angle 11}$	4∠2
198	1. $\frac{1}{35}$ 2. $\frac{2}{5}$ 3. $\frac{24}{35}$ 4. None	;	$3. \ \frac{\angle 5 \angle 6}{\angle 11}$	-	4.	. None	
55.	The probability of getting a number between 1 and 100 which is divisible by 1 and itself is				KEY		
	1. $\frac{1}{4}$ 2. $\frac{1}{2}$ 3. $\frac{25}{98}$ 4. None		1.3	2.2	3.2	4.3	5. 3
56.	If A and B are two events such that $P(A \cup B) = 0.7$		6.2	7.2	8.1	9.3	10.1
	and $P(A) = 0.4$, the value of P(B), if A and B are		11.4 16.2	12.2	13.3	14.4	15.2
	mutually exclusive is 1. 0.3 2. 0.4 3. 0.5 4. None		16.2 21.3	17.4 22.3	18. 1 23.4	19. 1 24.2	20.4 25.2
57.	If A and B are two events such that $P(A \cup B) = 0.65$		21.3 26. 1	22.3 27.1	23.4 28.4	24.2 29. 2	25.2 30.3
	and $P(A \cap B) = 0.15$, then $P(\overline{A}) + P(\overline{B}) =$ 1.0.6 2.0.8 3.1.2 4.1.4		31.1	32.3	33.3	29.2 34.1	35. 2
58.	1. 0.62. 0.83. 1.24. 1.4The probability of solving a problem by three stu-		36.2	37.1	38.2	39.3	40.1
	dents A, B and C respectively are $\frac{1}{3}, \frac{1}{4}$ and $\frac{1}{5}$ re-		41.2	42.3	43.3	44. 1	45.2
	spectively. Then the probability that the problem will not be solved is		46.1	47.3	48.1	49. 1	50. 1
			51.3	52.1	53.1	54.3	55.3
100	1. $\frac{4}{5}$ 2. $\frac{3}{5}$ 3. $\frac{2}{5}$ 4. None		56. 1	57.3	58.3	59.3	60.2
198 59.	If a card is drawn from a well shuffled pack of 52 cards,		61.2	62.4	63.2	64.3	65.2
	then the probability that it is a spade or queen is		66.2				

1. A pair of fair dice are thrown independently three times. The probability of getting a score of exactly twice is

1.
$$\frac{1}{729}$$
 2. $\frac{8}{9}$ 3. $\frac{8}{729}$ 4

2. Two aeroplanes I and II bomb a target in succession .The probability of I and II scoring a hit corrctly are 0.3 and 0.2 respectively. The second plane will bomb only if the first misses the target. The probability that the target hit by the second plane is

243

3. Let A and B be two events such that

$$P(\overline{A \cup B}) = \frac{1}{6}, P(A \cap B) = \frac{1}{4} \text{ and } P(\overline{A}) = \frac{1}{4}$$
,

where \overline{A} stands for complement of event A. Then events A and B are

1. equally likely and mutually exclusive

- 2. equally likely but not independent
- 3. indepenent but not equally likely
- 4. mutually exclusive and independent
- 4. Three houses are available in a locality 3 persons apply for the houses. Each applies for one house without consulting others. The probability that all the three apply for the same house is /9

2004

5. The probability that A speaks truth is 4/5, while this probability for B is 3/4. The probability that they contradict each other when asked to speak on a fact is

1.7/20 3.3/20 2. 1/5 4.4/5

2003

- 6. Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is 1.4/5 2.3/5 3. 1/5 4.2/5
- 7. Events A, B, C are mutually exclusive events such

that P(A) =
$$\frac{3x+1}{3}$$
, P(B) = $\frac{1-x}{4}$ and P(C) =

 $\frac{1-2x}{4}$. The set of possible values of x are in the interval

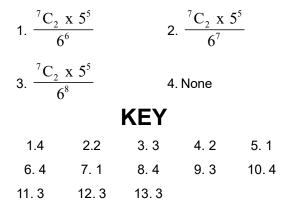
1.
$$\begin{bmatrix} \frac{1}{3}, \frac{1}{2} \end{bmatrix}$$

2. $\begin{bmatrix} \frac{1}{3}, \frac{2}{3} \end{bmatrix}$
3. $\begin{bmatrix} \frac{1}{3}, \frac{13}{3} \end{bmatrix}$
4. $\begin{bmatrix} 0, 1 \end{bmatrix}$

2002

8.

- A problem in mathematics is given to three students A, B, C and their respective probabilities of solving
 - the problem are $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$. Probability that the problem is solved is 1.1/23.2/34.3/4 2.1/3


9. A and B play a game where each is asked to select a number from 1 to 25. If the two numbers match, both of them win a prize. The probability that they will not win a prize in a single trial is 1.1/25 2.2/25 3.24/25 4.23/25 If A and B are two mutually exclusive events, then 10.

B)

1.
$$P(A) > P(\bar{B})$$
 2. $P(A) < P(A)$

- 3. P(A) < P(B)4. none
- 11. The probability of India winning a test match against West Indies is 1/2. Assuming independence from match to match the probability that in a three match series India's second win occurs at the third test is 1.2/3 2. 1/2 3. 1/4 4.1/8
- 12.. A biased coin with probability p(0 of gettinga head is tossed until a head apears for the first time. If 2/5 is the probability that the no. of tosses required is even, then p =

13. A fair die is tossed 8 times. The probability that a third six is observed on the eighth throw is

DISCRETE RANDOM VARIABLE

- SAMPLE SPACE (S): The set of all possible elementary events in a random trial or experiment is called sample space for that trial and it is denoted by S.
- **DISCRETE SAMPLE SPACE:** A sample space S is called discrete if it is countable or having finite number of sample points. For example:
 - In rolling of a die $S = \{1, 2, 3, 4, 5, 6\}$ and it is a discrete sample space.
 - In tossing of a coin $S = \{H, T\}$ and it is a discrete sample space.
- CONTINUOUS SAMPLE SPACE: If the number of sample points in a sample space is not countable then it is called as continuous sample space. For example:

 $S = \{a \| possible real values in the interval 1 to 2\}$

- RANDOM VARIABLE: Let S be a sample space associated with a random experiment. Then a real valued function $X: S \rightarrow R$ is called a random function or random variable.
- DISCRETE RANDOM VARIABLE: A real valued function defined on discrete sample space S is called a discrete random variable.

CONTINUOUS RANDOM VARIABLE: A random	variable x is from $-\alpha$ to $+\alpha$, then:
variable X defined on continuous sample space S,	• $F(-\alpha) = 0$ i.e., $\lim_{x \to \infty} F(x) = 0$
which can take all real values in an interval (a, b) is called a continuous random variable.	• $F(+\alpha) = 1$ i.e., $\lim_{x \to \infty} F(x) = 1$
DISCRETE RANDOM VARIABLE: If a discrete vari-	• The limits of F(x) are [0, 1] i.e., $0 \le F(x) \le 1$
able X can assume values $X_1, X_2, X_3, \dots, X_n$ with re-	• F(x) is a non-decreasing function. i.e., for every
spective probabilities $P(X_1), P(X_2), P(X_3)$	a, b(a < b). $F(a) \le F(b)$ and further
$P(X_n)$ such that $P(X_i) \ge 0, \forall i$ and $\Sigma P(X_i) = 1$,	$P(c < x \le d) = F(d) - F(c)$
then X is said to be a discrete random variable.	• F(x) is right continuous at every point.
PROBABILITY MASS FUNCTION: If X is a discrete	• If the mean of the random variable x is \overline{x} , then the
random variable which can assume values X_i ;	mean of the random variable $ax \pm b$, where a and b
$i = 1, 2, 3, \dots$ with respective probabilities P_i ;	are constants is $a\overline{x} \pm b$.
$i = 1, 2, 3$ such that $\sum_{e^0 = 1}^{\infty} P_i = 1$, then	• If the variance of the random variable x is σ^2 , then the variance of the random variable $ax \pm b$, when a
$P(X = x_i) = P_i; i = 1, 2, 3, \dots$ is called probability	and b are constants is $a^2 \times \sigma^2$.
mass function of a discrete random variable X. OR If any function $P(X=x)$ gives the probabilities of vari- ous values of a discrete random variable X in its range,	• The positive square root of variance σ^2 is called the standard deviation σ .
then that function is called probability mass func- tion.	LEVEL-1 1. Expected number of heads when we toss n unbi- ased coins is
PROBABILITY DISTRIBUTION: The set of ordered	$1 0 \pi$ 0π 0π $1 n$
pairs $\{x_i, P(x_i)\}$ is called the probability distribu-	1. 2n 2. n 3. $\frac{n}{2}$ 4. $\frac{n}{4}$ 2. The mean or average number of heads when we toss
tion of a discrete random variable X.	 The mean or average number of heads when we toss 10 unbiased coins is
MEAN & VARIANCE: If $\{x_i, P(x_i)\}$ is the probability	1. 202. 103. 54. 153.The mathematical expectation of sum of points when
 distribution of a discrete random variable X, then its: Mean or Average (x̄ or μ): Expected value 	we throw n symmetrical dice is
of x or mathematical expectation of $x:E(x)$ or First	1.7n 2. $7 \times \frac{n}{2}$ 3. $\frac{n}{2}$ 4. $\frac{7n}{3}$
moment about origin: μ_1 '(0) is defined as	4. The mathematical expectation of sum of points when
$\overline{x} = \mu = \mu_1'(0) = \Sigma x_i P(x_i).$	2 symmetrical dice are rolled is
• 2nd moment about origin = μ_2 '(0) is defined	1. 14 2. 7 3. $\frac{7}{2}$ 4. $\frac{14}{3}$
as $\mu_2'(0) = E(x^2) = \Sigma x_i^2 P(x_i)$.	5. The mean or average number of points when we throw a symmetrical die is
• Variance σ^2 or second moment about mean	1. 14 2. 7 3. $\frac{7}{2}$ 4. $\frac{14}{3}$
or 2nd central moment = μ_2 .	6. A coin is tossed successively until for the 1st time
$\sigma^2 = \mu_2 = E\{x - E(x)\}^2$	 A coin is tossed successively until for the 1st time head occurs. The expected number of tosses re- quired is
$= E(x^2) - \{E(x)\}^2$	1.4 2.2 3.1 4.5
$= \mu_2^{1}(0) - \mu_1^{1}(0)^2$	7. A random variable x has the following probability dis- X = x: 1 2 3 4
$\Sigma^1 x i^2 P(x_i) - \left\{ \Sigma x i P(xi) \right\}^2$	tribution $P(X = x)$ $k \ 2k \ 3k \ 4k$, then the
CUMULATIVE DISTRIBUTION FUNCTION (CDF)	value of K is
(OR) DISTRIBUTION FUNCTION (DF): If x is a discrete random variable, then the probability that x	1. 10 2. $\frac{1}{10}$ 3. $\frac{1}{5}$ 4. $\frac{1}{15}$
takes values less than or equal to a particular value	8. A random variable X has the following probability dis-
x_k (in its range) is called CDF or simply DF and it is	X = x : 1 2 3 4
denoted by F(x). Symbolically	tribution $P(X = x)$ k $2k$ $3k$ $4k$, then the
$F(x) = P(x \le x_k) = \sum_{i=1}^k P(x = xi)$	mean value of x is
PROPERTIES OF CDF: If the range of the random	1.1 2.2 3.3 4.4

