CBSE Test Paper 03

CH-10 Straight Lines

- 1. The point on the axis of y which is equidistant from (-1, 2) and (3, 4) is
 - a. (0,4)
 - b. none of these
 - c. (5,0)
 - d.(0,5)
- 2. The point which divides the joint of (1, 2) and (3,4) externally in the ratio 1:1.
 - a. lies in the $2^{\rm nd}$ quadrant
 - b. lies in 3rd quadrant
 - c. cannot be found
 - d. lies in the 1^{st} quadrant
- 3. The foot of the perpendicular from (2, 3) on the line 3x + 4y 6 = 0 is
 - a. $\left(-\frac{14}{25}, -\frac{27}{25}\right)$ b. $\left(\frac{14}{25}, -\frac{27}{25}\right)$ c. $\left(\frac{14}{25}, \frac{27}{25}\right)$ d. $\left(-\frac{14}{25}, \frac{29}{25}\right)$
- 4. A line is equally inclined to the axis and the length of perpendicular from the origin upon the line is $\sqrt{2}$. A possible equation of the line is
 - a. $y = \sqrt{2} x + 2$.
 - b. x + y = 2
 - c. y = x + 1
 - d. $y = x + \sqrt{2}$.
- 5. The locus of the inequation $xy \ge 0$ is
 - a. none of these
 - b. a straight line
 - c. the set of all points either in the 1st quadrant or in the 3rd quadrant including the points on coordinate axis
 - d. a pair of straight lines
- 6. Fill in the blanks:

The inclination of the line x - y + 3 = 0 with the positive direction of x-axis is _____.

7. Fill in the blanks:

Locus of the mid-points of the portion of the line $x \sin\theta + y \cos\theta = p$ intercepted between the axes is _____.

- 8. Find the slope of the lines passing through the points (3, -2) and (7, -2).
- 9. If the vertices of a triangle are P(1, 3), Q(2, 5) and R(3, 5), then find the centroid of a Δ PQR.
- 10. Determine the $\angle B$ of the triangle with vertices A(-2, 1), B(2, 3) and C(-2, -4).
- 11. The slope of a line is double the slope of another line. If tangent of the angle between them is $\frac{1}{3}$, then find the slope of the lines.
- 12. Show that the straight lines given by x(a + 2b) + y(a + 3b) = a + b for different values of a and b pass through a fixed point.
- 13. A line passes through the point (3, 2). Find the locus of the middle point of the portion of the line intercepted between the axes.
- 14. Find the transformed equation of the circle $x^2 + y^2 = 9$ when the origin is shifted to (-1, -3).
- 15. A line 4x + y = 1 through the point A (2, -7) meets the line BC whose equation is 3x 4y + 1 = 0 at the point B. Find the equation to the line AC so that AB = AC.

CBSE Test Paper 03

CH-10 Straight Lines

Solution

1. (d)(0,5)

Explanation: Let (0,y) be the point on Y axis which is equidistant from the points (-1,2) and (3,4)

By applying the distance formula,

$$(0+1)^2 + (y-2)^2 = (3-0)^2 + (4-y)^2$$

on simplifying we get 4y = 20

Therefore y = 5

Hence the point on the y axis is (0,5)

2. (c) cannot be found

Explanation:The point which divides the line in the ratio m:n externally is given by $\mathbf{x} = \frac{m(x_2) - n(x_1)}{m - n}$

Substituting the values we get,

$$x = \frac{1(3)-1(1)}{1-1}$$
 which is undefined.

3. (c) $\left(\frac{14}{25}, \frac{27}{25}\right)$

Explanation: The equation of the line perpendicular to the given line 3x+4y=6 is 4x-4y=6

$$3y + k = 0$$

Since this line passes through (2,3)

$$4(2) - 3(3) + k = 0$$

Therefore k = 1

Therefore the line which perpendicular to the given line is 4x-3y+1=0 on solving both the equations we get, x=14/25 and y=27/25Hence the foot of the perpendicular is (14/25, 27/25)

4. (b) x + y = 2

Explanation: Since the line is equally inclined the slope of the line should be -1, because it makes 135⁰ in the positive direction of the X axis

This implies the equation of the line is y = -x + c

i.e;
$$x+y-c=0$$

distance of the line from the origin is given as

Therefore
$$\sqrt{2} = \frac{|c|}{\sqrt{1^2+1^2}}$$

This implies c = 2

Hence the equation of the line is x+y=2

5. (c) the set of all points either in the 1st quadrant or in the 3rd quadrant including the points on coordinate axis

Explanation: It is the set of all points either in the 1st quadrant or in the 3rd quadrant including the points on coordiate axis. This is because the inequality \geq indicates that the points belong either to 1st or 3rd quadrant.

6. 45°

7.
$$4x^2y^2 = p^2(x^2 + y^2)$$

8. Slope of the line through the points (3, -2) and (7, -2) is

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-2 - (-2)}{7 - 3} = \frac{0}{4} = 0$$

9. We know that, if the vertices of a triangle are (x_1, y_1) , (x_2, y_2) and (x_3, y_3) , then centroid of a triangle is

$$\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}\right)$$

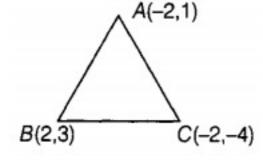
Here, $P(1, 3) = (x_1, y_1)$

$$Q(2, 5) = (x_2, y_2)$$

and
$$R(3, -5) = (x_3, y_3)$$

.: Centroid of a triangle

$$=\left(rac{1+2+3}{3},rac{3+5-5}{3}
ight)=\left(rac{6}{3},rac{3}{3}
ight)=(2,1)$$



Given, vertices of a triangle are A(-2, 1), B(2, 3) and (-2, -4).

