DAY THREE

Scalar and Vector

Learning & Revision for the Day

- Scalar and Vector Quantities
- Multiplication or Division of a Vector by a Scalar
 - Relative velocity
 - Motion in a Plane

- + Laws of Vector Addition Substraction of Vectors
- Product of Vects
- Resolution of vector

Projectile Motion

Scalar and Vector Quantities

A scalar quantity is one whose specification is completed with its magnitude only. e.g. mass, distance, speed, energy, etc.

A vector quantity is a quantity that has magnitude as well as direction. Not all physical quantities have a direction. e.g. velocity, displacement, force, etc.

Position and Displacement Vectors

A vector which gives position of an object with reference to the origin of a coordinate system is called position vector.

The vector which tells how much and in which direction on object has changed its position in a given interval of time is called displacement vector.

General Vectors and Notation

- Zero Vector The vector having zero magnitude is called zero vector or null vector. It is written as 0. The initial and final points of a zero vector overlap, so its direction is arbitrary (not known to us).
- Unit Vector A vector of unit magnitude is known as an unit vector. Unit vector for A is $\hat{\mathbf{A}}$ (read as A cap).

• **Orthogonal Unit Vectors** The unit vectors along *X*-axis, *y*-axis and Z-axis are denoted by $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$. These are the orthogonal unit vectors.

$$\hat{\mathbf{i}} = \frac{\mathbf{x}}{x}, \hat{\mathbf{j}} = \frac{\mathbf{y}}{y}, \hat{\mathbf{k}} = \frac{\mathbf{z}}{z}$$

- **Parallel Vector** Two vectors are said to be parallel, if they have same direction but their magnitudes may or may not be equal.
- Antiparallel Vector Two vectors are said to be anti-parallel when
 - (i) both have opposite direction
 - (ii) one vectors is scalar non zero negative multiple of another vector.
- **Collinear Vector** Collinear vector are those which act along same line.
- **Coplanar Vector** Vector which lies on the same plane are called coplanar vector.
- Equal Vectors Two vectors A and B are equal, if they have the same magnitude and the same direction.

Laws of Vector Addition

1. Triangle Law

If two non-zero vectors are represented by the two sides of a triangle taken in same order than the resultant is given by the closing side of triangle in opposite order, i.e.

 $\mathbf{R} = \mathbf{A} + \mathbf{B}$

The resultant R can be calculated as

$$|\mathbf{A} + \mathbf{B}| = R = \sqrt{A^2 + B^2 + 2AB\cos\theta}$$

$$R = \mathbf{A}^{+}\mathbf{B}$$

$$B \sin\theta$$

$$A = B\cos\theta$$

$$an \alpha = \frac{1}{A + B \cos \theta}$$

2. Parallelogram Law

According to parallelogram law of vector addition, if two vector acting on a particle are represented in a magnitude and direction by two adjacent side of a parallelogram, then a the diagonal of the parallelogram represents the magnitude and direction of the resultant of the two vector acting as the particle.

$$\mathbf{Q} \xrightarrow{\boldsymbol{\beta}}_{\boldsymbol{\alpha}} \mathbf{P} \xrightarrow{\boldsymbol{A}} \mathbf{P}$$

i.e. $\mathbf{R} = \mathbf{P} + \mathbf{Q}$

Magnitude of the resultant **R** is given by

$$|\mathbf{R}| = \sqrt{P^2 + O^2 + 2PO\cos\theta}$$

$$\tan \alpha = \frac{Q \sin \theta}{P + Q \cos \theta} \implies \tan \beta = \frac{P \sin \theta}{Q + P \cos \theta}$$

Subtraction of Vectors

Vector subtraction makes use of the definition of the negative of a vector. We define the operation A - B as vector - B added to vector A. A - B = A + (-B)

Thus, vector subtraction is really a special case of vector addition. The geometric construction for subtracting two vectors is shown in the A-Babove figure.

If $\boldsymbol{\theta}$ be the angle between A and B,

then $|\mathbf{A} - \mathbf{B}| = \sqrt{A^2 + B^2 - 2AB\cos\theta}$

If the vectors form a closed n sided polygon with all the sides in the same order, then the resultant is zero.