SR. MATHEMATICS

7

9 If the probability distribution of a random variable X 17. If the probability distribution of a random variable x $X = x_i$: 0 1 2 3 is $P(X = x_i) = \frac{1}{2} \cdot \frac{1}{2} = 0 \cdot \frac{1}{6}$, then the mean variance of x is 1.2.16 2.2.8 3. $\sqrt{2.16}$ 4. $\sqrt{2.8}$ value of x is 18. If the probability distribution of a random variable x 2.2 3. 1.5 4.2.5 1.1 X = xi: -2 -1 0 1 2 3 is P(X = xi): 0.1 K 0.2 2K 0.3 K, then the 10. If x is a random variable with the following probability X = x: -3 6 9 standard deviation of x is distribution P(X = xi): $\frac{1}{6}$ $\frac{1}{2}$ $\frac{1}{2}$, then E(x) = 1.2.16 3. $\sqrt{2.16}$ 4. $\sqrt{2.8}$ 2. 2.8 The value of K, if the probability distribution of a dis-19. crete random variable 2. $\frac{11}{2}$ 3. $\frac{11}{3}$ 4. $\frac{11}{4}$ х is 1.11 X = x: 1 2 3 11. If x is a random variable with the following probability $P(X=x): \frac{1}{K^2} \frac{2}{K^2} \frac{3}{K^2}$ X = x: -3 6 9 distribution P(X = x): $\frac{1}{6}$ $\frac{1}{2}$ $\frac{1}{3}$, then the variance 1. $\sqrt{6}$ 2. $-\sqrt{6}$ 3. $\pm\sqrt{6}$ 4.6 If a random variable X takes value 0 and 1 with re-20. of x, V(x)=spective probabilities $\frac{2}{3}$ and $\frac{1}{3}$ then the expected 1. 65 2. $\frac{65}{2}$ 3. $\frac{65}{3}$ 4. $\frac{65}{4}$ value of X is 12. If a random variable x has the following probability 1. $\frac{2}{3}$ 2. $\frac{1}{3}$ 3. 0 4.1 $X = x_i$:0 2 1 The variance of the random variable x whose probdistribution 21. $P(X = x_i): 2K^2 3K^2 5K^2 6K^2$ distribution is ability given by then the value of K is -1 0 +1X = x: $P(X = x): 0.4 \quad 0.2 \quad 0.4$, is 1. $\frac{1}{4}$ 2. $\frac{-1}{4}$ 3. $\pm \frac{1}{4}$ 4. $\frac{1}{2}$ 2.0.6 1.0.4 3.0.8 4.1.0 If a random variable x has the following probability 22. The variance of the random variable x whose prob-13. distribution is by ability given X = xi: 0 distribution $P(X = xi): 2K^2 - 3K^2 - 5K^2 - 6K^2$, X = x: 0 1 2 3 $P(X = x): \frac{1}{3} \frac{1}{2} = 0 \frac{1}{6}$, is then the mean value of x is 1. $\frac{33}{16}$ 2. $\frac{31}{16}$ 3. $\frac{35}{16}$ 4. $\frac{29}{16}$ 1.0.5 2.1 3.1.5 4.2.0 23. The value of K, if the probability distribution of a 14. If the probability distribution of a random variable x X = x: 1 2 random variable X is P(X=x): $\frac{1}{K} = \frac{2}{K} = \frac{3}{K}$ value of K is 1. $\frac{1}{6}$ 2. 6 3. $\sqrt{6}$ 4. $\frac{1}{\sqrt{6}}$ 1.0.3 2.0.2 3.0.1 4.0.4 15. If the probability distribution of a random variable x 24. A random variable X has the following probability dis-X = xi: -2 -1 0 1 2 X = x: 1 2 is $P(X = xi): 0.1 \ K \ 0.2 \ 2K \ 0.3 \ K$, then the tribution P(X = x): 0.4 0.3 0.2 0.1, then its mean value of x is mean is 1.0.6 2.0.8 3.1.0 4.0.3 1.4 2.3 3.2 4.1 16. If the probability distribution of a random variable x 25. A random variable X has the following probability dis-X = xi: -2 -1 0 1 2 $X = x: \qquad 1 \qquad 2 \qquad 3$ is $P(X = xi): 0.1 \ K \ 0.2 \ 2K \ 0.3 \ K$, then second moment about 0 i.e., $M_2^{-1}(0) =$ mean value of X is 1.1 2.2 3.3 4.4 1.2.16 2. 2.8 3. $\sqrt{2.16}$ 4. $\sqrt{2.8}$ 26. A random variable X has its range {1, 2, 3} with respective probabilities P(X=1)=K, P(X=2)=2K,

SR. MATHEMATICS

PROBABILITY

	P(X=3)=3K, then the value of K is	36.	A random variable X takes values -1, 0, +1. Its mean
		00.	is 0.6 and if P(X=0)=0.2, then P(X=1)=
	1. $\frac{1}{4}$ 2. $\frac{1}{5}$ 3. $\frac{1}{6}$ 4. $\frac{1}{8}$	37.	1. 0.7 2. 0.5 3. 0.1 4. 0.2 A random variable X takes value 0, 1, 2. Its mean is
27.	A random variable X has its range $X = \{3, 2, 1\}$ with	07.	1.3. If P(X=0)=0.2, then P(X=2)=
	the probabilities $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{6}$ respectively. The mean	38.	1. 0.3 2. 0.4 3. 0.5 4. 0.2 In a business venture a man can make a profit of
	value of X is	00.	Rs. 2000/- with probability of 0.4 or have a loss of
			Rs. 1000/- with probability 0.6. His expected profit is
	1. $\frac{5}{3}$ 2. $\frac{7}{3}$ 3. 3 4. 4		1. Rs. 800/- 2. Rs. 600/-
28.	A random variable X has the following probability dis-	39.	3. Rs. 200/- 4. Rs. 400/- The probability that the value of certain stock will
	$X = xi: \qquad 0 1 2 3$		remain the same is 0.46. The probability that its value
	tribution $P(X = xi)$: $\frac{2}{6}$, $\frac{3}{6}$, $\frac{0}{6}$, $\frac{1}{6}$ then the mean		will increase by Rs. 0.50 or Rs. 1/- per share are respectively 0.17 and 0.23 and the probability that
	and variance of X are		its value will decrease by Rs. 0.25 per share is 0.14.
	1. 1, 1 2. 1, 2 3. 2, 1 4. 2, 2		The expected gain per share is 1. Rs. 0.75 2. Rs. 0.25
29.	A random variable X has its range X = $\{0, 1, 2\}$ and		3. Rs. 0.28 4. Rs. 0.50
	the probabilities are given by $P(X=0)=3K^2$,	40.	If a random variable X takes values $(-1)^k 2^k / K$;
	$P(X = 1) = 4K - 10K^2$, $P(X = 2) = 5K - 1$ where K is a constant, then the value of K is		$k = 1, 2, 3, \dots$ with probabilities $P(X = k) = \frac{1}{2^k}$, then
			E(X) =
	1. 1 2. 2 3. $\frac{1}{7}$ 4. $\frac{2}{7}$		1. $\log_e 2$ 2. $\log_2 e$ 3. $\log_e \left(\frac{1}{2}\right) 4$. $\log_e \left(\frac{1}{4}\right)$
30.	A random variable X has its range $X = \{0, 1, 2\}$ and	41.	If it rains a dealer in rain coats can earn Rs. 500/- a
	the probabilities are given by $P(x=0)=3K^2$,	-1.	day. If it is fair he will lose Rs. 40/- a day. His mean
	$P(X = 1) = 4K - 10K^2, P(X = 2) = 5K - 1$ where K is a		profit if the probability of a fair day is 0.6 is 1. Rs. 230/- 2. Rs. 460/- 3 .
	constant, $P(0 < X < 3)$ is		Rs. 176/- 4. Rs. 88/-
	3 27 37 47	42.	A box contains 6 tickets. Two of the tickets carry a prize of Rs. 5/- each, the other four a prize of Rs.1/
	1. $\frac{3}{49}$ 2. $\frac{27}{49}$ 3. $\frac{37}{49}$ 4. $\frac{47}{49}$		If one ticket is drawn. The mean value of prize is
31.	The range of a random variable X is 1, 2, 3, 4 and		4 D- 05 0 D- ⁷ 0 D- ⁵ 4 D- ⁴
	the probabilities are given by $P(X=k) = \frac{C^k}{\sqrt{k}};$		1. Rs. 2.5 2. Rs. $\frac{7}{3}$ 3. Rs. $\frac{5}{3}$ 4. Rs. $\frac{4}{3}$
	$k = 1, 2, 3, 4, \dots$, then the value of C is	43.	Two unbiased coins whose faces are marked 1 and 2 are tossed. The mean value of the total of the num-
	1. 2 2. $\log_2 e$ 3. $\log_2 2$ 4. 4		bers is
		44.	1. 3 2. 4 3. 5 4. 2 Three coins whose faces are marked 1 and 2 are tossed.
32.	If $P(X = x) = C(\frac{2}{3})^x$; $x = 1, 2, 3, 4,$ is a probability		The expected sum of numbers on their faces is
	mass function, the value of C is	45.	1. 4 2. 4.5 3. 5 4. 6 The probability that there would be 1, 2 or 3 persons
	1. $\frac{1}{4}$ 2. $\frac{1}{3}$ 3. $\frac{1}{2}$ 4. $\frac{1}{6}$		riding a bicycle are 0.85, 0.12 and 0.03 respectively.
33.	The value of C for which $P(X = K) = CK^2$ can be the		The expected number of persons per bicycle is1. 22. 13. 1.184. 3
	probability mass function of a random variable X that	46.	A tosses an unbiased coin 3 times. If he gets a head
	takes value 0, 1, 2, 3, 4 is		all the 3 times he is to get a prize of $R_{s.160}$ /- along
	1. $\frac{1}{30}$ 2. $\frac{1}{10}$ 3. $\frac{1}{3}$ 4. $\frac{1}{15}$		with his entry fee of Rs. 16/-, otherwise he loses his entry fee. The mathematical expectation of his profit
34.	Let the discrete random variable $X = x$ has the prob-		is
	abilities given by $\frac{x}{6}$ for x=0, 1, 2, 3, then its mean is	47.	1. 20 2. 14 3. 6 4. 12 A lottery sells 10,000 tickets at Rs. 1/- per ticket. A
	·		prize of Rs. 5000/- will be given to a winner of the
	1. $\frac{1}{3}$ 2. $\frac{5}{3}$ 3. $\frac{7}{3}$ 4. $\frac{9}{3}$		draw. Suppose you have bought one ticket, how much should you expect to win
35.	A random variable x takes values 0, 1, 2, its mean is 1.2 if $P(X=0)=0.2$ then $P(X=1)=0.2$		
	1.2. If P(X=0)=0.3, then P(X=1)= 1. 0.2 2. 0.3 3. 0.5 4. 0.4		1. Rs. 1/- 2. Rs. $\frac{1}{2}$ 3. Rs. $-\frac{1}{2}$ 4. Rs. 2/-

