CBSE Test Paper 02 Chapter 1 Relations and Functions

1. If
$$f(x) = \frac{1}{4x-3}$$
, then $D_f = 0$
a. $\left(\frac{3}{4}, \infty\right)$
b. R
c. R - $\left\{\frac{3}{4}\right\}$
d. $\left(-\infty, \frac{3}{4}\right)$

- 2. A relation R in a set A is called transitive, if
 - $\begin{array}{l} \text{a.} \ (a_1,a_2)\in R\Rightarrow (a_2,a_3)\in R \ \forall (a_1,a_2,a_3)\in A \\ \text{b.} \ (a_1,a_3)\in R, (a_2,a_3)\in R\Rightarrow (a_1,a_2)\in R \ \forall \ a_1,a_2,a_3\in A \\ \text{c.} \ (a_1,a_1)\in R, (a_2,a_2)\in R\Rightarrow (a_1,a_2)\in R \ \forall a_1,a_2\in A \\ \text{d.} \ (a_1,a_2)\in R, (a_2,a_3)\in R\Rightarrow (a_1,a_3)\in R \ \forall a_1,a_2,a_3\in A \end{array}$

3. If the mappings f: A \rightarrow B and g: B \rightarrow C are both bijective, then the mapping A \rightarrow C is

- a. one one but not onto
- b. one one and onto
- c. onto, but not one one
- d. neither one one nor onto
- 4. A function $f \; : \; X \;
 ightarrow \; Y$ is defined to be one one (or injective), if
 - a. the images of distinct elements of X under f are not distinct
 - b. the images of distinct elements of X under f are distinct
 - c. the images of distinct elements of X under f are identical
 - d. the images of distinct elements of X under f are not defined
- 5. A binary operation * : $R \ imes \ R \ o \ R$ defined by a * b = a + 2b is
 - a. Not well defined
 - b. Not associative

- c. A unary operation
- d. Commutative
- 6. A relation R in a set X is called an _____ relation, if no element of X is related to any element of X.
- 7. A relation R from a set X to a set Y is defined as a _____ of the cartesian product X \times Y.
- 8. A relation R in a set X is called _____ relation, if each element of X is related to every element of X.
- 9. If f: R \rightarrow R be given by f(x) = $(3 x^3)^{\frac{1}{3}}$, find fof (x) (1)
- 10. Give examples of two functions $f: N \to N$ and $g: N \to N$ such that gof is onto but f is not onto.
- 11. Let * be a binary operation defined by a * b = 2a + b 3. find 3 * 4
- 12. If $f : R \to R$ is defined by $f(x) = x^2 3x + 2$ write f(f(x))
- 13. Let $f: X \to Y$ be an invertible function. Show that f has unique inverse.
- 14. Check whether the relation R in R defined by $R = \{(a,b) : a < b^3\}$ is reflexive, symmetric or transitive.
- 15. Let L be the set of all lines in plane and R be the relation in L define if $R = \{(l_1, L_2) : L_1 is \perp to L_2\}$. Show that R is symmetric but neither reflexive nor transitive.
- 16. Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as R = {(a, b): b = a+1} is reflexive, symmetric or transitive.
- 17. Prove that the relation R in set A = {1, 2, 3, 4, 5} given by R = {(a, b) : Ia bl is even} is an equivalence relation.
- 18. Discuss the commutativity and associativity of binary operation '*' defined on A = Q -{1} by the rule a * b = a - b + ab for all a, $b \in A$ Also, find the identity element of * in A and hence find the invertible elements of A.

CBSE Test Paper 02 Chapter 1 Relations and Functions

Solution

1. c. $R - \left\{\frac{3}{4}\right\}$ **Explanation:** Domain of given function f(x) is given by all real values of x except those values of x for which 4x - 3 = 0. i.e. all reals except x = ³/₄.

- 2. d. $(a_1, a_2) \in R, (a_2, a_3) \in R \Rightarrow (a_1, a_3) \in R \forall a_1, a_2, a_3 \in A$ **Explanation:** A relation R on a non empty set A is said to be transitive if xRy and yRz \Rightarrow xRz, for all x,y,z \in A.
- 3. b. one one and onto

Explanation: If the mappings f: A \rightarrow B and g: B \rightarrow C are both bijective, then the mapping A \rightarrow C is defined as composition from A to C. And every composite mapping is bijective, i.e. one-one and onto.

- 4. b. the images of distinct elements of X under f are distinct **Explanation:** A function f: X \rightarrow Y is defined to be one – one (or injective), if f $x_1 \neq x_2 in A \Rightarrow f(x_1) \neq f(x_2)$ in A in B.
- 5. b. Not associative

Explanation: Here, a * (b * c) = a * (b + 2c) = a + 2(b+2c) = a + 2b + 4c and (a *b)*c = (a + 2b) *c = a + 2b + 2c. Since a * (b * c) \neq (a * b)* c. Therefore, *: $R \times R \rightarrow R$ is not associative.

