
Wave Properties of Particles. Schrodinger Equation 
(Part - 1) 

 

 

Q.49. Calculate the de Broglie wavelengths of an electron, proton, and uranium 

atom, all having the same kinetic energy 100 eV. 

 

Ans. The kinetic eneigy is nonrelativistic in all three cases. Now 

 

 
 

using  Joules, we get 

 

λe = 122.6 pm  

 

λp = 2.86 pm 

 

 
 

(where we have used a mass number of 238 for the U nucleus). 

  

Q.50. What amount of energy should be added to an electron to reduce its de Broglie 

wavelength from 100 to 50 pm? 

 

Ans. From  

 

 
 

we find  

 

Thus  

 

Substitution gives  

  



Q.51. A neutron with kinetic energy T = 25 eV strikes a stationary deuteron (heavy 

hydrogen nucleus). Find the de Broglie wavelengths of both particles in the frame 

of their centre of inertia. 

 

Ans. We shall use M0 = 2Mn. The CM is moving with velocity  

 

 
 

with respect to the Lab frame. In the CM frame the velocity of neutron is 

 

 
 

and  

 

Substitution gives  

Since the momenta are equal in the CM frame the de Broglie wavelengths will also be  

 

equal. If we do not assume  we shall get 

 

 
  

Q.52. Two identical non-relativistic particles move at right angles to each other, 

possessing de Broglie wavelengths λ1 and λ2. Find the de Broglie wavelength of each 

particle in the frame of their centre of inertia. 

 

Ans. If  are the momenta of the two particles then their momenta in the CM frame 

will be  

 

 as the particle are identical. 

 

Hence their de Broglie wavelength will be 

 

 



 
  

Q.53. Find the de Broglie wavelength of hydrogen molecules, which corresponds to 

their most probable velocity at room temperature. 

 

Ans. In thermodynamic equilibrium, Maxwell’s velocity distribution law holds :  

 

 
 

φ (v) is maximum when 

 

 
 

The difines the most probable velocity, 

 

 
 

The de Broglie wavelength of H molecules with the most probable velocity is 

 

 
 

Substituting the appropriate value especially 

 

 we get 

 

λ = 126 pm 

  

Q.54. Calculate the most probable de Broglie wavelength of hydrogen molecules 

being in thermodynamic equilibrium at room temperature. 

 

Ans.  To find the most probable de Broglie wavelength of a gas in thermodynamic 

equilibrium we determine the distribution is λ corresponding to Maxwellian velocity 

distribution. 

 

It is given by 



 
 

(where - sign takes account of the fact that λ decreaes as v increases). Now 

 

 
 

 
 

Thus  

 

 
 

 
 

where  

 

This is maximum when 

 

 
 

or  

 

Using the result of the previous problem it is 

 

 
  

Q.55. Derive the expression for a de Broglie wavelength λ of a relativistic particle 

moving with kinetic energy T. At what values of T does the error in determining 

λ using the non-relativistic formula not exceed 1% for an electron and a proton? 

 

Ans. For a relativistic particle 

 

 



 

Squaring   

 

Hence  

 

 
 

If we use nonrelativistic formula, 

 

 
 

SO  

 

 
 

Thus   i,f the error is less than Δλ 

 

For electron the error is not more than 1 % if 

 

 
 

For a proton, the error is not more than 1 % if 

 

                    T ≤ 4 X 938 X 0.01 MeV 

 

i.e.                T ≤ 37.5 MeV. 

  

Q.56. At what value of kinetic energy is the de Broglie wavelength of an electron 

equal to its Compton wavelength? 

 

Ans. The de Broglie wavelength is  



 
 

and the Compton wavelength is 

 

 

The two are equal if  

 

or  

 

The corresponding kinetic energy is 

 

 
 

Here m0 is the rest mass of the particle (here an electron). 

  

Q.57. Find the de Broglie wavelength of relativistic electrons reaching the 

anticathode of an X-ray tube if the short wavelength limit of the continuous X-ray 

spectrum is equal to λsh= 10.0 pm? 