Slope of line

$$AB = rac{3-1}{2+2} = rac{2}{4} = rac{1}{2} = m_1 [ext{ say }] \ \left[\because ext{ slope } = rac{y_2 - y_1}{x_2 - x_1}
ight]$$

Slope of line $BC=rac{-4-3}{-2-2}=rac{7}{4}=m_2$ [say]

$$\therefore \quad \tan B = \left| \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right| = \left| \frac{\frac{1}{2} - \frac{7}{4}}{\left| 1 + \frac{1}{2} \cdot \frac{7}{4} \right|} = \left| \frac{-\frac{5}{4}}{15/8} \right| = \frac{2}{3}$$

$$\therefore \quad \angle B = \tan^{-1} \left(\frac{2}{3}\right)$$

11. If m_1 and m_2 are the slopes of a line, tangent of angle between the line is,

$$an heta=\left|rac{m_1-m_2}{1+m_1m_2}
ight|$$

Let slope of one line be m, then slope of another line be 2m.

Given, the tangent of the angle between them is $an heta = rac{1}{3}$

$$\therefore \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \frac{1}{3} \Rightarrow \frac{1}{3} = \left| \frac{m - 2m}{1 + m \times 2m} \right|$$

$$\Rightarrow \frac{1}{3} = \left| \frac{-m}{1+2m^2} \right|$$

$$\Rightarrow$$
 (1 + 2m²) = 3m

$$\Rightarrow$$
 2m² - 3m + 1 = 0

Factorise it by splitting the middle term.

$$\Rightarrow$$
 2m² - 2m - m + 1 = 0

$$\Rightarrow$$
 2m(m - 1) - 1 (m - 1) = 0

$$\Rightarrow$$
 (2m - 1) (m -1) = 0

$$\Rightarrow$$
 2m - 1 = 0 or m - 1 = 0 \Rightarrow $m = \frac{1}{2}, m = 1$

12. Given equation can be written as

$$a(x + y - 1) + b(2x + 3y - 1) = 0$$

$$\Rightarrow$$
 (x + y - 1) + λ (2x + 3y - 1) = 0, where λ = b/a

This is the form of L_1 + λL_2 = 0. So it represents a line passing through the intersection of x + y - 1 = 0 and 2x + 3y - 1 = 0.

Solving these two equations, we get the point (2, -1) which is the fixed point.

13. Let the equation of the line be $\frac{x}{a} + \frac{y}{b} = 1$...(i)

It passes through (3, -2).

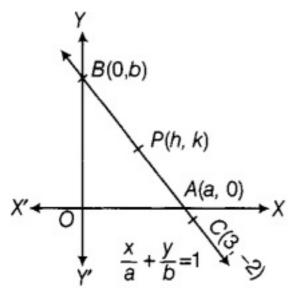
$$\therefore \frac{3}{a} - \frac{2}{b} = 1 \dots (ii)$$

The line (i) cuts the coordinate axes at A(a, 0) and B(0, b). Let P(h, k) be the mid-point of the portion AB.

Then,

$$h = \frac{a+0}{2}, k = \frac{0+b}{2}$$

 \Rightarrow a = 2h and b = 2k



On substituting the values of a and b in Eq. (ii), we get

$$\frac{3}{2h} - \frac{2}{2k} = 1$$

Hence, locus of P(h, k) is $\frac{3}{2x} - \frac{1}{y} = 1$

or
$$3y - 2x = 2xy$$

14. Let (x', y') be the new coordinates of the point (x, y) to (-1, -3)

Origin is shifted to (-1, -3)

$$\therefore$$
 h = -1 and k = -3

Now
$$x = x' + h = x' - 1$$

and
$$y = y' + k = y' - 3$$

Substituting these values of x and y in equation of $x^2 + y^2 = 9$ we get

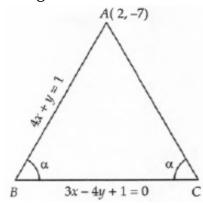
$$(x'-1)^2 + (y'-3)^2 = 9$$

 $\Rightarrow x'^2 + 1 - 2x' + y'^2 + 9 - 6y' = 9$
 $\Rightarrow x'^2 + y'^2 - 2x' - 6y' + 1 = 0$

Hence the equation of the given circle in new system is $x^2 + y^2 - 2x - 6y + 1 = 0$

15. The lines AB and BC meet at a point B. Let a be the angle between them. Then, $\tan\alpha = \frac{m_1-m_2}{1+m_1m_2} \text{ , where, } m_1 = \text{Slope of AB} = -4 \text{ and } m_2 = \text{Slope of BC} = \frac{3}{4}$ $\Rightarrow \tan\alpha = \frac{-4-3/4}{1+(-4)\times 3/4} = \frac{19}{8}$

It is given that AB = AC. Therefore, triangle ABC is an isosceles triangle.



Clearly, AB and AC both pass through A(2, -7) and are equally inclined to 3x - 4y + 1 = 0. So, their equations are given by

$$(y + 7) = \frac{m \pm \tan \alpha}{1 \mp \tan \alpha} (x - 2), \text{ where, m} = \text{Slope of BC} = \frac{3}{4} \text{ and } \tan \alpha = \frac{19}{8}$$
or, $(y + 7) = \frac{\frac{3}{4} + \frac{19}{8}}{1 - \frac{3}{4} \times \frac{19}{8}} (x - 2) \text{ and } y + 7 = \frac{\frac{3}{4} - \frac{19}{8}}{1 + \frac{3}{4} \times \frac{19}{8}} (x - 2)$

or,
$$y + 7 = -4 (x - 2)$$
 and $y + 7 = -\frac{52}{89} (x - 2)$

$$\Rightarrow$$
 4x + y = 1 and 52x + 89y + 519 = 0