

DPP No. 55

Total Marks : 31

Max. Time : 33 min.

Topics : Application of Derivatives, Solution of Triangle, Vector	or	
Type of Questions		M.M. Min.
Single choice Objective (no negative marking) Q.1,2,3,4	Dbjective (no negative marking) Q.1,2,3,4 (3 marks, 3 min.)	
Assertion and Reason (no negative marking) Q.5	(3 marks, 3 min.)	[3, 3]
Subjective Questions (no negative marking) Q.6,7	(4 marks, 5 min.)	[8, 10]
Match the Following (no negative marking) Q.8	(8 marks, 8 min.)	[8, 8]

Let $\vec{a} = 2i + j - 2k$ and $\vec{b} = i + j$. If \vec{c} is a vector such that $\vec{a} \cdot \vec{c} = |\vec{c}|$, $|\vec{c} - \vec{a}| = 2\sqrt{2}$ and the angle 1.

between $\vec{a} \times \vec{b}$ and \vec{c} is 30° then $|(\vec{a} \times \vec{b}) \times \vec{c}|$ is equal to:

- (B) $\frac{3}{2}$ (A) $\frac{2}{2}$ (C) 2 (D) 3
- Let the centre of the parallelopiped formed by $\vec{PA} = \hat{i} + 2\hat{j} + 2\hat{k}$; $\vec{PB} = 4\hat{i} 3\hat{j} + \hat{k}$; 2. $\vec{PC} = 3\hat{i} + 5\hat{j} - \hat{k}$ is given by the position vector (7, 6, 2). Then the position vector of the point P (B) (6, 8, 2) (C) (1, 3, 4) (D) (2, 6, 8) (A) (3, 4, 1)
- If \vec{a} , \vec{b} , \vec{c} are coplanar vectors and \vec{a} is not parallel to \vec{b} then, 3.

 $\{(\vec{c} \times \vec{b}), (\vec{a} \times \vec{b})\} \vec{a} + \{(\vec{a} \times \vec{c}), (\vec{a} \times \vec{b})\} \vec{b}$ is equal to :

(A) $\{(\vec{a}\times\vec{b}),(\vec{a}+\vec{b})\}\vec{c}$ (B) $\{(\vec{a}\times\vec{b}),(\vec{a}\times\vec{b})\}\vec{c}$ (C) $\{(\vec{a}\times\vec{b}),(\vec{a}-\vec{b})\}\vec{c}$ (D) none of these

If $g(x) = 2f(2x^3 - 3x^2) + f(6x^2 - 4x^3 - 3) \forall x \in R$ and $f''(x) > 0, \forall x \in R$, then g(x) is increasing in the 4. interval

(A) $\left(-\infty, -\frac{1}{2}\right) \cup (0, 1)$ (B) $\left(-\frac{1}{2}, 0\right) \cup (1, \infty)$ (C) $(0, \infty)$ (D) none of these

Statement-1 : In any $\triangle ABC$, the minimum value of $\frac{r_1 + r_2 + r_3}{r}$ is equal to 9. 5.

Statement-2: In a $\triangle ABC$ if $\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}$, then $\frac{r_1 + r_2 + r_3}{r} = 9$.

- (A) Statement-1 is correct and statement-2 is correct and statement-2 is correct explanation of statement-1
- (B) Statement-1 and statement-2 both are correct but statement-2 is not correct explanation of statement-1
- (C) Statement-1 is false but statement-2 is true
- (D) Statement-1 is true but statement-2 is false
- (E) Statement-1 and Statement-2 both are False.

- 6. A spherical iron ball 8 inch. in diameter is coated with a layer of ice of uniform thickness. If the ice melts at the rate of 10 inch³/minute, how fast is the thickness of the ice decreasing when it is 2 inch. thick?
- 7. A circle with centre in the first quadrant is tangent to y = x + 10, y = x 6, and the y-axis. Let (h, k) be the centre of the circle. If the value of $(h + k) = a + b\sqrt{a}$ (where $(a, b \in Q)$, find the value of a + b.

8.	Match the column				
	Column - I		Column - II		
	(A)	If $\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular vectors where	(p)	$-\frac{3}{4}$	
		$\left \vec{a}\right = \left \vec{b}\right = 2$ and $\left \vec{c}\right = 1$, then $\frac{1}{12} [\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]$ is			
	(B)	If \vec{a}, \vec{b} are two unit vectors inclined at $\frac{\pi}{3}$, then	(q)	0	
		$[\vec{a} \vec{b} + \vec{a} \times \vec{b} \vec{b}]$ is			
	(C)	If \vec{b}, \vec{c} are orthogonal unit vectors and $\vec{b} \times \vec{c} = \vec{a}$, then	(r)	$\frac{4}{3}$	
		$[\vec{a} + \vec{b} + \vec{c} \vec{a} + \vec{b} \vec{b} + \vec{c}]$ is			
	(D)	If $[\vec{x} \ \vec{y} \ \vec{a}] = [\vec{x} \ \vec{y} \ \vec{b}] = [\vec{a} \ \vec{b} \ \vec{c}] = 0$ each vector being a	(s)	1	

non-zero vector, and no two vectors are collinear then $[\vec{x} \ \vec{y} \ \vec{c}]$ =

Answers Key

1. (B) **2.** (A) **3.** (B) **4.** (B) **5.** (B) **6.** $\frac{5}{72\pi}$ inch/minute **7.** 10 **8.** (A) \rightarrow (r) ; (B) \rightarrow (p) ; (C) \rightarrow (s) ; (D) \rightarrow (q)