 

Ans.  For relativistic electrons, the formula for the short wavelength limit of X - rays will 

be 

 

 
 

or  

 

or  

 

or  



Hence  

  

Q.58. A parallel stream of monoenergetic electrons falls normally on a diaphragm 

with narrow square slit of width b = 1.0 μm. Find the velocity of the electrons if the 

width of the central diffraction maximum formed on a screen located at a distance l 

= 50 cm from the slit is equal to Δx = 0.36 mm.  

 

Ans. he first minimum in a Fraunhofer diffraction is given by (b is the width of the slit)   

 
 

Here 

 

 
 

Thus  

 

so  

  

Q.59. A parallel stream of electrons accelerated by a potential difference V = 25 V 

falls normally on a diaphragm with two narrow slits separated by a distance d = 

50μm. Calculate the distance between neighbouring maxima of the diffraction 

pattern on a screen located at a distance l = 100 cm from the slits. 

 

Ans.  From the Young slit foimula  

 

 
 

Substitution gives 

 

 
Q.60. A narrow stream of monoenergetic electrons falls at an angle of incidence θ = 

30° on the natural facet of an aluminium single crystal. The distance between the 

neighbouring crystal planes parallel to that facet is equal to d = 0.20 nm. The 

maximum mirror reflection is observed at a certain accelerating voltage V0. Find 



Vo, if the next maximum mirror reflection is known to be observed when the 

accelerating voltage is increased η = 2.25 times. 

 

Ans. From Bragg’s law, for the first case  

 

 
 

where no is an unknown integer/For the next higher voltage 

 

 
 

Thus  

 

or   

 

Going back we get 

 

 
 

Note : In the Bragg’s formula, θ is the glancing angle and not the angle of incidence. 

We have obtained correct result by taking θ to be the glancing angle. If θ is the angle of 

incidence, then the glancing angle will be 90 - θ. Then the final answer will be smaller  

 

by a factor  

  

Q.61. A narrow beam of monoenergetic electrons falls normally on the surface of a 

Ni single crystal. The reflection maximum of fourth order is observed in the 

direction forming an angle θ = 55° with the normal to the surface at the energy of 

the electrons equal to T = 180 eV. Calculate the corresponding value of the 

interplanar distance. 

 

Ans. Path difference is   

 

 



Thus for reflection maximum of the kth order 

 

 

 
 

Hence  

 

substitution with k = 4gives  

 

d = 0.232 

  

Q.62. A narrow stream of electrons with kinetic energy T = 10 keV passes through 

a polycrystalline aluminium foil, forming a system of diffraction fringes on a screen. 

Calculate the interplanar distance corresponding to the reflection of third order 

from a certain system of crystal planes if it is responsible for a diffraction ring of 

diameter D = 3.20 cm. The distance between the foil and the screen is l = 10.0 cm.  

 

Ans.  See the analogous problem with X - rays (5.156). The glancing angle is obtained 

from 

 

  

 

where D = diameter of the ring, l = distance from the foil to the screen. 

 

Then for the third order Bragg reflection 

 

 
 

Thus  



  

Q.63. A stream of electrons accelerated by a potential difference V falls on the 

surface of a metal whose inner potential is V1 = 15 V. Find: 

(a) the refractive index of the metal for the electrons accelerated by a potential 

difference V = 150 V; 

(b) the values of the ratio V/Vt  at which the refractive index differs from unity by 

not more than η = 1.0%. 

 

Ans. Inside the metal, there is a negative potential energy of - eVi}. (This potential energy 

prevents electrons from leaking out and can be measured in photoelectric effect etc.) An 

electron whose K.E. is eV outside the metal w ill find its K.E. increased to e (V + V i) in 

th e metal. Then 

 

(a) de Broglie wavelength in the metal 

 

 
 

Also de Broglie wavelength in vacuum 

 

 

Hence refractive index  

 

Substituting we get  

 

 
 

then  

 

or  

 

or   

 

For  



we get  

  

Q.64. A particle of mass m is located in a unidimensional square potential well with 

infinitely high walls. The width of the well is equal to l. Find the permitted values of 

energy of the particle taking into account that only those states of the particle's 

motion are realized for which the whole number of de Broglie half-waves are fitted 

within the given well. 

