CBSE Test Paper 01 CH-11 Constructions

- 1. With the help of a ruler and a compass, it is not possible to construct an angle of _____.
 - a. 37.5°
 - b. 40^0
 - c. 22.5^0
 - d. 67.5^{0}
- 2. The construction of a triangle ABC, given that BC = 3 cm, $\angle C = 60^0$ is possible when the difference of AB and AC is equal to ____.
 - a. 3.2 cm.
 - b. 3 cm.
 - c. 2.8 cm.
 - d. 3.1 cm.

3. In the adjoining figure, if $\angle 2 = 55^{\circ}$ and $\angle 5 = 55^{\circ}$, the lines m and n are

- a. cannot say
- b. not parallel
- c. parallel
- d. none of these
- 4. With the help of a rular and a compass, it is not possible to construct an angle of _____.
 - a. 67.5°
 - b. 7.5^0
 - c. 35^0
 - d. 82.5°
- 5. Which of the following angles cannot be constructed with the help of a ruler and a compass?

- a. $7\frac{1}{2}^{\circ}$ b. $37\frac{1}{2}^{\circ}$ c. $22\frac{1}{2}^{\circ}$ d. $30\frac{1}{2}^{\circ}$
- 6. Can we construct an angle of 67.5°? Justify for your answer
- 7. Construct an angle equal to a given angle.
- 8. Draw an obtuse angle. Bisect it. Measure each of the angles so obtained.
- 9. Using protractor, draw a right angle. Bisect it to get an angle of measure 45°.
- 10. Construct a triangle ABC with perimeter 12 cm, $\angle B = 60^{\circ}$ and $\angle C = 45^{\circ}$.
- 11. Construct an angle of 90° at the initial point of a given ray and justify the construction.
- 12. Construct a triangle ABC with perimeter 10 cm and each base angle is of 45°.
- 13. Construct a right triangle ABC whose base BC is 6 cm and the sum of hypotenuse AC and other side AB is 10 cm.
- 14. Draw an angle of 110° with the help of a protractor and bisect it. Measure each angle.
- 15. Construct a triangle ABC in which BC = 7cm $\angle B$ = 75° and AB + AC = 9cm.

CBSE Test Paper 01 CH-11 Constructions

Solution

1. (b) 40^0

Explanation: With the help of a ruler and a compass, it is not possible to construct an angle which is not a multipe of 15^0 . Since 40^0 ia not a multiple of 15^0 , so, we cannot construct it.

2. (c) 2.8 cm.

Explanation: The construction of $\triangle ABC$ is possible when difference of other two sides is less than its base i.e BC> AB-AC.

3. (b) not parallel

Explanation: For the parallel lines, the corresponding or alternate angles should be equal, but here $\angle 2$ and $\angle 5$ are neither corresponding nor alternate so, the lines m and n cannot be parallel.

4. (c) 35^0

Explanation: With the help of a ruler and a compass, it is not possible to construct an angle which is not a multiple of 15^0 and as in these option, 35^0 is not a multiple of 15^0 , so we can not construct an angle of 35^0 .

 $\sim 10^{\circ}$

5. (d) $30\frac{1}{2}^{\circ}$

Explanation: With the help of a ruler and a compass, we can not construct an angle which is not a multiple of 15^0 . Since $30\frac{1}{2}^0$ is not a multiple of 15^0 , so, we can not construct it.

- 6. Yes, we can draw by constructing an angle of 135° with protractor and bisecting it with compass. (Since bisecting angles means dividing it into half, hence $\frac{135^{\circ}}{2}$ = 67.5)
- 7. Given: \angle POQ and a point A

Required: To construct an angle at A equal to $\angle POQ$.

Steps in construction:

- i. With O as centre and suitable radius, draw an arc to meet OP at R and OQ at S.
- ii. Through A draw a line AB of any length.
- iii. Taking A as centre and radius equal to OR draw an arc to meet AB at D.
- iv. Measure the segment RS with compass.
- v. With D as centre and radius equal to RS, draw an arc to meet the previous arc at E.
- vi. Join AE and produce it to C, then \angle BAC is the required angle equal to \angle POQ.
- 8. Steps of Construction:-
 - $\therefore \angle ABR = \angle RBC = 60^{\circ}$
 - i. Draw angle ABC of 120^o.
 - ii. With centre B and any radius, draw an arc which intersect AB at P and BC at Q.
 - iii. With centre P and Q and radius more than $\frac{1}{2}$ PQ, draw two arcs which intersect each other at R.
 - iv. Join BR.