48.An urn A contains 4 white and 6 red balls. Three balls are drawn at random the expected number of white balls drawn is 1. 3.06149.An urn A contains 4 white and 6 red balls. Three balls are drawn at random the expected number of red balls drawn is 1. 3.06249.An urn A contains 4 white and 6 red balls. Three balls are drawn at random the expected number of red balls drawn is 1. 3.06250.4 bad apples accidentally got mixed up with 20 good apples. In a draw of 2 apples at random, expected number of bad apples is631.12. $\frac{2}{3}$ 3. $\frac{1}{3}$ 4. $\frac{1}{6}$	2.
1. 3.0 2. 1.8 3. 1.2 4. 1.6 6249.An urn A contains 4 white and 6 red balls. Three balls are drawn at random the expected number of red balls drawn is 1. 3.0 6250.4 bad apples accidentally got mixed up with 20 good apples. In a draw of 2 apples at random, expected number of bad apples is631. 12. $\frac{2}{3}$ 3. $\frac{1}{3}$ 4. $\frac{1}{6}$	
49.An urn A contains 4 white and 6 red balls. Three balls are drawn at random the expected number of red balls drawn is 1. 3.02. 1.83. 1.24. 1.66350.4 bad apples accidentally got mixed up with 20 good apples. In a draw of 2 apples at random, expected number of bad apples is641.12. $\frac{2}{3}$ 3. $\frac{1}{3}$ 4. $\frac{1}{6}$ 64	
balls are drawn at random the expected number of red balls drawn is 1. 3.0 2. 1.8 3. 1.2 4. 1.6 50. 4 bad apples accidentally got mixed up with 20 good apples. In a draw of 2 apples at random, expected number of bad apples is 1. 1 2. $\frac{2}{3}$ 3. $\frac{1}{3}$ 4. $\frac{1}{6}$	3.
red balls drawn is 1. 3.0 2. 1.8 3. 1.2 4. 1.6 50. 4 bad apples accidentally got mixed up with 20 good apples. In a draw of 2 apples at random, expected number of bad apples is 1. 1 2. $\frac{2}{3}$ 3. $\frac{1}{3}$ 4. $\frac{1}{6}$	3.
1. 3.0 2. 1.8 3. 1.2 4. 1.6 6350.4 bad apples accidentally got mixed up with 20 good apples. In a draw of 2 apples at random, expected number of bad apples is641. 12. $\frac{2}{3}$ 3. $\frac{1}{3}$ 4. $\frac{1}{6}$	3.
50.4 bad apples accidentally got mixed up with 20 good apples. In a draw of 2 apples at random, expected number of bad apples is641.12. $\frac{2}{3}$ 3. $\frac{1}{3}$ 4. $\frac{1}{6}$) .
apples. In a draw of 2 apples at random, expected number of bad apples is 1. 1 2. $\frac{2}{3}$ 3. $\frac{1}{3}$ 4. $\frac{1}{6}$	
number of bad apples is 64 1. 1 2. $\frac{2}{3}$ 3. $\frac{1}{3}$ 4. $\frac{1}{6}$	
1. 1 2. $\frac{2}{3}$ 3. $\frac{1}{3}$ 4. $\frac{1}{6}$	ł.
5 5 0	••
5 5 0	
51. Two cards are drawn simultaneously from a well	
shuffled pack of 52 cards. The expected number of	
aces is	
1. $\frac{4}{13}$ 2. $\frac{3}{13}$ 3. $\frac{2}{13}$ 4. $\frac{1}{13}$	
1. 13 2. $1\overline{3}$ 3. $\overline{13}$ 4. $\overline{13}$	
52. From a lot of 10 items containing 3 defectives, a	
sample of 4 items is drawn at random without re-	
placement. The expected number of defective items	
is	
1. 3 2. 1.8 3. 1.2 4. 2.8	
53. From a lot of 10 items containing 3 defectives, a	
sample of 4 items is drawn at random without re-	
placement. The expected number of good items is 1. 3 2. 2.8 3. 1.2 4. 1.8	
54. Two cards are drawn one after another with replace-	
ment from a well shuffled pack of 52 cards. The ex-	
pected number of aces is	
1. $\frac{4}{13}$ 2. $\frac{3}{13}$ 3. $\frac{2}{13}$ 4. $\frac{1}{13}$ 4.	
55. Two cards are drawn one after another without re- 6.	
placement from a well shuffled pack of 52 cards.	
The expected number of aces is	
1. $\frac{4}{13}$ 2. $\frac{3}{13}$ 3. $\frac{2}{13}$ 4. $\frac{1}{13}$	
56. The cumulative distribution function of a random variable x is defined as	
1. $P(X > x_k)$ 2. $P(X \ge x_k)$ 11	
3. $P(X \le x_k)$ 4. $P(X < x_k)$	•
57. If $F(x)$ is the cumulative distributive function of a ran-	
dom variable x whose range is from $-\alpha$ - to $+\alpha$, 12	2.
then $P(X < -\alpha) =$	_
22	2.
1. 1 2. $\frac{1}{2}$ 3. 0 4. $\frac{1}{3}$ 38	3
58. If the range of the random variable X is from $-\alpha$ to	
$+\alpha$, the limits of F(X) are	
1. 0 to α 2. $-\alpha$ to 0.31 to +1.4.0 to 1	
59. If the range of the random variable X is from a to b,	
a b, F(X <a)=< td=""><td></td></a)=<>	
1.0 2.1 3.0.5 4.3 39).
60. If the range of the random variable X is from a to b	
then $F(X \le b)$ is	
then $F(X \le b)$ is 1.0 2.1 3.0.5 4.2	

1.			e random v dom variab 345	le -3X is	s 5, then the
2.	variance	of the ran	random var dom variab r^2 3. σ^2	le X-5 is	r^2 , then the
3.	If the varia	ance of th		ariable X is	4, then the
4.	If the varia	ance of th			s 9, the S.D.
			KEY		
	36. 1 41. 3	2. 3 7. 2 12. 3 17. 1 22. 2 27. 2 32. 3 37. 3 42. 2 47. 2 52. 3 57. 3 62. 3	3. 2 8. 3 13. 2 18. 3 23. 2 28. 1 33. 1 38. 3 43. 1 48. 3 53. 2 58. 4 63. 1 HINTS	4. 2 9. 1 14. 3 19. 3 24. 3 29. 4 34. 3 39. 3 44. 2 49. 2 54. 3 59. 1 64. 3	5.3 10.2 15.2 20.2 25.3 30.3 35.1 40.3 45.3 50.3 55.3 60.2
	10				
	$\mu = \frac{10}{2} =$				
•	$E(X) = \frac{2}{2}$	$\frac{7}{2} \times 2 = 7$			
	The exp	pected i	number o	of tosses	required
	$=\frac{1}{p}=\frac{1}{\frac{1}{2}}$		4		
	-	$denotes x_i = 1 \Longrightarrow 1$		niity of getti	ng a head).