6. fof(x) = f(f(x))

= (3-(3-x³))^{1/3}
=
$$(3-3+x^3)^{\frac{1}{3}}$$

= x
∴ fof(x) = x

- 7. empty
- 8. subset
- 9. universal

10. Let f(x) = x + 1

$$\therefore g(x) = egin{cases} x-1 & if \ x>1 \ 1 & if \ x=1 \end{cases}$$

These are two examples in which gof is onto but f is not onto.

11. 3*4=2(3)+4-3=7

- 12. Given that $f(x) = x^2 3x + 2$, $f(f(x)) = f(x^2 - 3x + 2)$, $= (x^2 - 3x + 2)^2 - 3(x^2 - 3x + 2) + 2$ $= x^4 + 9x^2 + 4 - 6x^3 - 12x + 4x^2 - 3x^2 + 9x - 6 + 2$ $= x^4 + 10x^2 - 6x^3 - 3x$ $f(f(x)) = x^4 - 6x^3 + 10x^2 - 3x$
- 13. Given: $f: X \rightarrow Y$ be an invertible function.

Thus f is 1 - 1 and onto and therefore f⁻¹ exists. Let g_1 and g_2 be two inverses of f. Then for all $y \in Y$, $fog_1(y) = I_y(y) = fog_2(y) \therefore fog_1(y) = fog_2(y)$ $\Rightarrow f[g_1(y)] = f[(g_2(y)])$ $\Rightarrow g_1(y) = g_2(y)$

 \therefore The inverse is unique and hence f has a unique inverse.

i. For (a, a), a < a³ which is false. ∴ R is not reflexive.
ii. For (a, b), a < b³ and (b, a), b > a³ which is false. ∴ R is not symmetric.
iii. For a < b² b < c³. Now b < c³ implies b³ < c⁹

Thus, we get a < c⁹, therefore (a,c) does not belong to R and hence R is not transitive. Therefore, R is neither reflexive, nor symmetric and nor transitive.

15. R is not reflexive, as a line L_1 cannot be \perp to itself i.e (L_1, L_1) \notin R

- 17. The given relation is R = {(a, b) : |a b| is even} defined on set A = {1, 2, 3, 4, 5}. **Reflexive** As |x - x| = 0 is even, $\forall x \in A$.
 - \Rightarrow (x, x) \in R, \forall x \in A
 - ∴ R is reflexive.

Symmetric Let (x, y) \in R = Ix - yI is even [by the definition of relation]

 $\Rightarrow |y-x|$ is also even. [$\because |a| = |-a|$, $orall \mathbf{a} \in$ R]

 \Rightarrow (y, x) \in R Thus, $(x, y) \in \mathbb{R}$ \Rightarrow (y, x) \in R, \forall x, y \in A : R is symmetric. **Transitive** Let $(x, y) \in R$ and $(y, z) \in R$ $\Rightarrow |x - y|$ is even and |y - z| is even. [by using definition of relation] Now, |x - y| is even \Rightarrow x and y both are even or odd. and |y-z| is even. \Rightarrow y and z both are even or odd. Clearly, two cases arises Case I When y is even. Then, both x and z are even. $\Rightarrow |x - z|$ is even. [:: difference of two even numbers is even] \Rightarrow (x, z) \in R Case II When y is odd. Then, both x and z are odd = |x - z| is even. [:: difference of two odd numbers is even] \Rightarrow (x, z) \in R Thus, $(x, y) \in R$ and $(y, z) \in R$

 \Rightarrow (x, z) \in R , \forall x, y, z \in A

. R is transitive.

Since, R is reflexive, symmetric and transitive, so it is an equivalence relation.

18. According to the question, We have a binary operation » defined on A = Q- {1} by the rule a * b = a - b + ab.

Commutative

Let a, b \in A are arbitrary elements. $\therefore a * b = a - b + ab$ and b * a = b - a + ba $\therefore a - b + ab \neq b - a + ba$ for some a, b \in A $\therefore a * b \neq b * a$, for some a, b \in A $\Rightarrow *$ is not commutative. ...(i)

Associativity

Let a, b, $\mathbf{c} \in \mathbf{A}$ are arbitrary elements.

Then a*(b*c) = a*(b-c+bc)= a-(b-c+bc)+a(b-c+bc) = a - b + c - bc + ab - ac + abc(a * b) * c = (a - b + ab) * c=(a-b+ab)-c+(a-b+ab)c= a - b + ab - c + ac - bc + abc= a - b - c - bc + ab + ac + abc a * (b * c) \neq (a * b) * c for some a, b, c \in A \Rightarrow * is not associative.(ii) From equation (i) and (ii) * is neither commutative nor associative. **Identity element** Let e be the identity element of * in A. \Rightarrow we have a * e = a = e * a, $\forall a \in A$ Consider. a * e = a \Rightarrow a - e + ae = a \Rightarrow e(a - 1) = 0 \Rightarrow e = 0 [$::a \in A$, $:a \neq 1$ and so divide both sides by a -1] Substitute, e = 0 in $e^* a = a$ \Rightarrow 0 * a = a \Rightarrow 0 - a + 0 = a \Rightarrow -a = a, which is not true for some $a \in A$. : Identity element does not exist

: A does not have any invertible element.