SIGNALS AND SYSTEMS TEST I

Number of Questions: 35

Directions for questions 1 to 35: Select the correct alternative from the given choices.

- **1.** The step response of the system
 - $y[n] = \beta y[n-1] + x[n], -1 < \beta < 1$ If the initial condition is y[-1] = 1 $(1 + \beta^{n+2})$

(A)
$$\frac{(1+p)}{(1-\beta)}u[n]$$

(B)
$$\frac{(1-\beta^{n+2})}{(1-\beta)}u[n]$$

(C)
$$\left(\frac{1-\beta^{n+1}}{1-\beta}\right)u[n]$$

(D)
$$\beta^{n+1}u[n] - \frac{1+\beta^{n+1}}{1-\beta}u[n]$$

- 2. If a cosine signal is multiplied with a sinc signal then the resultant frequency characteristic look like _____.
 - (A) Band pass filter (B) Low pass filter
 - (C) High pass filter (D) All pass filter
- 3. A random variable is known to have a cumulative distribution function $F_x(x) = u[x] \left[1 \frac{x^2}{a} \right]$ its density

function is _____

(A)
$$u(x) - \frac{x}{a}\delta(x)$$
 (B) $u(x)\frac{2x}{a}e^{\frac{-x^2}{a}}$
(C) $u(x)\left[1 - \frac{x^2}{a}\right]\delta(x)$ (D) $\delta(x) - \left(\frac{2x}{a}\right)u(x)$

4. The impulse response of a discrete time system is given by $h[n] = \frac{1}{4} \left[\delta[n] + \delta[n-4] \right]$

The magnitude of the response can be expressed as

(A)
$$\frac{1}{4} |\cos 4\Omega|$$
 (B) $|\cos 4\Omega|$
(C) $\frac{1}{2} |\cos 2\Omega|$ (D) $|\cos 2\Omega|$

5. Match list -I & list - II

	List – I		List – II
1.	Odd signal	(P)	$x(n) = \left(\frac{1}{2}\right)^n u(n)$
2.	Energy signal	(Q)	x(-n) = -x(n)
3.	Periodic signal	(R)	x(t) u(t)
4.	Causal signal	(S)	x(n) = x(n + N)

- (A) 1-Q, 2-P, 3-S, 4-R(B) 1-S, 2-R, 3-Q, 4-P(C) 1-S, 2-R, 3-P, 4-Q(D) 1-R, 2-P, 3-Q, 4-S
- 6. The correct relation is

(A)
$$x(bt) \xleftarrow{F.T} bX(\omega/b)$$

(B) $x(bt) \xleftarrow{F.T} bX(b\omega)$

(C)
$$x(t/b) \xleftarrow{F.T} bX(\omega/b)$$

- (D) $x(bt) \xleftarrow{F.T} 1/b X(\omega/b)$
- 7. Match list I & List II

	List – I		List – II
(P)	y(n + 4) + y(n + 2) + y(n) = 4x(n + 4) + x(n)	1	Linear, time – invariant, dynamic
(Q)	(n2 + 1) y2(n) + y(n) = 4x2 (n)	2	Non – linear, time – variable, dynamic
(R)	y(n + 3) + y(n + 1) = 4x(n + 1)	3	Non – linear, time – variable, memoryless
(S)	y(n + 3) + ny(n) = 3nx(n)	4	Linear, time – variable, dynamic
		5	Non – linear, time – invariant, dynamic

Codes

(A) P-2 Q-3 R-5 S-1(B) P-2 Q-5 R-1 S-4(C) P-3 Q-5 R-2 S-1(D) P-3 O-2 R-5 S-4

8. A linear system has the transfer function $H(j\omega)$ 1

$$=\overline{(j\omega+2)}$$

When it is subjected to an input white noise process with a constant spectral density '*A*' the spectral density of the output will be _____.

(A)
$$\frac{A}{(j\omega+2)}$$
 (B) $\frac{A}{\sqrt{\omega^2+4}}$
(C) $\frac{A}{(\omega^2+4)}$ (D) $\frac{A}{(\omega^2+2)}$