 

Ans.  The energy inside the well is all kinetic if energy is measured from the value inside.  

 

We require 

 

 
 

or   

  

Q.65. Describe the Bohr quantum conditions in terms of the wave theory: 

demonstrate that an electron in a hydrogen atom can move only along those round 

orbits which accommodate a whole number of de Broglie waves.  

 

Ans. The Bohr condition 

 

 
 

For the case when λ is constant (for example in circular orbits) this means 

 

2nr = nλ 

 

Here r is the radius of the circular orbit. 
 



Wave Properties of Particles. Schrodinger Equation 

(Part - 2) 

 

Q.66. Estimate the minimum errors in determining the velocity of an electron, a 

proton, and a ball of mass of 1 mg if the coordinates of the particles and of the 

centre of the ball are known with uncertainly 1µm. 

 
Ans. From the uncertainty principle (Eqn. (6.2b)) 

 

 
 

Thus  

 

Or  

 

For an electron this means an uncertainty in velocity of 116 m/s if  

 

For a proton          Δvx = 6.3 cm/s  

 

For a ball                Δvx = 1 x 10-20cm/s 

  

Q.67. Employing the uncertainty principle, evaluate the indeterminancy of the 

velocity of an electron in a hydrogen atom if the size of the atom is assumed to be l 

= 0.10 nm. Compare the obtained magnitude with the velocity of an electron in the 

first Bohr orbit of the given atom. 

 

Ans. As in the previous problem 

 

 
 

The actual velocity v1 has been calculated in problem 6.21. It is 

 

v1 = 2.21 x 106 m/s 

 

Thus  (They are of the same order of magnitude) 

  



Q.68. Show that for the particle whose coordinate uncertainty is Δx = λ/2π, where 

λ is its de Broglie wavelength, the velocity uncertainty is of the same order of 

magnitude as the particle's velocity itself. 

 

Ans.  If   

 

Thus  

 

Thus Δv is of the same order as v. 

  

Q.69. A free electron was initially confined within a region with linear dimensions l 

= 0.10 nm. Using the uncertainty principle, evaluate the time over which the width 

of the corresponding train of waves becomes η = 10 times as large.  

 

Ans.  Initial uncertainty   With this incertainty the wave train will spread out 

to a distance ηllong in time 

 

 
  

Q.70. Employing the uncertainty principle, estimate the minimum kinetic energy 

of an electron confined within a region whose size is l = 0.20 nm. 

 

Ans. Clearly   

 

Now    and so 

 

 
 

Thus  

  

Q.71. An electron with kinetic energy T ≈  4 eV is confined within a region whose 

linear dimension is l = 1 µm. Using the uncertainty principle, evaluate the relative 

uncertainty of its velocity. 

 

Ans. The momentum the electron is   



Uncertainty in its momentum is 

 

 
 

Hence relative uncertainty 

 

 
 

Substitution gives 

 

 
  

Q.72. An electron is located in a unidimensional square potential well with 

infinitely high walls. The width of the well is l. From the uncertainty principle 

estimate the force with which the electron possessing the minimum permitted 

energy acts on the walls of the well. 

 

Ans. By uncertainty principle, the uncertainty in momentum 

 

 
 

For the ground state, we expect  so  

 

 
 

The force excerted on the wall can be obtained most simply from 

 

 
  

Q.73. A particle of mass m moves in a unidimensional potential field U = kx2/2 

(harmonic oscillator). Using the uncertainty principle, evaluate the minimum 

permitted energy of the particle in that field. 

 
Ans. We write 

 

 



i.e. all four quantities are of the same order of magnitude. Then 

 

 
 

Thus we get an equilibrium situation (E = minimum) when 

 

 
 

and then  

 

Quantum mechanics gives 

 

 
  

Q.74. Making use of the uncertainty principle, evaluate the minimum permitted 

energy of an electron in a hydrogen atom and its corresponding apparent distance 

from the nucleus. 