Multiplication or Division of a Vector by a Scalar

The multiplication or division of a vector by a scalar gives a vector. For example, if vector **A** is multiplied by the scalar number 3, the result, written as $3\mathbf{A}$, is a vector with a magnitude three times that of **A**, pointing in the same direction as **A**. If we multiply vector **A** by the scalar -3, the result is $-3\mathbf{A}$, a vector with a magnitude three times that of **A**, pointing in the direction opposite to **A** (because of the negative sign).

Product of Vectors

The two types of products of vectors are given below

Scalar or Dot Product

The scalar product of two vectors *A* and *B* is defined as the product of magnitudes of *A* and *B* multiplied by the cosine of smaller angle between them. i.e. $\mathbf{A} \cdot \mathbf{B} = AB \cos \theta$

Properties of Dot Product

- Dot product or scalar product of two vectors gives the scalar two vectors given the scalar quantity.
- It is commutative in nature. i.e. $\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$.
- Dot product is distributive over the addition of vectors.
 i.e. A · (B + C) = A · B + A · C
- $\hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = 1$, because angle between two equal vectors is zero.
- If two vectors *A* and *B* are perpendicular vectors, then $\mathbf{A} \cdot \mathbf{B} = AB \cos 90^\circ = 0$ and $\hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{k}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{i}} = 0$

The Vector Product

The vector product of **A** and **B**, written as $\mathbf{A} \times \mathbf{B}$, produces a third vector **C** whose magnitude is $\mathbf{C} = AB\sin\theta$. where, θ is the smaller of the two angles between **A** and **B**.

Because of the notation, $A \times B$ is also known as the **cross product**, and it is spelled as 'A cross B'.

Properties of Cross Product

- Vector or cross product of two vectors gives the vector quantity.
- Cross product of two vectors does not obey the commutative law. i.e. $A \times B \neq B \times A$;
 - Here, $\mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A}$
- Cross product of two vectors is distributive over the addition of vectors.

$$\mathbf{A} \times (\mathbf{B} + \mathbf{C}) = \mathbf{A} \times \mathbf{B} + \mathbf{A} \times \mathbf{C}$$

• Cross product of two equal vectors is given by $\mathbf{A} \times \mathbf{A} = 0$ Similarly, $\hat{\mathbf{i}} \times \hat{\mathbf{i}} = (1 \times 1 \times \sin 0^{\circ}) \hat{\mathbf{n}} = 0$ $\hat{\mathbf{j}} \times \hat{\mathbf{j}} = (1 \times 1 \times \sin 0^{\circ}) \hat{\mathbf{n}} = 0$

$$\hat{\mathbf{k}} \times \hat{\mathbf{k}} = (1 \times 1 \times \sin 0^\circ) \hat{\mathbf{n}} = 0$$

- Cross product of two perpendicular vectors is given as $\mathbf{A} \times \mathbf{B} = (AB \sin 90^{\circ}) \ \hat{\mathbf{n}} = (AB) \ \hat{\mathbf{n}}$
- For two vectors $\mathbf{A} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}} + a_z \hat{\mathbf{k}}$ and $\mathbf{B} = b_{\cdot} \hat{\mathbf{i}} + b_{\cdot} \hat{\mathbf{i}} + b_{\cdot} \hat{\mathbf{k}}$

$$= b_x \mathbf{i} + b_y \mathbf{j} + b_z \mathbf{k}.$$
$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

• Cross product of vectors \hat{i} , \hat{j} and \hat{k} are following cyclic rules as follows $\hat{i} \times \hat{j} = \hat{k}$, $\hat{j} \times \hat{k} = \hat{i}$ and $\hat{k} \times \hat{i} = \hat{j}$

Cyclic representation for unit vectors \hat{i} , \hat{j} and \hat{k}

A_x

NOTE • Vector triple product is given by $A \times (B \times C) = B (A \cdot C) - C (A \cdot B)$

Resolution of a Vector

The process of splitting of a single vector into two or more vectors in different direction is resolution of a vectors. Consider a vector A in the X-Y plane making an angle θ with the X-axis. The X and Y components of A are A_x and A_y respectively.