- 9. Consider two signals $x_1(t) = e^{j20t}$ and $x_2(t) = e^{(-2+j)t}$ Which one of the following statement is correct.
 - (A) Both $x_1(t)$ and $x_2(t)$ are periodic.
 - (B) $x_1(t)$ is periodic but $x_2(t)$ is not periodic
 - (C) $x_2(t)$ is periodic but $x_1(t)$ is not periodic
 - (D) Neither $x_1(t)$ nor $x_2(t)$ is periodic
- 10. Period of the sinusoidal signal

$$x[n] = 10 \cos[0.5\pi n]$$
 is _____.
(A) 3 (B) 4

Section Marks: 90

3.6 | Signals and Systems Test 1

11. Which one of the following is a Dirichlet condition?

(A) $\int_{t_1} |x(t)| < \infty$

- (B) signal x(t) must have a finite number of Maxima and minima in the expansion interval.
- (C) x(t) can have an infinite number of finite discontinuities in the expansion interval.
- (D) $x^2(t)$ must be absolutely summable.
- 12. A random sinusoidal signal $x(t) = \sin(\omega_o t + \phi)$ where a random variable ' ϕ ' is uniformly distributed in the range $\pm \frac{\pi}{2}$. The mean value of x(t) is

(A)
$$\frac{2 \cos \omega_o t}{\pi}$$
 (B) $\frac{2 \sin \omega_0 t}{\pi}$
(C) zero (D) $\frac{2}{\pi}$

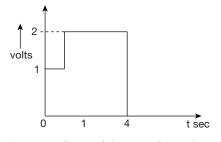
13. Consider the following statements regarding a linear discrete time system.

$$H(z) = \frac{z^2 + 2}{(z+1)(z-0.2)}$$

- (1) The initial value h(0) of the impulse response is -10.
- (2) The system is stable
- (3) The steady state output is zero for a sinusoidal discrete time input of frequency equal to one fourth the sampling frequency.

The correct statements are

- (A) 1, 2 and 3 (B) 1 and 2
- (C) 2 and 3 (D) 1 and 3
- **14.** The discrete time system described by $y[n] = x(n^2)$ is
 - (A) causal, linear and time varying.
 - (B) non Causal, linear and time variant.
 - (C) causal, non linear, and time varying
 - (D) non causal, non linear and time variant.
- 15.



The Laplace transform of the waveform shown in the figure is _____.

(A) $\frac{1}{s} \Big[1 + e^{-s} - 2e^{-4s} \Big]$ (B) $\frac{1}{s} \Big[1 + e^{s} - 2e^{4s} \Big]$

(C)
$$\frac{1}{s} \Big[1 + e^{-s} - 2e^{+4s} \Big]$$
 (D) $\frac{1}{s} \Big[1 + e^{+s} - 2e^{-4s} \Big]$

- **16.** The sum of two or more arbitrary sinusoids is
 - (A) Periodic under certain conditions
 - (B) Never periodic
 - (C) Always periodic
 - (D) Periodic only if all the sinusoids are identical in frequency and phase.
- 17. The Nyquist rate for the signal
 - $x(t) = \cos 1000\pi t + 4\sin 3000\pi t$
 - (A) 2 KHz (B) 3 KHz
 - (C) 6 KHz (D) 1 KHz
- 18. Magnitude & phase of the given network is

(A)
$$\frac{1}{\omega^2}$$
, 0
(B) $\frac{1}{\omega^2}$, $\frac{\pi}{2}$
(C) $\frac{1}{\omega^2}$, π
(D) $-\frac{1}{\omega^2}$, 0

- **19.** If a LTI system *s* is given with impulse response h[n] and Z transform H(z) and
 - (1) h[n] is real
 - (2) h[n] is left sided
 - (3) H(Z) has one of its poles at a non real location on the circle defined by |Z| = 2
 - (4) H(Z) has two zeros
 - Then the system S is
 - (A) non causal & unstable
 - (B) stable & causal
 - (C) non causal & stable
 - (D) unstable & causal
- **20.** If x(t) be a signal with Nyquist rate ω_0 . Then the Nyquist rate for the signal $y(t) = x^2(t) \cos \omega_0 t + x^2(t) \sin \omega_0 t$ is (A) $8\omega_0$ (B) $2\omega_0$
 - (C) $3\omega_0$ (D) $4\omega_0$
- **21.** Two systems $S_1 \& S_2$ are cascaded and their input output relationship is given as

 $S_{1}: y_{1}[n] = 3x_{1}[n-2] + 4x_{1}[n-4]$ $S_{2}: y_{2}[n] = 5x_{2}[n-3] + 3x_{2}[n-5] + 7x_{2}[n-7]$ If the overall system is *S*, then the overall impulse response *h*[*n*] for the system *S* is ____.