1.
$$V(x) = \left(9.\frac{1}{6} + 36.\frac{1}{2} + 81.\frac{1}{3}\right) - \left(\frac{11}{2}\right)^2 = \frac{65}{4}$$

$$12. \qquad 16K^2 = 1 \Longrightarrow k = \pm \frac{1}{4}$$

22.
$$\sigma^2(x) = \left(0^2 \cdot \frac{1}{3} + 1^2 \cdot \frac{1}{2} + 2^2 \cdot 0 + 3^2 \cdot \frac{1}{6}\right) - \left(0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{2} + 2 \cdot 0 + 3 \cdot \frac{1}{6}\right)^2 = 1$$

$$X = x_i$$
 2000 -1000
 $P(X = x_i)$ 0.4 0.6
Mean profit = E(x) = 200

Mean profit = E(x) = 200 39. $X = x_i$ 0 $\frac{1}{2}$ 1 $-\frac{1}{4}$ $P(X = x_i)$ 0.46 0.17 0.23 0.14

The given price per share is random variable X.

 $E(X) = 0 + \frac{0.17}{2} + 0.23 - \frac{0.14}{4} = Rs.0.28$ 9. Expected number of aces $= 2 \times \frac{4}{52} = \frac{2}{13}$ 51. If $V(X) = \sigma^2$ then variance of $aX \pm b$ i.e., 61. $V(aX\pm b) = a^2 \times \sigma^2$ LEVEL-2 10. 1. A random variable X has its range $X = \{0, 1, 2\}$ with respective probabilities $P(X=0)=3K^3$, $P(X=1) = 4K - 10K^2$, P(X=2) = 5K - 1, then the value of K is 3. $\frac{1}{3}$ 4. 2,1, $\frac{1}{3}$ 1.2 2.1 2. The range of a random variable X is {1, 2, 3, 4,} and the probabilities are $P(X=K) = \frac{3^{CK}}{\sqrt{K}}$; $K = 1, 2, 3, 4, \dots$, then the value of C is 1. log_3 2. log_ 2 **3**. $\log_3(\log_2 2)$ 4. $\log_2(\log_2 3)$ 3. A player tosses two fair coins. He wins Rs. 5/- if two 1. heads occur, Rs. 2/- if one head occurs and Rs. 1/if no head occurs. Then his expected gain is 1. Rs. $\frac{8}{3}$ 2. $\frac{7}{3}$ 3. Rs. 2.5 4. Rs. 1.5 9. 4. A player tosses two fair coins. He wins Rs. 5/- if two heads occur, Rs. 2/- if one head occurs and Rs. 1/if no head occurs. Then how much should he pay to 10. play the game if it is to be fair 1. Rs. $\frac{8}{3}$ 2. $\frac{7}{3}$ 3. Rs. 2.5 4. Rs. 1.5 1. 5. You have been offered the chance to play a dice game in which you will receive Rs. 20/- each time if the total of the points on the two dice is 6 if it costs you Rs. 2.50 per toss to participate should you play or not say yes or no 1. Yes 2. No 6. You have been offered the chance to play a dice game in which you will receive Rs. 20/- each time if the total of the points on the two dice is 6 what will be your decision if it costs Rs. 3/- per toss instead of Rs. 2.50/-1. Yes 2. No 7. A discrete random variable X, can take all possible integer values from 1 to K, each with a probability 2. $\frac{1}{K}$. Its mean is 2. K+1 3. $\frac{K+1}{2}$ 4. $\frac{K+1}{4}$ 1. K 8. A discrete random variable X, can take all possible integer values from 1 to K, each with a probability $\frac{1}{V}$. Its variance is 3. X : SR. MATHEMATICS 237

1. $\frac{K^2}{4}$ 2. $\frac{(K+1)^2}{4}$ 3. $\frac{K^2-1}{12}$ 4. $\frac{K^2-1}{6}$ Let X be the random variable with the probability distribution function $f(X) = \frac{e^{-4} \cdot 4^x}{x!}$; $x = 0, 1, 2, 3, \dots$ then the standard deviation of X is 1.2 3.16 2.4 4. $\sqrt{2}$ A random variable X takes the values -2, -1, 1 and 2 with probabilities $\frac{1-a}{4}, \frac{1+2a}{4}, \frac{1-2a}{4}$ and $\frac{1+a}{4}$ respectively then 1. a can have any real value 2. $-\frac{1}{2} \le a \le \frac{1}{2}$ 3. $-1 \le a \le 1$ 4. $\frac{1}{4} \le a \le \frac{1}{3}$ **KEY** 3. 3 8. 3 1.3 2.3 7.3 4.3 5.1 6.2 9.1 10.2 HINTS $\Sigma P(X = x_i) = 1 \Longrightarrow 1, 2, \frac{1}{3}$ when k=1, 2 probabilities violate the limits. Hence $k = \frac{1}{2}$ Given distribution is a P.D. with parameter $4 = \lambda$, $\therefore S.D = \sqrt{\lambda} = 2$ If E is any event $0 \le P(E) \le 1$ LEVEL - 4 The probability distribution of a random variable X is given below (X = x) : 12 3 5 p(X = x): K 2K 3K 4K 5K $A:p(2 \le x < 4) = B:p(x \ge 4)$ $C:p(x \leq 3)$ $D:p(3 \le x \le 5)$ Arrange A, B, C, D in ascending order of magnitude 2. A, B, C, D 1. A, Č, D, B 3. A, C, B, D 4. B, A, C, D The range of a random variable X is $\{0,1,2\}$ and $P(X=0) = 3K^3$, $P(X=1) = 4K - 10K^2$, P(x=2) = 5K-1. Then we have 1. P(X=0) < P(X=2) < P(X=1)2. P(X=0) < P(X=1) < P(X=2)3. P(X=1) + P(X=0) = P(X=2)4. P(X=1) > P(X=0) + P(X=2)A random variable X has the probability distribution 6 3 5 8

P(X) 0.15 0.23 0.12 0.10 0.20 0.08 0.07 0.05
Events E= (X is a prime number) and F= (X / X < 4)
1:
$$P(\overline{E} \cup \overline{F}) = 0.23$$

II: $P(\overline{E} \cup \overline{F}) = 0.65$
Which off, II is (are) true
1. lon 1/2 2.11 only
3. both 1 and 1/4. neither 1 nor 11
KEY
1.3 2.2 3.3
PREVIOUS EAMCET QUESTIONS
2005
1. If the range of a random variable X is (0, 1, 2, 3, ...)
with $P(X = k) = \frac{(k+1)a}{3^k}$ for k ≥ 0, then a =
1. 2/3 2.4/9 3.8/27 4.1681
2004
2. A person who tosses an unbiased coin gains two
points for turning up a head and loses one point for
tail. If three coins are tossed and the total score X is
observed, then the range of X is
1. $\{0,3,6\}$ 2. $\{-3,0,3\}$
3. $\{-3,0,3,6\}$ 4. $\{-3,3,6\}$
2003
3. A random variable X takes the values 0, 1, 2, 3 and
its mean is 16.3. If $P(X = 3) = 2P(X = 1)$ and
 $P(X = 2) = 0.3$, then $P(X = 0) =$
1. 0.1 2.02 3.03 4.04
2002
4. A random variable X takes the values 0, 1, 2, 3 and
its mean is 10.6. If $P(X = 0) = 0.2$, then the mean values
0.1 a.2, 0.6 2.0, 0.7 3.0, 0.7 4.0, 0.2
1.02, 0.6 2.0, 0.7 3.0, 0.7 4.0, 0.4
2003
3. A random variable X takes the values 0, 1, 2, 3, and
its mean is 16.8. If $P(X = -1) = 0.2$ then the following probability distribution
1. 0.2, 0.8 2.0, 0.7 3.0, 0.7 4.0, 0.2
1. $\frac{1}{3}$ 2. $\frac{1}{10}$ 3. $\frac{1}{3}$ 4. $\frac{1}{15}$
10.
11. $\frac{1}{3}$ 2. $\frac{1}{10}$ 3. $\frac{1}{3}$ 4. $\frac{1}{15}$
11. $\frac{1}{3}$ 2. $\frac{1}{10}$ 3. $\frac{1}{3}$ 4. $\frac{1}{15}$
11. $\frac{1}{3}$ 2. $\frac{1}{10}$ 3. $\frac{1}{3}$ 4. $\frac{1}{15}$
12. A random variable X takes the values 0, 1, 2, 3, 4!
1. $\frac{1}{3}$ 2. $\frac{1}{10}$ 3. $\frac{1}{3}$ 4. $\frac{1}{15}$
13. A random variable X takes the values 0, 1, 2, 3, 4!
1. $\frac{1}{3}$ 2. $\frac{1}{10}$ 3. $\frac{1}{3}$ 4. $\frac{1}{15}$
14. $\frac{1}{12}$ 13.3
15. The probability distribution of a random variable X is
 $X = xi$ 1. 2 3 4.5 6 7 8
(X) 0.5 0.3 0.12 0.10 0.20 0.08 0.07 0.05
11. 4 random variable X takes the values 0, 1, 2, 3, 4!
1. $\frac{1}{3}$ 2. $\frac{1}{3}$ 3. $\frac{1}{4}$ 4. $\frac{1}{5}$
12. $\frac{1}{2}$ 3.4 4.4.4 5.1
6. $\frac{1}{2}$ 2.3 3.4 4.4.5 5.1
6. $\frac{1}{2}$ 2.3 0.57 3.0.07 4

1999 has the following probability dis-

4

3.10

4

1

6

3 4

3. 2, 1

4.20

, then the mean and vari-

4.2,2

 $_{3K}$ $_{4K}$ The value of K and

given

3. $\frac{1}{8}, \frac{24}{27}$ **4.** $\frac{1}{8}, \frac{27}{36}$

4. $\frac{1}{15}$

4.0.6

6 7 8

4.4

9. 2

5. 1

10.3

3

3, 4 is

3. $\frac{1}{3}$

3. 0.7

5

3.4

8. 3

13.3

below

KEY PROBABILITY

is a prime number} and

3. 0.87 4. 0.50

Г

BINOMIAL DISTRIBUTION

BERNOULLIAN TRIALS OR BERNOULLI TRIALS: Random trials which result either in the success or failure of an event A, with constant probability of success p and that of failure 1-p=q are called as bernoullian trials. For example:

 In tossing of an unbiased coin, if we consider getting head upwards as a success then the probability of

success $p = \frac{1}{2}$. The probability of failure

 $q = 1 - \frac{1}{2} = \frac{1}{2}$ and it is true for every trial.