Thus $\mathbf{A}_x = \mathbf{A}_{xi} = (A \cos \theta) \hat{\mathbf{i}}$ along X-direction

$$\mathbf{A}_{y} = \mathbf{A}_{yj} = (A\sin\theta)\hat{\mathbf{j}}$$
 along *Y*-direction

From triangle law of vector addition

$$|\mathbf{A}| = |\mathbf{A}_{xi} + \mathbf{A}_{yj}| = \sqrt{A_x^2 + A_y^2}$$
$$\tan \theta = \frac{A_y}{A_x} = \theta = \tan^{-1} \left(\frac{A_y}{A_x}\right)$$

Relative Velocity

The time rate of change of relative position of one object with respect to another is called relative velocity.

Different Cases

Case I If both objects A and B move along parallel straight lines in the opposite direction, then relative velocity of B w.r.t. A is given as,

$$\mathbf{v}_{BA} = \mathbf{v}_B - (-\mathbf{v}_A) = \mathbf{v}_B + \mathbf{v}_A$$

If both objects A and B move along parallel staight lines in the same direction, then

$$\mathbf{v}_{AB} = \mathbf{v}_B - \mathbf{v}_A$$

Case II Crossing the River To cross the river over shortest distance, i.e. to cross the river straight, the man should swim upstream making an angle θ with **OB** such that, **OB** gives the direction of resultant velocity (\mathbf{v}_{mR}) of velocity of swimmer \mathbf{v}_{M} and velocity of river water \mathbf{v}_{R} as shown in figure. Let us consider

Case III To cross the river in possible shortest time The man should go along *OA*. Now, the swimmer will be going along *OB*, which is the direction of resultant velocity \mathbf{v}_{mR} of v_m and v_R .

In
$$\triangle OAB$$
, $\tan \theta = \frac{AB}{OA} = \frac{v_R}{v_m}$
and $v_{mR} = \sqrt{v_m^2 + v_R^2}$
$$\overbrace{d v_m} \qquad \overbrace{v_m R} = \sqrt{v_m + v_R}$$

Time of crossing the river,

t

$$t = \frac{d}{v_m} = \frac{OB}{v_{mR}} = \frac{\sqrt{x^2 + d^2}}{\sqrt{v_m^2 + v_R^2}}$$

The boat will be reaching the point *B* instead of point *A*. If AB = x,

then,
$$\tan \theta = \frac{v_R}{v_m} = \frac{x}{d} \implies x = \frac{dv_R}{v_m}$$

and

Motion in a Plane

Let the object be at position *A* and *B* at timing t_1 and t_2 , where $OA = r_1$, and $OB = r_2$

Suppose *O* be the origin for measuring time and position of the object (see figure).

• Displacement of an object form position *A* to *B* is

$$AB = r = r_2 - r_1 = (x_2 - x_1)i - (y_2 - y_1)j$$

• Velocity,
$$v = \frac{t_2 - t_1}{t_2 - t_1}$$

• A particle moving in *X*-*Y* plane (with uniform velocity) then, its equation of motion for *X* and *Y* axes are

$$v = v_x \mathbf{i} + v_y \mathbf{j}$$
, $r_0 = x_0 \mathbf{i} + y_0 \mathbf{j}$ and $r = x\mathbf{i} + y_1 \mathbf{j}$

$$x = x_0 + v_x t, y = y_0 + v_y t$$

 A particle moving in *xy*-plane (with uniform acceleration), then its equation of motion for *X* and *Y*-axes are v_x = u_x + a_xt, v_y = u_y + a_yt

$$\begin{aligned} x &= a_x t, \quad v_y = u_y + a_y t \\ x &= x_0 + u_x t + \frac{1}{2} a_x t^2, \ y &= y_0 + u_y t + \frac{1}{2} a_y t^2 \\ a &= a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{i}} \end{aligned}$$

Y

Projectile Motion

Projectile is an object which once projected in a given direction with given velocity and is then free to move under gravity alone. The path described by the projectile is called its trajectory.

Let a particle is projected at an angle θ from the ground with initial velocity *u*.