- (A) [0, 0, 0, 0, 0, 15, 20, 9, 21, 12, 0, 28] \uparrow
- (B) [0, 0, 0, 0, 0, 15, 0, 29, 0, 33, 0, 28]
- (C) [15, 0, 29, 0, 33, 0, 28]
 ↑
 (D) [0, 0, 0, 0, 15, 0, 33, 0, 29, 0, 28]

22. A signal
$$x(t)$$
 is given as

$$x(t) = \sin\left(\frac{3}{8}t + 30^\circ\right) + \cos\left(\frac{3}{4}t + 45^\circ\right)$$

- is periodic. The harmonics present in x(t) are
- (A) Only 1st Harmonic

+∞

- (B) 1st and 2nd Harmonic
- (C) 2^{nd} and 3^{rd} Harmonics
- (D) 1 and and 3^{rd} Harmonics
- **23** Time delay of a sequence x[n] is given by

$$D = \frac{\sum_{n=-\infty}^{\infty} nx[n]}{\sum_{n=-\infty}^{+\infty} x[n]}. \text{ For } x[n] = \left(\frac{1}{3}\right)^n u[n],$$

value of D at $\omega = 0$ is (A) 2/3

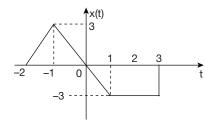
- (C) 1/2 (D) 2
- **24.** *N*-point DFT of x[n] = u[n-N] is

(A)
$$X[k] = \begin{cases} 0 & \text{for } k \neq 0 \\ N & \text{for } k = 0 \end{cases}$$
 (B)
$$X[k] = 0 \text{ for all } k$$

(C)
$$X[k] = N \text{ for all } k$$
 (D)
$$X[k] = \begin{cases} N & \text{for } k \neq 0 \\ 0 & \text{for } k = 0 \end{cases}$$

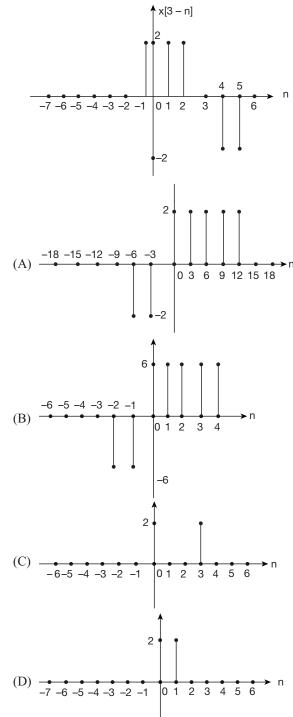
(B) 1

- **25.** A signal x(t) has a duration of 5ms and an essential bandwidth of 25KHz and it is desirable to have frequency resolution of 125Hz in the DFT. The period N_o for discrete signal x[n] is _____.
 - (A) 100 (B) 200 (C) 400 (D) 800
- **26.** The phase spectrum of a function is
 - (A) discrete function
 - (B) odd function
 - (C) symmetric function
 - (D) anti-symmetric function
- 27. *x*[*n*] is a real periodic sequence, with period *N* and fourier co efficient of *x*[*n*] is given as
 - $C_{k} = a_{k} + jb_{k}$, if a_{k} , b_{k} are real then
 - (A) $a_{-k} = -a_k, b_{-k} = b_k$ (B) $a_{-k} = a_k, b_{-k} = -b_k$ (C) $a_{-k} = -a_k, b_{-k} = -b_k$ (D) $a_{-k} = a_k, b_{-k} = b_k$
- **28.** The equation for the waveform shown in the figure is _____.



- (A) 3(t+2)u(t+2) 6(t+1)u(t+1) + 3(t-1)u(t-1) + 3u(t-3)
- (B) 3(t+2)u(t+2) 3(t+1)u(t+1) + 2(t-1)u(t-1) + 3U(t-3)
- (C) 3(t+2)u(t+2) + 3(t+1)u(t+1) + 3(t-1)u(t-1) 2u(t-3)
- (D) None of the above

- **29.** The impulse response of a continuous time LTI system is $h(t) = e^{-4t}u(4-t)$ The system is
 - (A) stable but not causal
 - (B) causal but not stable
 - (C) causal and stable
 - (D) neither causal nor stable
- **30.** The discrete time signal x[3 n] shown below The signal x [3n] is



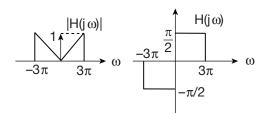
3.8 | Signals and Systems Test 1

31. Consider the three LTI systems with impulse response $h_1(t) = u(t)$

 $h_{2}(t) = -2\delta(t) + 5e^{-2t}u(t)$ $h_{3}(t) = 2te^{-t}u(t)$ The response to x(t) = cost of above systems are $y_{1}(t) = x(t) * h_{1}(t)$ $y_{2}(t) = x(t) * h_{2}(t)$ $y_{3}(t) = x(t) * h_{3}(t)$ which of the following gives same response
(A) $y_{1}(t) \& y_{2}(t)$ (B) $y_{2}(t) \& y_{3}(t)$ (C) $y_{3}(t) \& y_{1}(t)$ (D) All $y_{1}(t), y_{2}(t) \& y_{3}(t)$

Common data for questions 32 and 33:

The frequency response $H(j\omega)$ of a continuous time filter is shown below.