In rolling of a symmetrical die, if we consider getting

a face with 6 points upward as a success then $p = \frac{1}{6}$

and $q = 1 - \frac{1}{6} = \frac{5}{6}$ and it is also true for every trial.

BINOMIAL DISTRIBUTION

The probability of x successes in n independent bernoullian trials is given by $p(X=x) = {}^{n}c_{x}p^{x}q^{n-x}$; x = 0,1,2,3,...,n; $p \ge 0,q \ge 0$ and p+q=1 and it is called as B.D.

Here n & p are called as the parameters of B.D.

• A discrete random variable x is said to follow B.D. with parameters n, p, if its probability mass function is given by $p(X = x) = {}^{n}c_{x}p^{x}q^{n-x}$; x = 0,1,2,3,...,n; $p \ge 0, q \ge 0$ and p+q=1. By substituting x=0,1,2,...,r....n in $p(X = x) = {}^{n}c_{x}p^{x}q^{n-x}$; we can respectively obtain the probabilities of 0,1,2,3,...,r....n successes. They are:

$$P(X = 0) = {}^{n}c_{0}p^{0}q^{n-0}$$

$$P(X = 1) = {}^{n}c_{1}p^{1}q^{n-1}$$

$$P(X = 2) = {}^{n}c_{2}p^{2}q^{n-2}$$

$$------$$

$$P(X = r) = {}^{n}c_{r}p^{r}q^{n-r}$$

$$------$$

$$P(X = n) = {}^{n}c_{n}p^{n}q^{n-n}$$

• The above probabilities are various terms of the binomial expansion $(q+p)^n = {}^nc_0q^np^0 + {}^nc_1q^{n-1}p^1 + {}^nc_2q^{n-2}p^2 + \dots + {}^nc_rq^{n-r}p^r + \dots + {}^nc_nq^{n-n}p^n$ and hence the name.

The originator of B.D. was James Bernoulli (1654-1705) and so it is also some times called as Bernoulli distribution.

THE CHARACTERISTICS OF B.D.:

• The mean of random binomial variate X is np.

i.e.,
$$\overline{x} = np \text{ or } np = \overline{x}$$
. $\therefore n = \frac{\overline{x}}{p}, p = \frac{\overline{x}}{n}$

The variance of r.b.v. x is npq.

i.e.,
$$\sigma^2 = npq$$

Now
$$q = \frac{\sigma^2}{\overline{x}} \left(\frac{npq}{np} \right)$$

• The S.D. of r.b.v. x is \sqrt{npq}

i.e.,
$$\sigma = \sqrt{npc}$$

•

- In binomial distribution $\overline{x} > \sigma^2$ or $\sigma^2 < \overline{x}$ i.e., np > npq or npq < np
 - If $p = q = \frac{1}{2}$, then the distribution is said to be a symmetrical binomial distribution. The mode is that value of variable with maximum probability.
- The mode of B.D. depends on the value of np+p.
 - CASE-1: If np+p=k, where k is an integer, then there will be two modes namely k & k-1. In this case the distribution is said to be a Bi-modal binomial distribution.
 CASE-2: If np+p=k+f, where k is an integer and f is a proper fraction then there will be only one mode namely k. i.e., the integral part of np+p will be the mode. In this case the distribution is said to be uni-modal binomial distribution.

If we consider n independent bernoullian trials as one experiment and if we repeat such an experiment N times, then the expected frequency or the theoretical frequency of x successes is given by

$$f(X = x) = N \times p(X = x)$$

 $= N \times {}^{n} c_{x} p^{x} q^{n-x}, x = 0, 1, 2, 3, \dots n$

and this is called as Binomial frequency distribution.

1. The probability of obtaining 2 heads when an unbiased coin is tossed 5 times is

$$\frac{5}{8}$$
 2. $\frac{4}{9}$ 3. $\frac{5}{16}$ 4. $\frac{4}{16}$

2. Six unbiased coins are tossed once. The probability of obtaining atleast one head is

1.
$$\frac{58}{64}$$
 2. $\frac{63}{64}$ 3. $\frac{60}{64}$ 4. $\frac{61}{64}$

Six unbiased coins are tossed the probability of obtaining atleast two heads is

$$\frac{50}{64} \qquad 2. \ \frac{55}{64} \qquad 3. \ \frac{57}{64} \qquad 4. \ \frac{60}{64}$$

SR. MATHEMATICS

3.

1

1.

The probability of answering 6 out of 10 questions correctly in a true or false examination is

1.
$${}^{10}C_4\left(\frac{1}{2}\right)^4$$

2. ${}^{10}C_6\left(\frac{1}{2}\right)^6$
3. ${}^{10}C_6\left(\frac{1}{2}\right)^{10}$
4. ${}^{10}C_6\left(\frac{1}{2}\right)^8$

5. A machine manufacturing screws is known to produce 5% defectives. In a random sample of 15 screws the probability that there are exactly 3 defectives is

1.
$$\frac{16}{20}$$
 2. $\frac{17}{20}$
3. ${}^{15}C_3 \left(\frac{1}{20}\right)^3 \left(\frac{19}{20}\right)^{12}$ 4. $\frac{18}{20}$

6. The incidence of occupational disease in an industry is such that the workers have a 20% chance of suffering from it. The probability that out of 6 workers chosen at random not even one will suffer from that disease is

1.
$$\left(\frac{1}{5}\right)^6$$
 2. $\left(\frac{4}{5}\right)^6$ 3. $\left(\frac{1}{5}\right)^1$ 4. $\left(\frac{1}{6}\right)$

7. On the average if it rains on 5 days in every 30, the probability that there will be rain on exactly three days of a given week is

1.
$${}^{7}C_{3}\left(\frac{1}{6}\right)^{3}$$

2. ${}^{7}C_{3}\left(\frac{5}{6}\right)^{3}$
3. ${}^{7}C_{3}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{4}$
4. ${}^{7}C_{3}\left(\frac{1}{6}\right)^{4}$

8. A and B play a game in which A's chance of winning is $\frac{1}{5}$. In a series of 6 games, the probability that A

will win all the 6 games is

1.
$${}^{6}C_{2}\left(\frac{1}{5}\right)^{6}$$

2. ${}^{6}C_{6}\left(\frac{1}{5}\right)^{6}\left(\frac{4}{5}\right)^{0}$
3. $\left(\frac{4}{5}\right)^{6}$
4. ${}^{6}C_{6}\left(\frac{1}{5}\right)^{6}$

- 9. The mean of binomial distribution is 6 and its S.D. is $\sqrt{2}$, then the number of trials n is
- 1.7 2.8 3.9 4.10 10. A symmetrical die is rolled 720 times. Getting a face with four points is considered to be a success. The mean and variance of the number of successes is 1. 20, 120 2. 120, 100 3. 100, 100 4. 50, 50
- 11. The probability that a bomb dropped from a plane strikes the target is $\frac{1}{5}$. The probability that out of 6
 - bombs dropped atleast 2 bombs strike the target 2.0.246 3.0.543 1.0.345 4.0.426

12. The probability of getting atleast two heads when an unbiased coin is tossed three times is

2.
$$\frac{1}{3}$$
 3. $\frac{1}{2}$

1. $\frac{1}{4}$

atleast once is

13. The probability that in a family of 4 children there will be atleast one boy is

1.
$$\frac{13}{16}$$
 2. $\frac{15}{16}$ 3. $\frac{14}{16}$ 4. $\frac{12}{16}$

The probability of a man hitting the target is $\frac{1}{4}$. If he 14. fires 7 times the probability of his hitting the target

1.
$$\left(\frac{3}{4}\right)^7$$
 2. $1 - \left(\frac{3}{4}\right)^7$ **3.** $\left(\frac{1}{4}\right)^7$ **4.** $1 - \left(\frac{1}{4}\right)^7$

The probability of happening of an event in an 15. experiment is 0.4. The probability of happening of the event atleast once, if the experiment is repeated 3 times under similar conditions is

16. ent from a well shuffled pack of 52 cards. The probability that all the five cards are spades

1.
$${}^{5}C_{5}\left(\frac{1}{4}\right)^{5}$$
 2. $\frac{5}{52}$ **3.** $\left(\frac{3}{4}\right)^{5}$ **4.** $\left(\frac{3}{4}\right)^{2}$

17. For a binomial distribution $\overline{x} = 4, \sigma^2 = 3$ then the distribution of x is

1.
$$\left(\frac{1}{4} + \frac{3}{4}\right)^{16}$$
 2. $\left(\frac{3}{4} + \frac{1}{4}\right)^{16}$ 3.