Resolving *u* in two components, we have

 $u_x = u \cos \theta, u_y = u \sin \theta, a_x = 0, a_y = -g.$

• Equation of trajectory,
$$y = x \tan \theta - \frac{g}{2u^2 \cos^2 \theta} x^2$$

• Vertical height covered, $h = \frac{u^2 \sin^2 \theta}{2g}$

• Horizontal range,
$$R = OB = u_x T$$
, $R = \frac{u^2 \sin 2\theta}{g}$

Projectile Motion in Horizontal Direction From Height (*h*)

Let a particle be projected in horizontal direction with speed u from height h.

- Equation of trajectory, $y = \frac{gx^2}{2u^2}$
- Time of flight, $T = \frac{\sqrt{2h}}{g}$
- Horizontal range, $R = u \sqrt{\frac{2h}{g}}$
- Velocity of projectile at any time, $v = \sqrt{u^2 + g^2 t^2}$

Projectile Motion Up an Inclined Plane

Let a particle be projected up with speed u from an inclined plane which makes an angle α with the horizontal and velocity of projection makes an angle θ with the inclined plane.

• Time of flight on an inclined plane $T = \frac{2u \sin \theta}{g \sin \alpha}$

• Maximum height,
$$h = \frac{u^2 \sin^2 \theta}{2g \cos \alpha}$$

- Horizontal range, $R = \frac{2u^2}{g} \frac{\sin \theta \cos (\theta + \alpha)}{\cos^2 \alpha}$
- Maximum range occurs when $\theta = \frac{\pi}{2} \frac{\alpha}{2}$
- $R_{\max} = \frac{u^2}{g(1 + \sin \alpha)}$ when projectile is thrown upwards.
- $R_{\max} = \frac{u^2}{g(1 \sin \alpha)}$ when projectile is thrown downwards.

Projectile Motion Down an Inclined Plane

A projectile is projected down the plane from the point O with an initial velocity u at an angle θ with horizontal. The angle of inclination of plane with horizontal α . Then,

- Time of flight down an inclined plane, $T = \frac{2u \sin(\theta + \alpha)}{g \cos \alpha}$
- Horizontal range, $R = \frac{u^2}{g \cos^2 \alpha} [\sin (2\theta + \alpha) + \sin \alpha]$

DAY PRACTICE SESSION 1 FOUNDATION QUESTIONS EXERCISE

- **1** Which of the following statement is true?
 - (a) A scalar quantity is the one that is conserved in a process
 - (b) A scalar quantity is one that can never be negative values
 - (c) A scalar quantity is the one that does not vary from one point to another in space
 - (d) A scalar quantity has the same value for observers with different orientations of the axes
- 2 If two vectors are equal in magnitude and their resultant is also equal in magnitude to one of them, then the angle between the two vectors is
 - (a) 60° (b) 120° (c) 90° (d) 0°
- **3** If $\mathbf{A} = 3\hat{\mathbf{i}} + 4\hat{\mathbf{j}}$ and $\mathbf{B} = 7\hat{\mathbf{i}} + 24\hat{\mathbf{j}}$, the vector having the same magnitude as **B** and parallel to **A** is
 - $(a) 5\hat{i} + 20\hat{j}$ $(b) 15\hat{i} + 10\hat{j}$ $(c) 20\hat{i} + 15\hat{j}$ $(d) 15\hat{i} + 20\hat{j}$
- 4 Six vectors a through f have the magnitudes and directions as shown in figure. Which statement is true?

→ CBSE AIPMT 2010

v – 5

$$\begin{array}{ccc} \overrightarrow{a} & \downarrow b & \overrightarrow{c} \\ \uparrow d & \overrightarrow{e} & \lor f \\ (a) b + c = f & (b) d + c = 1 \\ (c) a + e = f & (d) b + e = 1 \end{array}$$

- **5** The component of vector $\mathbf{A} = 2\hat{\mathbf{i}} + 3\hat{\mathbf{j}}$ along the vector $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ is
 - (a) $\frac{5}{\sqrt{2}}$ (b) 10√2 (c) $5\sqrt{2}$ (d)5
- **6** A and **B** are two vectors and θ is the angle between them, if $|\mathbf{A} \times \mathbf{B}| = \sqrt{3} (\mathbf{A} \cdot \mathbf{B})$, the value of θ is (b) 45° (a) 60° (c) 30° (d) 90°
- 7 Given $\mathbf{A} = 4\hat{\mathbf{i}} + 6\hat{\mathbf{j}}$ and $\mathbf{B} = 2\hat{\mathbf{i}} + 3\hat{\mathbf{j}}$. Which of the following is correct?