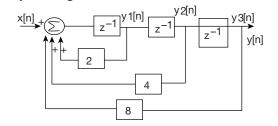
32. If the input to this system is

 $x(t) = \cos(2\pi t + \theta)$, then output will be

- (A) $\frac{-2}{3}\sin(2\pi t + \theta)$ (B) $\frac{2\pi}{3}\sin(2\pi t + \theta)$ (C) $\frac{2}{3\pi}\sin(2\pi t + \theta)$ (D) None of these
- **33.** If the input to the system is $x(t) = cos(4\pi t + \theta)$. Then the output will be

(A)
$$-\frac{4\pi}{3}\cos(4\pi t + \theta)$$
 (B) $\frac{-4}{3}\cos(4\pi t + \theta)$
(C) $\frac{4}{3\pi}\cos(4\pi t + \theta)$ (D) 0

Statement for Linked Answer questions 34 and 35: An LTI system is given below for $n \ge 0$



34. Transfer function H(Z) for the system is

(A)
$$\frac{z^{-3}}{2z^{-2}+4z^{-3}+8}$$

(B) $\frac{1}{z^3-2z^2-4z+8}$

(C)
$$\frac{1}{z^3 + 2z^2 + 4z - 8}$$

(D) $\frac{Z^{-3}}{1 - 2z^{-1} - 4z^{-2} - 8z^{-3}}$

35. If
$$x[n] = \delta[n]$$
 then $y_3[n]$ is
(A) $[1, 2, 8, 16]$ (B) $\left[\frac{1}{32}, \frac{1}{16}, \frac{1}{16}, \frac{1}{8}, \dots, \frac{1}{32}\right]$
(C) $\left[\dots, \frac{1}{32}, \frac{1}{16}, \frac{1}{16}, \frac{1}{8}\right]$ (D) $[0, 0, 0, 1, 2, 8, 16, \dots]$
 \uparrow

Answer Keys											
1. B	2. A	3. D	4. C	5. A	6. D	7. B	8. C	9. B	10. B		
11. B	12. B	13. C	14. B	15. A	16. A	17. B	18. C	19. C	20. D		
21. B	22. B	23. C	24. A	25. C	26. C	27. B	28. A	29. D	30. D		
31. D	32. A	33. D	34. B	35. D							

HINTS AND EXPLANATIONS

1. By taking z - transform on both sides, $Y(z) = \beta[(z^{-1} Y(z) + y(-1)] + X(z)$ $(1 - \beta z^{-1}) Y(z) = \beta + \frac{1}{1 - z^{-1}} \qquad [\because x[n] \text{ is unit step}]$ $Y(z) = \frac{\beta}{1 - \beta z^{-1}} + \frac{1}{(1 - \beta z^{-1})(1 - z^{-1})}$ By taking Inverse z - transform $y[n] = \beta \cdot \beta^n u[n] + \frac{(1 - \beta^{n+1})}{(1 - \beta)} u[n]$

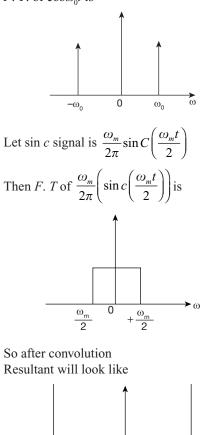
$$= \beta^{n+1}u[n] + \left(\frac{1-\beta^{n+1}}{1-\beta}\right)u[n]$$
$$= \frac{\left(1-\beta^{n+2}\right)}{\left(1-\beta\right)}u[n]$$
Choice (B)

2. Fourier transform of cosine signal is delta function.

 \Rightarrow Fourier transform of sinc signal is gate function.

 \Rightarrow We know that multiplication in time domain is equal to convolution in frequency domain.

When delta function is convoluted with gate sig- \Rightarrow nal then the gate signal will itself present at the frequency where delta function was present. Let cosine signal is $\cos \omega_t$ F. T. of $\cos \omega_0 t$ is



So like band pass filter.