$$\left(\frac{1}{2} + \frac{1}{2}\right)^{10}$$
 4. $\left(\frac{1}{2} + \frac{1}{2}\right)^{6}$

18. A binomial distribution has a mean of 5 and variance 4. The number of trials is

The standard deviation σ of $(q+p)^{16}$ is 2. The mean 19. of the distribution is

20. If the difference between the mean and variance of a binomial distribution for 5 trials is $\frac{5}{9}$, then the

distribution is

$$1. \left(\frac{1}{3} + \frac{2}{3}\right)^{5} 2. \left(\frac{1}{4} + \frac{3}{4}\right)^{5} 3. \left(\frac{2}{3} + \frac{1}{3}\right)^{5} 4. \left(\frac{3}{4} + \frac{1}{4}\right)^{5}$$

21. For a binomial distribution mean is 6 and S.D. is $\sqrt{2}$. The distribution is

$$I. \left(\frac{2}{3} + \frac{1}{3}\right)^9 2. \left(\frac{1}{3} + \frac{2}{3}\right)^9 3. \left(\frac{1}{5} + \frac{4}{5}\right)^9 4. \left(\frac{4}{5} + \frac{1}{5}\right)^9$$

22. For a binomial distribution n = 20, q = 0.75. The mean of the distribution is 1.10 2.15 3.5 4.20

23. The binomial distribution whose mean is 9 and the The value of $B\left(3;4,\frac{1}{4}\right)$ is variance is 2.25 is 32. 1. $(0.25 + 0.75)^{12}$ 2. $(0.75 + 0.25)^{12}$ 1. $\frac{5}{64}$ 2. $\frac{1}{16}$ 3. $\frac{3}{64}$ 4. $\frac{1}{64}$ 3. $\left(\frac{1}{3} + \frac{2}{3}\right)^{12}$ 4. $\left(\frac{2}{3}+\frac{1}{3}\right)^{12}$ 33. The probability is 0.02 that an item produced by a factory is defective. A shipment of 10,000 items is 24. If X is binomial variate with E(X) = 5 and variance 4. sent to warehouse. The expected number of defective The parameters of the distribution are items is 1. $\frac{1}{4}$, 20 2. $\frac{1}{5}$, 20 3. 25, $\frac{1}{5}$ 4. $\frac{1}{25}$, $\frac{1}{5}$ 1.400 2.300 3.200 4.100 34. In six throws of a die, getting 4 or 5 is considered a 25. In a binomial distribution AM=3, variance=4. The success. The mean number of successes is statement is 1.4 2.3 3.2 4.1 35. 1. True 2. False A symmetrical die is thrown three times. If getting a 3. We cannot say 4. None six is considered to be a success, the probability of atleast two successes is 26. A symmetrical die is thrown four times and getting a multiple of 2 is considered to be a success. The 1. $\frac{4}{27}$ 2. $\frac{3}{27}$ 3. $\frac{2}{27}$ 4. $\frac{1}{27}$ mean and variance of success are 1.4,2 2.2,1 3.0,2 4.1,2 A fair die is rolled 180 times. The expected number 36. 27. Two cards are drawn successively with replacement of six's is from a well shuffled pack of 52 cards. The variance 1.50 2.30 3.10 4.5 of the number of aces is 37. Of the bolts produced by a factory 2% are defective. 1. $\frac{2 \times 1}{13}$ 2. $2 \times \frac{1}{13} \times \frac{12}{12}$ In a shipment of 3600 bolts from the factory, the expected number of defective bolts is 1.144 2.72 3.36 4.18 3. $\frac{12}{13} \times \frac{12}{13}$ 4. $\frac{1}{13} \times \frac{1}{13}$ 38. If for a BD the mean is 6 and standard deviation is $\frac{1}{\sqrt{2}}$, then the probability of success is If for a binomial distribution mean = $\frac{10}{3}$ and sum of 28. 1. $\frac{11}{12}$ 2. $\frac{10}{12}$ 3. $\frac{9}{12}$ 4. $\frac{8}{12}$ mean and variance is $\frac{40}{9}$. The parameters are 39. A symmetrical die is rolled 6 times. If getting an odd number is a success, the probability of atmost 5 1. $\frac{2}{3}$, 10 2. $\frac{2}{3}$, 20 3. 5, $\frac{2}{3}$ 4. 4, $\frac{2}{3}$ successes is 1. $\frac{60}{64}$ 2. $\frac{63}{64}$ 3. $\frac{120}{164}$ 4. $\frac{10}{14}$ If for a binomial distribution $\overline{x} = \frac{6}{5}$ and the difference 29. 40. If A and B are two equally strong table tennis players, between mean and variance is $\frac{6}{25}$. The number of the probability that A beats B in exactly three games out of 4 games is trials is 1. $\frac{1}{6}$ 2. $\frac{1}{5}$ 3. $\frac{1}{4}$ 4. $\frac{1}{2}$ 1.8 2.7 3.6 4.5 30. If for a binomial distribution with n = 16, the ratio of Team A has probability $\frac{2}{3}$ of winning whenever it mean to variance is $\frac{5}{4}$, then the probability of suc-41. cess is plays. If A plays 4 games the probability that A loses all the games is 1. $\frac{4}{5}$ 2. $\frac{2}{3}$ 3. $\frac{1}{5}$ 4. $\frac{1}{4}$ 1. $\left(\frac{2}{3}\right)^4$ 2. $\left(\frac{1}{2}\right)^4$ 31. If for a B.D. with n=12, the ratio of variance to mean is $\frac{1}{2}$, then the probability of 10 successes is 3. ${}^{4}C_{0}\left(\frac{2}{3}\right)^{4}$ 4. ${}^{4}C_{0}\left(\frac{2}{3}\right)^{6}$ **1.** ${}^{15}C_{10}\left(\frac{2}{3}\right)^{10}\left(\frac{1}{3}\right)^2$ **2.** ${}^{12}C_{10}\left(\frac{2}{3}\right)^{10}\left(\frac{1}{3}\right)^2$ In a binomial distribution mean = $\frac{11}{4}$ and variance = 42. 3. $\left(\frac{2}{3}\right)^{10}$ 4. $\left(\frac{1}{3}\right)^{10}$ $\frac{15}{16}$, then the probability of success is

SR. MATHEMATICS

PROBABILITY

1. $\frac{1}{2}$ 2. $\frac{29}{44}$ 3. $\frac{1}{4}$ 4. $\frac{3}{4}$ 43. The mean and variance of B.D. are 6, 4. The parameters of the distribution 1. $12, \frac{1}{2}$ 2. $9, \frac{2}{3}$ 3. 10,0.6 4. $18, \frac{1}{3}$ In a binomial distribution with n=10, $p = \frac{2}{5}$, the mode 44. of the B.D. is 1.6 2.5 3.4 4 3 45. 6 symmetrical dice are thrown 729 times. The number of times you expect exactly three dice showing a four or five is 1.160 2.240 3.12 4.6 46. If the mean of a binomial distribution is 25 then its standard deviation lies in the interval given below 1. [0, 5] 2. [0, 5) 3. (0, 5] 4. [0, 25] 47. If a random variable X follows B.D. with mean 2.4 and variance 1.44, the number of independent trials n is 1.10 3.6 2.8 4.2 If X is a binomial variate with n=6 and 9P(X=4)=P(X=2) 48. the parameter p is 1. $\frac{3}{4}$ 2. $\frac{1}{3}$ 3. $\frac{1}{4}$ 4. $\frac{1}{2}$ 49. In a binomial distribution mean is 4.8 and variance is 2.88, then the parameter n is 1.8 2.12 3.16 4.20 50. A fair coin is tossed 6 times. The variance of number of heads is 2. $\frac{3}{2}$ 3. $\frac{3}{4}$ 1.3 4.2 51. The number of parameters of B.D. are 2.3 3.2 1 4 4.1 59 52. Six unbiased coins are tossed once. The probability of obtaining atleast two heads is 1. $\frac{63}{64}$ 2. $\frac{57}{64}$ 3. $\frac{1}{64}$ 4. $\frac{1}{32}$ 53. A student is given 6 questions in a true or false examination. If he gets 4 or more correct answers he passes the examination. The probability that he passes the examination is 1. $\frac{5}{32}$ 2. $\frac{7}{32}$ 3. $\frac{11}{32}$ 4. $\frac{3}{32}$ A machine manufacturing screws is known to pro-54. duce 5% defectives. In a random sample of 15 screws the probability that there are exactly 3 defectives is **1.** $\left(\frac{1}{2}\right)^3$ **2.** $\left(\frac{19}{20}\right)^3$ **3.** ${}^{15}C_3\left(\frac{1}{20}\right)^3\left(\frac{19}{20}\right)^{12}$ **4.** $\left(\frac{1}{20}\right)^3$

55. A machine manufacturing screws is known to produce 5% defectives. In a random sample of 15 screws the probability that there are not more than 3 defectives is

1.
$${}^{15}C_{3}\left(\frac{1}{20}\right)^{12}$$

2. ${}^{15}_{x=4}{}^{15}C_{x}\left(\frac{1}{20}\right)^{x}\left(\frac{19}{20}\right)^{15-x}$
3. ${}^{3}_{x=0}{}^{15}C_{x}\left(\frac{1}{20}\right)^{x}\left(\frac{19}{20}\right)^{15-x}$
4. ${}^{3}_{x=0}{}^{15}C_{x}\left(\frac{1}{20}\right)^{x}\left(\frac{19}{20}\right)^{15}$

56. The incidence of occupational disease in an industry is such that the workers have a 20% chance of suffering from it. The probability that out of 6 workers chosen at random, exactly four will suffer is

1.
$$\left(\frac{1}{5}\right)^4$$

2. $\left(\frac{4}{5}\right)^4$
3. ${}^6C_4\left(\frac{1}{5}\right)^4\left(\frac{4}{5}\right)^2$
4. $\left(\frac{4}{5}\right)^2$