(a)
$$\mathbf{A} \times \mathbf{B} = 0$$

(b) $\mathbf{A} \cdot \mathbf{B} = 24$
(c) $\frac{|\mathbf{A}|}{|\mathbf{B}|} = \frac{1}{2}$
(d) \mathbf{A} and \mathbf{B} are anti-parallel

8 If $\mathbf{A} = 4\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$ and $\mathbf{B} = 3\hat{\mathbf{i}} + \hat{\mathbf{j}} + 4\hat{\mathbf{k}}$, then angle between vectors **A** and **B** is

(c) 45° (a) 180° (b) 90° (d) 0°

9 If two vectors $2\hat{i} + 3\hat{j} + \hat{k}$ and $-4\hat{i} - 6\hat{j} - \lambda\hat{k}$ are parallel to each other, then value of λ is

(a) zero (b) -2 (c) 3 (d) 4

10 If $\mathbf{A} \cdot \mathbf{B} = \mathbf{A} \times \mathbf{B}$, then the angle between \mathbf{A} and \mathbf{B} is (c) 60° (a) 45° (b) 30° (d) 90°

11 If a vector $2\hat{i} + 3\hat{j} + 8\hat{k}$ is perpendicular to the vector $4\hat{\mathbf{j}} - 4\hat{\mathbf{i}} + \alpha\hat{\mathbf{k}}$, then value of α is

(a)
$$-1$$
 (b) $\frac{1}{2}$ (c) $-\frac{1}{2}$ (d) 1

12 At what angle should the two forces 2*P* and $\sqrt{2}P$ act, so that the resultant force is $P\sqrt{10}$?

(b) 60° (a) 45° (c) 90° (d) 120°

13 A boat is sent across a river with a velocity of 8 km/h. If the resultant velocity of boat is 10 km/h, then velocity of river is

(a) 10 km/h (b) 8 km/h (c) 6 km/h (d) 4 km/h

14 The velocity of a projectile at the initial point A is $(2\hat{i} + 3\hat{j})$ m/s. Its velocity (in m/s) at point B is

→ NEET 2013

in metres and t in seconds. The acceleration of the
particle at
$$t = 2$$
 s is \rightarrow NEET 2017
(a) 0 (b) 5î m/s² (c) -4î m/s² (d) -8î m/s²

16 A particle has initial velocity $(3\hat{i} + 4\hat{j})$ and has acceleration $(0.4 \,\hat{i} + 0.3 \,\hat{j})$. Its speed after 10 s is → CBSE AIPMT 2010

(b) $7\sqrt{2}$ unit (c) 8.5 unit (a) 7 unit (d) 10 unit

17 A particle is moving such that its position coordinates (x, y) are (2 m, 3 m) at time t = 0, (6 m, 7 m) at time t = 2 s and (13 m, 14 m) at time t = 5 s. Average velocity vector (\mathbf{v}_{av}) from t = 0 to t = 5 s is (a) $\frac{1}{5}(13\hat{i} + 14\hat{j})$ (b) $\frac{7}{3}(\hat{i} + \hat{j})(c) 2(\hat{i} + \hat{j})$ (d) $\frac{11}{5}(\hat{i} + \hat{j})$

18 The horizontal range and maximum height attained by a projectile are
$$R$$
 and H , respectively. If a constant horizontal acceleration $a = g/4$ is imparted to the projectile due to wind, then its horizontal range and maximum height will be

(a)
$$(R + H), \frac{H}{2}$$
 (b) $\left(R + \frac{H}{2}\right), 2H$
(c) $(R + 2H), H$ (d) $(R + H), H$