3. CDF =
$$F_{\chi}(x) = u[x] \left[1 - \frac{x^2}{a} \right]$$

We know that

$$\frac{d}{dx}(CDF) = pdf$$

$$\frac{d}{dx}F_x(x) = \frac{d}{dx}\left[u[x]\left(1 - \frac{x^2}{a}\right)\right]$$

$$= \left[\frac{d}{dx}u(x)\right]\left[1 - \frac{x^2}{a}\right] + u(x)\frac{d}{dx}\left(1 - \frac{x^2}{a}\right)$$

$$= \delta(x)\left[1 - \frac{x^2}{a}\right] + u(x)\left(\frac{-2x}{a}\right) \because \left[\delta(x) \cdot \frac{x^2}{a} = 0\right]$$

$$= \delta(x) - \frac{2x}{a}u(x)$$
Choice (D)

4.
$$h[n] = \frac{1}{4} [\delta(n) + \delta(n-4)]$$

Taking *z* – transform $H(z) = \frac{1}{4} [1 + z^{-4}]$
Put *z* = $e^{j\Omega}$
 $H(e^{j\Omega}) = \frac{1}{4} [1 + e^{-j4\Omega}]$
 $= \frac{1}{4} e^{-j2\Omega} [e^{+j2\Omega} + e^{-j2\Omega}]$
 $H(e^{j\Omega}) = \frac{1}{2} e^{-j2\Omega} [\cos 2\Omega]$
 $H(e^{j\Omega}) = \frac{1}{2} |e^{-j2\Omega}| |\cos 2\Omega|$
 $= \frac{1}{2} |\cos 2\Omega|$ Choice (C)

5. odd signal = x(n) = -x(-n)Energy signal is absolutely summable

$$\sum_{n=0}^{\infty} \left| \left(\frac{1}{2} \right)^n u(n) \right| < \infty$$

periodic signal satisfies x(n) = x(n + N)Where N = Fundamental period Causal system is one which output at any time depends only on present and/ or past values of input. Choice (A)

- **6.** By scaling property $x(bt) \xleftarrow{FT}{h} \frac{1}{h} X\left(\frac{\omega}{h}\right)$ Choice (D)
- 7. Choice (B)

8.
$$S_0(\omega) = |H(\omega)|^2 Si(\omega)$$

= $\left[\frac{1}{(\omega^2 + 4)}\right]A = \frac{A}{(\omega^2 + 4)}$ Choice (C)

- 9. $x_1(t)$ is periodic with period $\frac{\pi}{10}$ but $x_2(t)$ is not periodic. Choice (B)
- 10. $x[n] = 10\cos[0.5\pi n]$ $\frac{2\pi}{N} = \omega$ Where N = time period So, $N = \frac{2\pi}{0.5\pi} = 4$. Choice (B)

11. Choice (B)
12.
$$\overline{x(t)} = \overline{\sin(\omega_0 t + \varphi)}$$

 $= \int_{-\infty}^{+\infty} \sin(\omega_0 t + \varphi) \int \varphi(\varphi) d\varphi$
 $= \frac{1}{\pi} \int_{-\pi/2}^{+\pi/2} \sin(\omega_0 t + \varphi) d\varphi$

3.10 | Signals and Systems Test 1

$$= \frac{1}{\pi} \left[-\cos\left(\omega_0 t + \varphi\right) \right]_{-\frac{\pi}{2}}^{+\frac{\pi}{2}}$$
$$= \frac{1}{\pi} \left[-\cos\left(\omega_0 t + \frac{\pi}{2}\right) + \cos\left(\omega_0 t - \frac{\pi}{2}\right) \right]$$
$$= \frac{1}{\pi} \left[\sin \omega_0 t + \sin \omega_0 t \right] = \frac{2 \sin \omega_0 t}{\pi} \quad \text{Choice (B)}$$

13. (1) Roots of H(z) are at z = -1 and z = 0.2 so the one root is inside the unit circle and second root is on the unit circle. So system is marginally stable.

(2) Initial value of
$$h(t)$$
 by Initial value theorem

$$\lim_{t \to 0}^{h(t)} = \lim_{Z \to \infty}^{H(z)} = \lim_{Z \to \infty} \frac{z^2 + 2}{(z+1)(z-0.2)}$$

$$= \lim_{Z \to \infty} \frac{1 + \frac{2}{z^2}}{(1+\frac{1}{z})(1-\frac{0.2}{Z})} = 1. \quad \text{Choice (C)}$$