- 9. Steps of Construction:-
 - $\therefore \angle RBC = 45^{\circ}.$
 - i. Draw an angle ABC of 90^o.
 - ii. With centre B and any radius, draw an arc which intersects AB at P and BC at Q.
 - iii. With centres P and Q and radius more than $\frac{1}{2}$ PQ, draw two arcs which intersect each other at R.
 - iv. Join RB.

10. Given: In triangle ABC, $\angle B = 60^{\circ}$ and $\angle C = 45^{\circ}$ and AB + BC + CA = 12 cm. Required: To construct the triangle ABC. Steps of construction :

ABC is the required triangle.

- i. Draw a line segment XY = AB + BC + CA = 12 cm.
- ii. Make \angle LXY = \angle B = 60^o and \angle MYX = \angle C = 45^o
- iii. Bisect \angle LXY and \angle MYX. Let these bisectors meet at a point A.

- iv. Draw the perpendicular bisectors PQ of AX and RS of AY.
- v. Let PQ intersects XY at B and RS intersects XY at C.
- vi. Join AB and AC.

- 11. Steps of construction:
 - a. Draw a ray OA.
 - b. With O as centre and convenient radius, draw an arc LM cutting OA at L.
 - c. Now with L as centre and radius OL, draw an arc cutting the arc LM at P.
 - d. Then taking P as centre and radius OL, draw an arc cutting arc PM at the point Q.
 - e. Join OP to draw the ray OB. Also join O and Q to draw the OC. We observe that: $\angle AOB = \angle BOC = 60^{\circ}$
 - f. Now we have to bisect BOC. For this, with P as centre and radius greater than $\frac{1}{2}$ PQ draw an arc.
 - g. Now with Q as centre and the same radius as in step 6, draw another arc cutting the arc drawn in step 6 at R.

h. Join O and R and draw ray OD. Then $\angle AOD$ is the required angle of 90°.

Justification:

Join PL, then OL = OP = PL [by construction]

Therefore Δ OLP is an equilateral triangle and \angle POL which is same as \angle BOA is equal to 60°.

Now join QP, then OP = OQ = PQ [by construction]

Therefore Δ OQP is an equilateral triangle.

 \therefore \angle POQ which is same as \angle BOC is equal to 60°.

By construction OD is bisector of \angle BOC.

 $\therefore \text{DOC} = \angle \text{DOB} = \frac{1}{2} \angle \text{BOC} = \frac{1}{2} \times 60^\circ = 30^\circ$ Now, $\angle \text{DOA} = \angle \text{BOA} + \angle \text{DOB} \Rightarrow \angle \text{DOA} = 60^\circ + 30^\circ$ $\Rightarrow \angle \text{DOA} = 90^\circ$

12. Given: In triangle ABC, $\angle B = 45^{\circ}$, $\angle C = 45^{\circ}$ and AB + BC + CA = 10 cm. Required: To construct the triangle ABC. Steps of construction :

ABC is the required triangle.

- i. Draw a line segment XY = AB + BC + CA = 10 cm.
- ii. Construct \angle LXY = \angle B = 45^o and \angle MYX = \angle C = 45^o
- iii. Bisect \angle LXY and \angle MYX. Let these bisectors meet at a point A.

- iv. Draw the perpendicular bisectors PQ of AX and RS of AY.
- v. Let PQ intersect XY at B and RS intersect XY at C.
- vi. Join AB and AC.
- 13. Steps of construction:-
 - $\therefore \triangle ABC$ is the required triangle.
 - i. Draw a line segment BC of 6 cm.
 - ii. At B, draw an angle XBC of 90^o.
 - iii. With centre B and radius 10 cm draw an arc which intersects XB at D.
 - iv. Join DC.
 - v. Draw the perpendicular bisector of DC which intersects DB at A.
 - vi. Join AC.

14. Given: An angle ABC = 110°.

Required: To draw the bisector of $\angle ABC$

Steps of construction:

- 1. With B as centre and a convenient radius draw an arc to intersect the ray's BA and BC at P and Q respectively.
- 2. With centre P and a radius greater than half of PQ, draw an arc.
- 3. With Centre Q and the same radius (as in step 2), draw another arc to cut the previous arc at R.
- 4. Draw ray BR. This ray BR is the required bisectors of $\angle ABC$.
- 15. Steps of construction:
 - i. Draw BC = 7cm
 - ii. Draw ∠DBC = 75°
 - iii. Cut a line segment BD = 9cm
 - iv. Join DC and make \angle DCY = \angle BDC
 - v. Let CY intersect BX at A
 - vi. Triangle ABC is required triangle