 
Ans. Hence we write 

 

 
 

Then 

 

 
 

 
 

Hence    for the equilibrium state. 

 

and then  

  



Q.75. A parallel stream of hydrogen atoms with velocity v = 600 m/s falls normally 

on a diaphragm with a narrow slit behind which a screen is placed at a distance l = 

1.0 m. Using the uncertainty principle, evaluate the width of the slit S at which the 

width of its image on the screen is minimum. 

 
Ans. Suppose the width of the slit (its extension along they - axis) is δ. Then each 

electron has an uncertainty This translates to an uncertainty 

 

 We must therefore have 

 

 
 

For the image, hrodening has two sources. 

We write 

 

 
 

where Δ' is the width caused by the spreading of electrons due to their transverse 

momentum. 

 

We have 

 

 
 

Thus 

 

 
 

For large and quantum effect is unimportant. For small δ, quantum effects  

are large. But A (δ) is minimum when 

 

 
 

as we see by completing the square. Substitution gives 

 
  

Q.76. Find a particular solution of the time-dependent Schrodinger equation for a 

freely moving particle of mass m. 

 



Ans. The Schrodinger equation in one dimension for a free particle is 

 

 
 

we write  Then 

 

 
 

Then  

 

 
 

E must be real and positive if φ(x) is to be bounded everywhere. Then 

 

 
 

This particular solution describes plane waves. 

  

Q.77. A particle in the ground state is located in a unidimensional square potential 

well of length 1 with absolutely impenetrable walls (0 < x < l). Find the probability 

of the particle staying within a region   

 

Ans.  We look for the solution of Schrodinger eqn. with 

 

               (1) 

 

The boundary condition of impenetrable walls means 

 

 
 

The solution of (1) is 

 

 



Then  

 

 
 

A = 0 so 

 

 
 

Hence  

 

Thus the ground state wave function is 

 

 
 

We evaluate A by nomalization 

 

 
 

Thus  

 

Finally, the probability P for the particle to lie in  

 

 
 

 
 

 



 
 

 
  

Q.78. A particle is located in a unidimensional square potential well with infinitely 

high walls. The width of the well is 1. Find the normalized wave functions of the 

stationary states of the particle, taking the midpoint of the well for the origin of 

the x coordinate. 

 

Ans.  

 

Here   . Again wc have 

 

 
 

Then the boundary condition  

 

gives    

 

There are two cases. 

 

(1)  

 

gives even solution. Here 

 

 
 

and   

 

 
 



n = 0 , 1 , 2 , 3 , . . . 

 

This solution is even under x → - x . 

 

(2) B = 0,  

 

 
 

 This solution is odd. 

  

Q.79. Demonstrate that the wave functions of the stationary states of a particle 

confined in a unidimensional potential well with infinitely high walls are 

orthogonal, i.e. they satisfy the condition  
 

  

 

Here l is the width of the well, n are  

integers. 

 
Ans. The wave function is given in 6.77. We see that  

 

 
 

 
 

 
 

 
 



If n = n', this is zero as n and n' are integers. 

  

Q.80. An electron is located in a unidimensional square potential well with 

infinitely high walls. The width of the well equal to 1 is such that the energy levels 

are very dense. Find the density of energy levels dN/dE, i.e. their number per unit 

energy interval, as a function of E. Calculate dN/dE for E = 1.0 eV if l = 1.0 cm. 

 

Ans.  

We have found that   

 

Let N (E) = number of states upto E. This number is n. The number of states upto E +  

 

dE is N( E + dE) = N(E ) + d N ( E ) . Then dN (E ) - 1 and 

 

 
 

where ΔE = difference in energies between the nth & (n + 1)th level 

 

 
 

 
 

 
 

 
 

Thus 

 

 
 

\For the given case this gives   levels per eV 

  



Q.81. A particle of mass m is located in a two-dimensional square potential well 

with absolutely impenetrable walls. Find:  

(a) the particle's permitted energy values if the sides of the well are l1, and l2; 

(b) the energy values of the particle at the first four levels if the well has the shape 

of a square with side l. 