14. $y[n] = x[n^2]$

(i) For n = -2, y(-2) = x(4) Since, y[n] depends on future states also, it is a non - causal system
(ii) let x₃[n] = ax₁[n] + bx₂[n] y₃[n] = x₃[n²] = ax₁[n²] + bx₂[n²] = ay₁[n] + by₂[n]
∴ system is linear
(iii) x₁[n] ⇒ y₁[n] = x₁[n²] Let x₂[n] = x₁[n - n₀]
⇒ y₂[n] = x₂[n²]

$$= x_1[n^2 - n_0]$$

$$y_1[n - n_0] = x_1[n - n_0]^2$$

$$y_2[n] \neq y_1[n - n_0]$$

$$\therefore \text{ The system is time variant.} \qquad \text{Choice (B)}$$

15. Let v(t) = u(t) + u(t-1) - 2u(t-4)By taking laplace transform

$$V(s) = \frac{1}{s} + \frac{e^{-s}}{s} \frac{-2e^{-4s}}{s}$$
$$= \frac{1}{s} \Big[1 + e^{-s} - 2e^{-4s} \Big].$$
 Choice (A)

16. Periodic under certain conditions.

17. $x(t) = \cos 1000\pi t + 4\sin 3000\pi t$ Maximum frequency component

$$f_m = \frac{3000\pi}{2\pi} = 1500 \text{ Hz}$$

 $f_{Nyquist} = 2f_m$
 $= 2 \times 1500 = 3000 \text{ Hz or 3 KHz.}$

Choice (B)

Choice (A)

18.
$$H(s) = H_1(s) \times H_2(s) = \frac{1}{s} \times \frac{1}{s}$$
$$H(j\omega) = \frac{1}{j\omega} \times \frac{1}{j\omega} = \frac{1}{-\omega^2} = \left|\frac{1}{\omega^2}\right| e^{+j\pi}$$
$$So \left|H(j\omega)\right| = \frac{1}{\omega^2}$$
And $H(j\omega) = \pi$.

- **19.** \Rightarrow Since h[n] is left sided sequence so system S is <u>non-causal</u> because ROC is inside the circle.
 - ⇒ For stability, ROC should include unit circle & if it is left sided sequence & one of its poles at |Z| = 2 so ROC includes the unit circle so stable.

Choice (C)

Choice (C)

20. $y(t) = x^2(t) \cos \omega_o t + x^2(t) \sin \omega_o t$ Let $x^2(t) = Z(t)$

Then Z(t) will have double frequency in comparison to x(t)

Let maximum component present in Z(t) is ω_z then $\omega_z = \omega_0 = 2 \omega_x$

Where ω_x = maximum frequency component present in signal x(t)

$$Y(\omega) = \frac{1}{2} \left[Z(\omega_z + \omega_o) + Z(\omega_z - \omega_o) \right] + \frac{j}{2} \left[Z(\omega_z + \omega_o) \right]$$

 $-(\omega_z - \omega_o)]$ Maximum frequency component present is $Y(\omega)$ is $(\omega + \omega_o)$

21.
$$y_1[n] = 3x_1[n-2] + 4x_1[n-4]$$

 $y_2[n] = 5x_2[n-3] + 3x_2[n-5] + 7x_2[n-7]$
 $Y_1[z] = 3z^{-2} X_1(z) + 4z^4 X_1(z)$
 $Y_2(z) = 5z^{-3} X_2(Z) + 3z^{-5} X_2(z) + 7z^{-7} X_2(z)$
 $H_1(z) = 3z^{-2} + 4z^{-4}$
 $H_2(z) = 5z^{-3} + 3z^{-5} + 7z^{-7}$
 $H_1(z) \& H_2(z)$ are cascaded
 $H(z) = H_1(z) H_2(z)$
 $= (3z^{-2} + 4z^{-4}) (5z^{-3} + 3z^{-5} + 7z^{-7})$
 $= 15z^{-5} + 9z^{-7} + 21z^{-9} + 20z^{-7} + 12z^{-9} + 28z^{-11}$
 $H(z) = 15z^{-5} + 29z^{-7} + 33z^{-9} + 28z^{-11}$
 $h[n] = [...0, 0, 0, 0, 0, 15, 0, 29, 0, 33, 0, 28, 0, 0...]$
 $h[n] = [0, 0, 0, 0, 0, 15, 0, 29, 0, 33, 0, 28]$
Choice (B)
22. ∵ $x(t)$ is periodic, so $x(t)$ is periodic with fundamental

period $\omega_0 = \text{LCM of}\left(\frac{3}{8}, \frac{3}{4}\right)$ Fundamental period $\omega_0 = \frac{3}{8}$

&
$$\omega_1 = \frac{3}{8} \& \omega_2 = \frac{3}{4}$$

Signals and Systems Test 1 | 3.11

Choice (A)