57. The incidence of occupational disease in an industry is such that the workers have a 20% chance of suffering from it. The probability that out of 6 workers chosen at random, not even one will suffer from that disease is

$$1. \left(\frac{1}{5}\right)^6 \qquad 2. \left(\frac{4}{5}\right)^6 \qquad 3. \left(\frac{1}{5}\right)^0 \qquad 4. \left(\frac{1}{5}\right)^3$$

58. On the average if it rains on 10 days in every 30, the probability that there will be rain on atleast three days of a given week is

1.
$${}^{7}C_{3}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{4}$$

2. $\sum_{x=3}^{7} {}^{7}C_{x}\left(\frac{1}{3}\right)^{x}\left(\frac{2}{3}\right)^{7-x}$
3. $\sum_{x=4}^{7} {}^{7}C_{x}\left(\frac{1}{3}\right)^{x}\left(\frac{2}{3}\right)^{7-x}$
4. $\sum_{x=2}^{7} {}^{7}C_{x}\left(\frac{1}{3}\right)^{x}\left(\frac{2}{3}\right)^{7-x}$

is $\frac{1}{5}$. In a series of 6 games, the probability that A will win atleast three games is

1.
$${}^{6}C_{3}\left(\frac{1}{5}\right)^{x}\left(\frac{4}{5}\right)^{6-x}$$

2. $\sum_{x=3}^{7} {}^{6}C_{3}\left(\frac{4}{5}\right)^{x}\left(\frac{1}{5}\right)^{6-x}$
3. $\sum_{x=3}^{6} {}^{6}C_{x}\left(\frac{1}{5}\right)^{x}\left(\frac{4}{5}\right)^{6-x}$
4. $\sum_{x=3}^{5} {}^{6}C_{x}\left(\frac{4}{5}\right)^{x}\left(\frac{1}{5}\right)^{6-x}$

60. The mean of B.D. is 6 and its S.D. and $\sqrt{2}$. The probability of x successes is

1.
$$\left(\frac{2}{3}\right)^x$$

2. $\left(\frac{1}{3}\right)^x$
3. ${}^9C_x\left(\frac{2}{3}\right)^x\left(\frac{1}{3}\right)^{9-x}$
4. ${}^6C_x\left(\frac{1}{3}\right)^x\left(\frac{2}{3}\right)^{9-x}$

61. A symmetrical die is tossed twice. Getting a four is considered to be a success. The mean and variance of number of successes is

1.
$$\frac{2}{3}, \frac{5}{18}$$
 2. $\frac{1}{3}, \frac{5}{18}$
 3. $\frac{1}{3}, \frac{1}{3}$
 4. $\frac{1}{18}, \frac{1}{18}$

 62. A fair coin is tossed four times. The probability that tails exceed heads in number is
 1. $\frac{1}{4}$
 2. $\frac{5}{16}$
 3. $\frac{7}{16}$
 4. $\frac{9}{16}$

 63. If the sum of mean and variance of B.D. for 5 trials is
 1. $(0.8 + 0.2)^5$
 2. $(0.2 + 0.8)^5$
 71

 64. 16 for a binomial distribution is
 1. $(0.8 + 0.2)^{10}$
 4. $(0.2 + 0.8)^{10}$
 72

 65. If for a binomial distribution $n = 4$ and $6P(X=4)=P(X=2)$, the probability of success is
 1. $\frac{3}{4}$
 2. $\frac{1}{2}$
 3. $\frac{1}{3}$
 4. $\frac{1}{4}$

 65. If for a binomial distribution with $n = 5$, $4p(X=1)=P(X=2)$, the probability of success is
 1. $\frac{1}{3}$
 2. $\frac{2}{3}$
 3. $\frac{1}{4}$
 4. $\frac{1}{8}$

 66. A family has six children. The probability that there are fewer boys than girls, if the probability of any particular child being a boy is $\frac{1}{2}$ is
 73

 1. $\frac{5}{32}$
 2. $\frac{7}{32}$
 3. $\frac{11}{32}$
 4. $\frac{9}{32}$
 74

 67. The probability of a man hitting the target is $\frac{1}{4}$. If he fires 7 times, the probability of hitting the target exactly six times is
 1. $(\frac{1}{4})^6$
 2. $1-(\frac{3}{4})^1$
 74

 68. The probability that a student is not a swimmer is $\frac{1}{5}$. Out of 5 students the probability that exactly four are swimmers is
 76

0. If on an average 1 vessel in every 10 is wrecked, the probability that out of 5 vessels expected to arrive, 4 at least will arrive safely is

1.
$$(0.9)^4$$
 2. $6 \times (0.9)^4$

3. $1.4 \times (0.9)^4$ **4.** $4 \times (0.9)^4$

 The chance that a person with two dice, the faces of each being numbered 1 to 6, will throw aces exactly 4 times in 6 trials is

1.
$$\left(\frac{1}{36}\right)^4$$
 2. $\left(\frac{35}{36}\right)^4$

3.
$${}^{6}C_{4}\left(\frac{1}{36}\right)^{4}\left(\frac{35}{36}\right)^{2}$$
 4. ${}^{6}C_{4}\left(\frac{35}{36}\right)^{4}\left(\frac{1}{36}\right)^{2}$
If 10% of the attacking air crafts are expected

 If 10% of the attacking air crafts are expected to be shot down before reaching the target, the probability that out of 5 aircrafts atleast four will be shot before they reach the target is

1.
$$4\left(\frac{1}{10}\right)^4$$
 2. $5\left(\frac{1}{10}\right)^4$
3. $4.6\left(\frac{1}{10}\right)^4$ **4.** $6\left(\frac{1}{10}\right)^4$

8. A production process is supposed to contain 5% defective items. The probability that a sample of 8 items will contain less than 2 defective items is

1.
$$\left(\frac{19}{20}\right)^7$$

2. $27 \times \left(\frac{19}{20}\right)^7$
3. $\frac{27 \times 19^7}{20^8}$
4. $\frac{9 \times 5^7}{10^8}$

A box contains 3 red marbles and 2 white marbles. A marble is drawn and replaced three times from the box. The probability that exactly one red marble is drawn is

1.
$$\frac{3}{5}$$
 2. $\frac{9}{125}$ 3. $\frac{36}{125}$ 4. $\frac{6}{125}$

75. A fair coin is tossed 12 times. The variance of number of heads is

1.
$$\left(\frac{1}{9} + \frac{8}{9}\right)^{200}$$

2. $\left(\frac{8}{9} + \frac{1}{9}\right)^{200}$
3. $\left(\frac{4}{5} + \frac{1}{5}\right)^{200}$
4. $\left(\frac{1}{5} + \frac{4}{5}\right)^{200}$

7. The probability of A winning a game is $\frac{2}{3}$. In a series of 4 such games the probability that A will win more than half of the games is

1.
$$\frac{32}{81}$$
 2. $\frac{33}{81}$ 3. $\frac{16}{27}$ 4. $\frac{8}{27}$

78. If X is a binomial variable with E(X)=2 and $v(X)=\frac{4}{3}$, the probability of x successes is

1.
$${}^{6}C_{x}\left(\frac{1}{3}\right)^{x}\left(\frac{2}{3}\right)^{6-x}$$

2. ${}^{6}C_{x}\left(\frac{2}{3}\right)^{x}\left(\frac{1}{3}\right)^{6-x}$
3. $\left(\frac{2}{3}\right)^{x}\left(\frac{1}{3}\right)^{6-x}$
4. $\left(\frac{1}{3}\right)^{x}\left(\frac{2}{3}\right)^{6-x}$

79. A box contains 6 red and 4 white marbles. A marble is drawn and replaced three times from the box. The probability that one white marble is drawn

53	o 54	⁵⁶	52
1. 125	2. $\frac{125}{125}$	$3. \frac{125}{125}$	4. $\frac{125}{125}$

80. A box contains 6 red and 4 white marbles. A marble is drawn and replaced three times from the box. The probability that two white marbles are drawn

1.
$$\frac{34}{125}$$
 2. $\frac{36}{125}$ 3. $\frac{38}{125}$ 4. $\frac{32}{125}$

81. A box contains 6 red and 4 white marbles. A marble is drawn and replaced three times from the box. The probability that atleast one white marble is drawn

1.
$$\left(\frac{3}{5}\right)^3$$
 2. $1 - \left(\frac{3}{5}\right)^3$ **3.** $\left(\frac{2}{5}\right)^3$ **4.** $1 - \left(\frac{2}{5}\right)^3$

82. Team A has the probability $\frac{2}{5}$ of winning, when ever

it plays. If A plays 4 games, the probability that A wins more than half of the games is

1.
$$\frac{22}{125}$$
 2. $\frac{112}{625}$ 3. $\frac{116}{625}$ 4. $\frac{110}{625}$

83. A fair die is tossed 1620 times. If getting a face with 6 points is considered as a success, then E(x) =, V(x) =

1. 270, 270	2. 270, 225
3. 270, 25	4.27,250

84. The probability of getting a total of 9 twice in 6 tosses of a pair of dice is

1.
$$\left(\frac{8}{9}\right)^4$$

2. ${}^6C_2\left(\frac{1}{9}\right)^2\left(\frac{8}{9}\right)^4$
3. ${}^6C_2\left(\frac{8}{9}\right)^2\left(\frac{1}{9}\right)^4$
4. $\left(\frac{1}{9}\right)^2$