 

Ans.  
 

(a) Here the schroditiger equation is 

 

 
 

we take the origin at one of the comers of the rectangle where the particle can lie. Then 

the wave function must vanish for 

 

 
 

or      y = 0 or y = l2 . 

 

we look for a solution in the form 

 

 
 

cosines are not permitted by the boundary condition. Then 

 

 

and  

 

Here n1, n2 are nonzero integers, 

 

(b) If  then  

 

 
 

1st level :  

 



2nd level :  

 

3rd level :  

 

4th level :  

  

Q.82. A particle is located in a two-dimensional square potential well with 

absolutely impenetrable walls (0 < x < a, 0 < y < b). 

Find the probability of the particle with the lowest energy to be located within a 

region 0 < x < a/3.  

 

Ans. The wave function for the ground state is 

 

 
 

we find A by normalization 

 

 
 

Thus  

 

Then the requisite probability is 

 

 
 

  on doing the y integral 

 

 
 



Wave Properties of Particles. Schrodinger Equation 

(Part - 3) 

 

Q.83. A particle of mass m is located in a three-dimensional cubic potential well 

with absolutely impenetrable walls. The side of the cube is equal to a. Find: 

(a) the proper values of energy of the particle; 

(b) the energy difference between the third and fourth levels; 

(c) the energy of the sixth level and the number of states (the degree of degeneracy) 

corresponding to that level.  

 

Ans. We proceed axactly as in (6.81). The wave function is chosen in the form  

 = A sin k1x sin k2 y sin k3 z . 

 

(The origin is at one comer of the box and the axes of coordinates are along the edges.) 

The boundary conditions are that  for 

x = 0, x = a,  y = 0, y = a, z = 0, z = a 

 

This gives 

 

 
 

The energy eigenvalues are 

 

 
 

The first level is (1, 1, 1). The second has (1, 1, 2), (1, 2, 1) & (2, 1, 1). The third level 

is (1, 2, 2) or (2, 1, 2) or (2, 2, 1). Its eneigy is 

 

 
 

The fourth energy level is (1, 1, 3) or (1, 3, 1) or (3, 1, 1) 

 

Its eneigy is  

 



(b) Thus  

 

(c) The fifth level is (2, 2, 2). The sixth level is (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 

1, 2), (3, 2, 1) 

 

Its eneigy is 

 

 
 

and its degree of degeneracy is 6 (six). 

  

Q.84. Using the Schrodinger equation, demonstrate that at the point where the 

potential energy U (x) of a particle has a finite discontinuity, the wave function 

remains smooth, i.e. its first derivative with respect to the coordinate is 

continuous.  

 

Ans. We can for definiteness assume that the discontinuity occurs at the point x = 0. 

Now the schrodinger equation is 

 

 
 

We integrate this equation around x = 0 i.e., from  where  are 

small positive numbers. Then  

 

 
 

or   

 

Since the potential and the energy E are finite and ψ(x) is bounded by assumption, the  

 

integral on the right exists and  



 

Thus  

 

So  is continuous at x = 0 (the point where U (x) has a finite jump discontinuity.) 

  

Q.85. A particle of mass m is located in a unidimensional potential field U (x) 

whose shape is shown in Fig. 6.2, where U (0) = . Find:  

 

 
 

(a) the equation defining the possible values of energy of the particle in the region 

E < U0; reduce that equation to the form  

 

where Solving this equation by graphical means, demonstrate that the 

possible values of energy of the particle form a discontinuous spectrum; 

 

(b) the minimum value of the quantity l2U0 at which the first energy level appears 

in the region E < U0. At what minimum value of l2Uo does the nth level appear? 

 

Ans. 

 

 
(a) Starting from the Schrodinger equation in the regions l & II 



   (1) 

 

    (2) 

 

where U0 > E > 0 , we easily derive the solutions in I & II 

 

     (3) 

 

        (4) 

 

where  

 

The boundary conditions are 

 

        (5) 

 

and are continuous at x = /, and ψ must vanish at x = + . 