So Harmonic =
$$\frac{\omega_1}{\omega_0}$$
 and $\frac{\omega_2}{\omega_0}$
= 1st and 2nd Harmonics. Choice (B)

23. Let $X(e^{j\omega}) \xleftarrow{f} x[n]$

From the differentiation in frequency property of DTFT

$$\sum_{n=-\infty}^{+\infty} nx[n]e^{-j\omega n} = \frac{jdX(e^{j\omega})}{d\omega}$$

So,
$$\sum_{-\infty}^{+\infty} nx[n] = \frac{J \cdot d \times (e^{j\omega})}{dw}\Big|_{\omega=0}$$
 (1)

DFTF of x[n] is $x\left[e^{j\omega}\right] = \sum_{n=0}^{+\infty} x[n]e^{-j\omega n}$

Choice (C)

24. As we know that *N*-point DFT of x[n] is $X[k] = \sum_{n=0}^{N-1} x[n] \omega_{N}^{kn} = \sum_{n=0}^{N-1} \omega_{N}^{kn}$

$$\frac{1-\omega_{N}^{kn}}{1-\omega_{N}^{k}} = 0, k \neq 0$$
$$\implies \omega_{N}^{kn} = e^{-j\left(\frac{2\pi}{N}\right)kN} = e^{-jk2\pi} = 1$$

And
$$X[0] = \sum_{n=0}^{N-1} \omega_N^{\circ} = \sum_{n=0}^{N-1} 1 = N$$
 for $k = 0$.

25.
$$f_0 = 125$$
Hz
So $T_0 = \frac{1}{125} = 8$ ms
Since signal duration is of 8ms.

So for 3ms, we use padding.

Bandwidth B = 25KHz

So sampling frequency $f_s = 2B = 50$ KHz

So
$$N_o = \frac{f_s}{f_0} = \frac{50 \times 10^3}{125} = 400.$$
 Choice (C)

- 26. Phase spectrum of a function is symmetric function. Choice (C)
- 27. Choice(B)
- **28.** at t = -2, the slope of the signal changes from 0 to 3, for a change in slope 3. At t = -1, the slope of the signal changes from 3 to -3, for a changes is slope of -6At t = 1 the slope becomes 0 for a change of 3 At t = 3, the function steps from -3 to 0 for a change in amplitude of 3, Hence equation for x(t) is 3(t+2) u(t+2) - 6(t+1) u(t+1) + 3(t-1) u(t-1) +3u(t-3)Choice (A)
- **29.** Not causal because $h(t) \neq 0$ for t < 0,

unstable because
$$\int_{-\infty}^{+\infty} |h(t)| dt = \infty$$
. Choice (D)

30. Let
$$x[3 - n] = v[n]$$

 $n = 0, x[3 - 0] = v[0] \Rightarrow x[3] = v[0] = 2$
 $n = 1, x[3 - 1] = v[1] \Rightarrow x[2] = v[1] = 2$
 $n = 2, x[3 - 2] = v[2] \Rightarrow x[1] = v[2] = 2$
 $n = 3, x[3 - 3] = v[3] \Rightarrow x[0] = v[3] = 0$
Let $g[n] = x[3n] = g[0] = x[0] = 0$
 $g[1] = x[3] = 2$
 $g[-1] = x[-3] = 0.$ Choice (D)

31.
$$X(j\omega) = \pi [\delta(\omega + 1) + \delta(\omega - 1)]$$

 $H_1(j\omega) = \frac{1}{j\omega} + \pi \delta(\omega)$

$$Y_{1}(j\omega) = \left[\frac{1}{j\omega} - \pi\delta(\omega)\right]\pi\left[\delta(\omega+1) + \delta(\omega-1)\right]$$
$$= j\omega\left[\delta(\omega+1) - \delta(\omega-1)\right] (at \omega = 1 \& \omega = 1 \text{ only})$$
$$y_{1}(t) = \sin(t)$$
$$H_{2}(j\omega) = -2 + \frac{5}{2+j\omega} = \frac{1-2j\omega}{2+j\omega}$$
$$Y_{2}(j\omega) = \left[\frac{1-2j\omega}{2+j\omega}\right]\pi\left[\delta(\omega+1) + \delta(\omega-1)\right]$$
$$= \left(\frac{1+2j}{2-j}\right)\pi\delta(\omega+1) + \left(\frac{1-2j}{2+j}\right)\pi\delta(\omega-1)$$