85. The probability of getting a total of 9 atleast twice in 6 tosses of a pair of dice is

1.
$${}^{6}C_{2}\left(\frac{1}{9}\right)^{2}\left(\frac{8}{9}\right)^{4}$$

2. $1 - \left\{\sum_{x=2}^{6} {}^{6}C_{x}\left(\frac{1}{9}\right)^{x}\left(\frac{8}{9}\right)^{6-x}$
3. $\sum_{x=2}^{6} {}^{6}C_{x}\left(\frac{1}{9}\right)^{x}\left(\frac{8}{9}\right)^{6-x}$
4. $\sum_{x=2}^{6} {}^{6}C_{x}\left(\frac{8}{9}\right)^{x}\left(\frac{1}{9}\right)^{6-x}$

86. If the probability of a defective bolt is 0.1. The mean and standard deviation for the distribution of defective bolts in a total of 400 &
1. 40, 36 2. 40, 6 3. 20, 6 4. 10, 6

87. A random variable X is binomially distributed with mean 12 and variance 8. The parameters of the distribution are &

1.
$$18, \frac{1}{3}$$
 2. $36, \frac{1}{3}$ 3. $36, \frac{2}{3}$ 4. $18, \frac{2}{3}$

88. If in a random experiment the probability of getting a success is twice that of a failure, then the probability of getting 6 successes in 10 trials is

1.
$${}^{10}C_6\left(\frac{1}{3}\right)^6\left(\frac{2}{3}\right)^4$$
 2. ${}^{10}C_6\left(\frac{2}{3}\right)^6\left(\frac{1}{3}\right)^4$
3. ${}^{10}C_4\left(\frac{2}{3}\right)^4\left(\frac{1}{3}\right)^6$ **4.** ${}^{10}C_4\left(\frac{1}{3}\right)^4\left(\frac{2}{3}\right)^6$

89. In a binomial distribution n=9 and $p = \frac{1}{3}$. The probability of mode is

1.
$${}^{9}C_{3}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{6}$$

2. ${}^{9}C_{3}\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right)^{6}$
3. ${}^{9}C_{6}\left(\frac{2}{3}\right)^{6}\left(\frac{1}{3}\right)^{3}$
4. ${}^{9}C_{6}\left(\frac{1}{3}\right)^{6}\left(\frac{2}{3}\right)^{3}$

90. The probability that a bulb produced by a factory will fuse after 100 days of use is 0.05. The probability that out of 5 such bulbs none of them fuse after 100 days is

1.
$$(0.05)^5$$
 2. $(0.95)^5$

3.
$$1-(0.95)^5$$
 4. $1-(0.05)^5$

91. The probability that a bulb produced by a factory will fuse after 100 days of use is 0.05. The probability that out of 5 such bulbs not more than one will fuse after 100 days is

1.
$$0.25 \times 0.95^4$$
 2. $1.20 \times (0.95)^4$

3. $(0.95)^4$ **4.** $(0.25)^4$

92. The probability that a bulb produced by a factory will fuse after 100 days of use is 0.05. The probability that out of 5 such bulbs atleast one will fuse after 100 days of use is

1.
$$(0.95)^5$$
 2. $(0.05)^5$

3.
$$1 - (0.95)^5$$
 4. $1 - (0.05)^5$

93. If four throws with a pair of dice, the probability of throwing a double atleast once is

1.
$$\left(\frac{5}{6}\right)^4$$
 2. $1 - \left(\frac{5}{6}\right)^4$ 3. $1 - \left(\frac{1}{6}\right)^4$ 4. $\left(\frac{1}{6}\right)^4$

94. An experiment succeeds twice as often as it fails . The chance that in the next six trials, there shall be atleast four successes is

1.
$${}^{6}C_{4}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)^{2}$$

2. $\sum_{x=0}^{4} {}^{6}C_{x}\left(\frac{2}{3}\right)^{x}\left(\frac{1}{3}\right)^{6-x}$
3. $\sum_{x=4}^{6} {}^{6}C_{x}\left(\frac{2}{3}\right)^{x}\left(\frac{1}{3}\right)^{6-x}$
4. $\sum_{x=6}^{8} {}^{6}C_{x}\left(\frac{2}{3}\right)^{x}\left(\frac{1}{3}\right)^{6-x}$

SR. MATHEMATICS

95. For a binomial distribution the mean and variance are respectively 4 and 3. The probability of getting a non-zero success is
1.
$$\left(\frac{1}{4}\right)^{16}$$
 2. $\left(\frac{3}{4}\right)^{16}$ 3. $1-\left(\frac{3}{4}\right)^{16}$ 4. $1-\left(\frac{1}{4}\right)^{16}$ A box contains 'a' white and 1 are drawn attandom with replanement of white balls drawn is
1. $\left(\frac{1}{4}+\frac{2}{3}\right)^{1}2$. $\left(\frac{2}{3}+\frac{1}{3}\right)^{1}3$. $\left(\frac{1}{2}+\frac{1}{2}\right)^{1}4$. $\left(\frac{1}{3}+\frac{1}{3}\right)^{1}$
106. A box contains 'a' white and 1 are drawn attandom with replanement of black balls drawn is
1. $\frac{a}{a+b}$ 2. $\frac{a}{a+b}$ 3. $\frac{b}{a+b}$
106. A box contains 'a' white and 1 are drawn attandom with replanement from a well shuffled pack of 52 cards. The probability that none is a spade is
1. $\frac{1}{2} \cdot \frac{2}{5} \cdot \frac{2}{5} \left(\frac{2}{3}\right)^{1} \left(\frac{3}{3}\right)^{5-2}$ 2. $\frac{5}{2} \cdot \frac{5}{5} \cdot \frac{2}{5} \left(\frac{2}{3}\right)^{2} \left(\frac{1}{3}\right)^{5-2}$ 3. $1-\frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{5} \left(\frac{2}{5}\right)^{3} \left(\frac{1}{3}\right)^{5-2}$
107. A card is drawn and replaced four times from an ordinary pack of 52 playing cards. The probability that the minimum face value is to reprobability that the espades are drawn is
1. $\frac{3}{24} \cdot 2$. $\frac{1}{64} = 3$. $\frac{37}{64} \cdot 4$. $\frac{3}{64}$
100. In 15 throws of a die 4 or 5 i success. The mean number or 1. $\frac{5}{64} = 2$. $\frac{15}{64} = 3$. $\frac{5}{64}$
101. In 15 throws of 4 is thrown on a fieled or the success is the robability that the espades are drawn is
1. $\frac{9}{64} = 2$. $\frac{1}{64} = 3$. $\frac{37}{64} + 4$. $\frac{3}{64}$
102. A card is drawn and replaced three times from an ordinary pack of 52 playing cards. The probability that the success is the most 5 success is the robability that the spade are drawn is
1. $\frac{9}{64} = 2$. $\frac{1}{64} = 3$. $\frac{37}{64} = 4$. $\frac{3}{64}$
102. In a B.D. n = 400, $p = \frac{1}{5}$. Its expressively with replacement from a well shuffled pack of 52 cards. The probability that lines are are are 3, $\frac{3}{64} = 4$. $\frac{3}{64}$
103. 5 cards are drawn one after an other successively with replacement from a well shuffled pack of 52 cards. The probability that lines are are $\sqrt{3}$ if $\sqrt{3}$

1.
$$1 - \left(\frac{3}{4}\right)^5$$
 2. $\left(\frac{3}{4}\right)^5$ 3. $\left(\frac{1}{4}\right)^5$ 4. $1 - \left(\frac{1}{4}\right)^5$

b' black balls. 'c' balls cement. The expected s

1.
$$\frac{a}{a+b}$$
 2. $\frac{ac}{a+b}$ 3. $\frac{bc}{a+b}$ 4. $\frac{b}{a+b}$

b' black balls. 'c' balls cement. The expected s

1.
$$\frac{b}{a+b}$$
 2. $\frac{ac}{a+b}$ 3. $\frac{bc}{a+b}$ 4. $\frac{c}{a+b}$

inomial variate X are 2 robability that X takes ual to

1.
$$\frac{5}{16}$$
 2. $\frac{7}{16}$ 3. $\frac{11}{16}$ 4. $\frac{9}{16}$

s a cricket test match

a and England play 3 India will win atleast

1.
$$\frac{8}{27}$$
 2. $\frac{19}{27}$ 3. $\frac{1}{27}$ 4. $\frac{9}{27}$

arked 1, 2, 3, 4, 5, 6 is e values obtained, the face value is not less lue is not more than 5

$$. \frac{16}{81} \qquad 2. \frac{1}{81} \qquad 3. \frac{80}{81} \qquad 4. \frac{65}{81}$$

- is considered to be a of success is 4.6
- 6 times. If getting an e probability of at the

1.
$$\frac{5}{64}$$
 2. $\frac{15}{64}$ 3. $\frac{63}{64}$ 4. $\frac{36}{64}$

112. In a B.D. n = 400,
$$p = \frac{1}{5}$$
. Its standard deviation is

1.
$$10 \times \sqrt{2}$$
 2. $\frac{1}{800}$ 3. 4 4. 8

113. For a B.D.
$$\overline{x} = 4, \sigma = \sqrt{3}$$
, then P(X=r)=

1.
$${}^{16}C_r\left(\frac{1}{4}\right)^r\left(\frac{3}{4}\right)^{16-r}$$
 2. ${}^{12}C_r\left(\frac{1}{4}\right)^r\left(\frac{3}{4}\right)^{12-r}$
3. ${}^{12}C_r\left(\frac{2}{3}\right)^r\left(\frac{1}{3}\right)^{12-r}$ **4.** ${}^{12}C_r\left(\frac{3}{4}\right)^r\left(\frac{1}{4}\right)^{12-r}$

ited variate with mean ·10) is

SR. MATHEMATICS

PROBABILITY

i.e., $\sigma < 5$

 $q = \frac{5}{6}, \qquad mean(\mu) = 120,$