 

Then  

 

and  

 

so  

 

 
 

From this we get 

 

 

or  

 

 



 (6) 

 

 
 

Plotting the left and right sides of this equation we can find the points at which the 

straight lines cross the sine curve. The roots of the equation corresponding to the eigen 

values of energy Ei and found from the inter section points (kl)i , for which tan (kl)i < 0 

(i.e. 2nd & 4th and other even quadrants). It ii seen that bound states do not always exist. 

For the first bound state to appear (refer to the line (b) above) 

 

 
 

(b) Substituting, we get  

 

as the condition for the appearance of the first bound state. The second bound state will 

appear when Id is in the fourth quadrant The magnitude of the slope of the straight line 

must then be less than 

 

 

Corresponding to  

 

For n bound states, it is easy to convince one self that the slope of the appropriate  

 

straight line (upper or lower) must be less than 

 

 



 

Then  

 

Do not forget to note that for large n both + and - signs in the Eq. (6) contribute to 

solutions. 

  

Q.86. Making use of the solution of the foregoing problem, determine the 

probability of the particle with energy E = U0/2 to be located in the 

region  

 

Ans. 
 

 
 

and   

 

or   

 

It is easy to check that the condition of the boud state is satisfied. Also 

 

   

 

Then from the previous problem 

 

 
 

By normalization 

 

 



 
 

 
 

 
 

   

 

The probability of the particle to be located in the region x > l is 

 

 
 

 
 

 
  

Q.87. Find the possible values of energy of a particle of mass m located in a 

spherically symmetrical potential well U (r) = 0 for r < ro  and U (r) =  for r = r0, 

in the case when the motion of the particle is described by a wave function ψ(r) 

depending only on r. 

Instruction. When solving the Schrodinger equation, make the substitution ψ(r) = 

x (r)/r.  

 

Ans. The Schrodinger equation is 

 

 



 

when ψ depends on r only,  

 

If we put   

 

and Thus we get 

 

 
 

The solution is  

 

 
 

and    

 

(For r < r0 we have rejected a term 5 cos k r as it does not vanish at r = 0). Continuity of 

the wavefunction at r = r0 requires 

 

 
 

Hence  

  

Q.88. From the conditions of the foregoing problem find: 

(a) normalized eigenfunctions of the particle in the states for which ψ(r) depends 

only on r; 

(b) the most probable value rpr for the ground state of the particle and the 

probability of the particle to be in the region r < rpr. 

  

Ans. (a) The nomalized wave functions are obtained from the normalization 

 

 



 

 
 

 
 

Hence    

 

(b) The radial probability distribution function is 

 

 
 

For the ground state n = 1 

 

so  

By inspection this is maximum for . Thus  

The probability for the particle to be found in the region r < rpr is clearly 50 % as one 

can immediately see from a graph of sin2x. 

  

Q.89. A particle of mass m is located in a spherically symmetrical potential well U 

(r) = 0 for r < r0  and U (r) = U0  for r > 

(a) By means of the substitution ψ(r) = x(r)/r find the equation defining the proper 

values of energy E of the particle for E < U0, when its motion is described by a 

wave function ψ(r) depending only on r. Reduce that equation to the form  

 

 

(b) Calculate the value of the quantity  at which the first level appears.  

  

Ans.  If we put  

the equation for X(r) has the from  

 

which can be written as   



and  

 

where  

 

The boundary condition is 

 

 
 

These are exactly same as in the one dimensional problem in problem (6.85) Wc 

therefore omit further details 

  

Q.90. The wave function of a particle of mass in in a unidimensional potential field 

U (x) = kx2/2 has in the ground state the form ψ(x) = Ae-αx2, where A is a 

normalization factor and a is a positive constant. Making use of the Schrodinger 

equation, find the constant a and the energy E of the particle in this state.  
 

Ans.  The Schrodinger equation is  

 

We are given  

 

Then  

 

 
 

Substituting we find that following equation must hold 

 

 
 

since  the bracket must vanish identicall. This means that the coefficient of x2 as  

 

well the term independent of x must vanish. We get 

 

 



Putting k/m = ω2, this leads to  

  

Q.91. Find the energy of an electron of a hydrogen atom in a stationary state for 

which the wave function takes the form ψ(r) = A (1 + ar) e -αr, where A, a, and α are 

constants.  