3.12 | Signals and Systems Test 1

$$= j\pi \{\delta(\omega + 1) - \delta(\omega - 1) (at \omega = -1 \& \omega = 1 \text{ only}) | 34$$

$$y_{2}(t) = \sin t$$

$$H_{3}(j\omega) = \frac{2}{(1 + j\omega)^{2}} \pi \{\delta(\omega + 1) + \delta(\omega - 1)\}$$

$$= \frac{2\pi}{(1 - j)^{2}} \delta(\omega + 1) + \frac{2\pi}{(1 + j)^{2}} \delta(\omega - 1)$$

$$= j\pi [\delta(\omega + 1) - \delta(\omega - 1\}, y_{3}(t) = \sin t$$

$$(at \omega = -1 \& \omega = 1 \text{ only}). \quad \text{Choice (D)}$$

$$32. \quad H(J\omega) = \begin{cases} \frac{\omega}{3\pi} e^{\frac{j\pi}{2}}, & 0 \le \omega \le 3\pi \\ -\frac{\omega}{3} e^{\frac{-j\pi}{2}} & -3\pi \le \omega \le 0 \\ 0 & otherwise \end{cases}$$

$$\Rightarrow \quad H(j\omega) = \begin{cases} \frac{j\omega}{3\pi}; & -3\pi \le \omega \le 3\pi \\ 0 & otherwise \end{cases}$$

$$x(t) = \cos(2\pi t + \theta)$$

$$X(j\omega) = e^{\theta} \pi \delta(\omega - 2\pi) + e^{-j\theta} \pi \delta(\omega + 2\pi)$$
This is zero outside the region $-3\pi \le \omega \ge 3\pi$
Thus $Y(\omega) = H(j\omega) \times (j\omega)$

$$= \frac{j\omega}{3\pi} X(j\omega)$$

$$y(t) = \frac{1}{3\pi} \frac{dx(t)}{dt} = \frac{-2}{3} \sin(2\pi t + \theta) \quad \text{Choice (A)}$$

$$33. \quad x(t) = \cos(4\pi t + \theta)$$

$$X(j\omega) = e^{\theta} \pi \delta(\omega - 4\pi) + e^{-j\theta} \pi \delta(\omega + 4\pi)$$
The non – zero position of $X(jw)$ lie outside the range $-3\pi \le \omega \le 3\pi$. This implies that $Y(j\omega) = X(j\omega) H(j\omega) = 0$, therefore $y(t) = 0$.

4.
$$y_3[n] = y_2[n-1]$$
 (1)
 $y_2[n] = y_1[n-1]$ (2)
 $y_1[n] = x[n-1] + 2y_1[n-1] + 4y_2[n-1] - 8y_3[n-1]$
 $= x[n-3] + 2y_2[n-3] + 4y_2[n-3] - 8y_3[n-3]$
By eq (4) & (2)
 $y_3[n] = x[n-3] + 2y_3[n-1] + 4y_3[n-2] - 8y_3[n-3]$
By taking z - Transform
 $Y_2(z) = [1 - 2z^{-1} - 4z^{-2} + 8z^{-3}] = z^{-2}X(z)$
 $Y_3(z) = \frac{z^{-3}}{1 - 2z^{-1} - 4z^{-2} + 8z^{-3}}$
 $= \frac{1}{z^3 - 2z^2 - 4z + 8}$ Choice (B)
5. $H(z) = \frac{1}{z^3 - 2z^2 - 4z + 8}$

5.
$$H(z) = \frac{1}{z^3 - 2z^2 - 4z + 8}$$

 $Y_3(z) = \frac{X(z)}{z^3 - 2z^2 - 4z + 8}$
 $= \frac{1}{z^3 - 2z^2 - 4z + 8}$

Since given LTI system is for $n \ge 0$ so it is causal system (Right sided sequence) $Z^3 - 2Z^2 - 4Z + 8$

$$\frac{z^{-3} + 2z^{-4} + 8z^{-5} + 16z^{-6} \dots}{1}$$
(A)

$$\frac{1 - 2z^{-1} - 4z^{-2} + 8z^{-3}}{1 + 2z^{-1} - 4z^{-2} + 8z^{-3}}$$

$$\frac{+2z^{-1} - 4z^{-2} + 8z^{-3}}{8 - 2z^{-2} - 16z^{-4}}$$
ange

$$\frac{8 - 2z^{-2} - 16z^{-4}}{16z^{-3} + 16z^{-4} - 64z^{-5}}$$

$$\frac{16z^{-3} + 16z^{-4} - 64z^{-5}}{16z^{-6} - 64z^{-5}}$$

$$\frac{y_3(z) = Z^{-3} + 2Z^{-4} + 8Z^{-5} + 16Z^{-6} \dots y_3 [n] = [0, 0, 0, 1, 2, 8, 16, \dots]$$
Choice (D)