 

Ans.  The Schrodinger equation for the problem in Gaussian units 

 

 
 

In MKS units we should read  

 

we put  (1) 

 

We are given that  

 

so  

 

 
 

    

 

Equating the coefficients of r2, r, and constant term to zero we get 

 

   (2) 

 

     (3) 

 

  (4) 

 

From (3) either a = 0,  



 

In the first case  

 

This state is the ground state. 

 

It n the second,  case  

 

 
 

This state is one with n = 2 (2s). 

  

Q.92. The wave function of an electron of a hydrogen atom in the ground state 

takes the form ψ(r) = Ae-r/r1, where A is a certain constant, r1 is the first Bohr 

radius. Find: (a) the most probable distance between the electron and the nucleus; 

(b) the mean value of modulus of the Coulomb force acting on the electron; 

(c) the mean value of the potential energy of the electron in the field of the 

nucleus.  

 

Ans. We first find A by normalization  

 

   

 

since the integral has the value 2. 

 

Thus  

 

(a) The most probable distance rpr is that value of r for which 

 

 
 

is maximum. This requires 

 

 



or   

 

(b) The coulomb force being given by  , the mean value o f its modulus is 

 

 
 

 
 

In MKS units we should read   

 

(c)   

 

In MKS units we should read  

  

Q.93. Find the mean electrostatic potential produced by an electron in the centre 

of a hydrogen atom if the electron is in the ground state for which the wave 

function is ψ(r) = Ae-r/r1, where A is a certain constant, r1 is the first Bohr radius.  

 

Ans. We find A by normalization as above. We get 

 

 
 

Then the electronic charge density is 

 

 
 

The potential  due to this charge density is 

 

 



 

so at the origin   

 

 
  

Q.94. Particles of mass m and energy E move from the left to the potential barrier 

shown in Fig. 6.3. Find: 

(a) the reflection coefficient R of the barrier for E > U0; 

(b) the effective penetration depth of the particles into the region x > 0 for E < U o, 

i.e. the distance from the barrier boundary to the point at which the probability of 

finding a particle decreases e-fold.  

 

 

Ans. (a) We start from the Schrodinger equation  

 

which we write as  

 

 
 

and  

 

 
 

It is convenient to look for solutions in the form 

 

 



 

 
 

In region I (x < 0), the amplitude of  is written as unity by convention. In II we  

 

expect only a transmitted wave to the right, B = 0 then. So 

 

 

The boundary conditions follow from the continuity of  

 

1 + R = A 

 

 
 

Then   

 

The reflection coefficient is the absolute square of R: 

 

 
 

(b) In this case  is unchanged in form but 

 

 
 

we must have B = 0 since otherwise ψ(x) will become unbounded as Finally 

 

 
 

Inside the barrier, the particle then has a probability density equal to 

 

 
 

This decreases to  of its value in  



 

 
  

Q.95. Employing Eq. (6.2e), find the probability D of an electron with energy E 

tunnelling through a potential barrier of width l and height U0  provided the 

barrier is shaped as shown: 

(a) in Fig. 6.4; 

(b) in Fig. 6.5.  

 

   

 

Ans. The formula is 

 

 
 

Here V(x2) = V(x1) = E and V(x) >E in the region x2 > x > x1. 

 

(a) For the problem, the integral is trivial 

 

 
 

(b) We can without loss of generality take x = 0 at the point the potential begins to 

climb. Then 

 

 



 

Then  

 

 
 

 
 

 
 

 
 

  

Q.96. Using Eq. (6.2e), find the probability D of a particle of mass m and energy E 

tunnelling through the potential barrier shown in Fig. 6.6, where U(x) = U0(1 — 

x2/l2). 

 

Ans.  The potential is    The turning points are 

 

 
 

Then   



 

 
 

  

 

The integral is 

 

 
 

Thus  
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