19 A projectile is thrown in the upward direction making an angle of 60° with the horizontal direction with a velocity of 147 m/s. Then, the time after which its inclination with the horizontal is 45°. is

(a) 15 s (b) 10.98 s (c) 5.49 s (d) 2.745 s

20 The velocity of a particle is $v = v_0 + gt + at^3$. If its position is x = 0 at t = 0, then its displacement after unit time (t = 1) is

$(a)v_0 = \frac{g}{2} + a$	(b) $v_0 = 2g + 3a$
$(c)v_0 + \frac{g}{2} + \frac{a}{3}$	(d) $v_0 + g + a$

21 A projectile is fired from the surface of the earth with a velocity of 5 m/s and angle θ with the horizontal. Another projectile fired from another planet with a velocity of 3 m/s at the same angle follows a trajectory which is identical with the trajectory of the projectile fired from the earth. The value of the acceleration due to gravity on the planet is (in m/s²) (given, $g = 9.8 \text{ m/s}^2$) \rightarrow CBSE AIPMT 2014 (a) 3.5 (b) 5.9 (c) 16.3 (d) 110.8

22 The horizontal range and maximum height of a projectile are equal. The angle of projection is → CBSE AIPMT 2012

(a) $\theta = \tan^{-1}\left(\frac{1}{4}\right)$	$(b) \theta = \tan^{-1}(4)$
(c) $\theta = \tan^{-1}(2)$	(d) $\theta = 45^{\circ}$

23 A missile is fired for maximum range with an initial velocity of 20 m/s. If $g = 10 \text{ m/s}^2$, the range of missile is → CBSE AIPMT 2011

(a) 50 m	(b) 60 m
(c) 20 m	(d) 40 m

24 A particle of mass *m* is projected with a velocity *v* making an angle of 45° with the horizontal. The magnitude of angular momentum of projectile about the point of projection when the particle is at its maximum height *h* is (b) <u>mvh</u>

(c) $\frac{mvh^2}{\sqrt{2}}$

(a)zero

(d) None of these

 $\sqrt{2}$

DAY PRACTICE SESSION 2

PROGRESSIVE QUESTIONS EXERCISE

- 1 The sum of the magnitudes of two forces acting at a point is 16 N. The resultant of these forces is perpendicular to the smaller forces and has a magnitude of 8 N. If the smaller forces of magnitude *x*, then the value of *x* is (a) 2 N (b) 4 N (c) 6 N (d) 7 N
- 2 If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vectors, the angle between these vectors is → NEET 2016, CBSE AIPMT 1991 (a) 90° (b) 45° (c) 180° (d) 0°
- **3** The value of *n* so that vectors $2\hat{i} + 3\hat{j} 2\hat{k}$, $5\hat{i} + n\hat{j} + \hat{k}$

and $-\hat{i} + 2\hat{j} + 3\hat{k}$ may be coplanar, will be

4 A projectile is given an initial velocity of (i + 2j) m/s, when *i* is along the ground and *j* is along the vetical. If $g = 10 \text{ m/s}^2$, the equation of its trajectory is

0		, ,	
(2) v - v	$-5x^2$	(b) $y = 2x - 5x^2$	
(a) y = x	- 57	(b) $y = 2x - 3x$,
(c) $4v =$	$2x - 5x^2$	(d) $4v = 2x - 25x$, 4

5 A police jeep is chasing a culprit going on a motorbike. The motorbike crosses a turning at a speed of 72 km/h. The jeep follows it at a speed of 90 km/h, crossing the turning 10 s later than the bike. Assuming that they travel at constant speeds, how far from the turning will the jeep catch up with the bike? (in km)

6 A boat takes 2 h to travel 8 km and back in still water. If the velocity of water 4 km/h, the time taken for going up stream 8 km and coming back is

(b) 2 h 40 min (c) 1 h 20 min (a) 2 h (d) Cannot be estimated with the information given

7 A man wants to reach point *B* on the opposite bank of a river flowing at a speed as shown in figure. What minimum speed relative to water should the man have, so that he can reach point B?

(b) $u / \sqrt{2}$

(d) u / 2

8 A particle starting from the origin (0, 0) moves in a straight line in the XY-plane. Its coordinates at a later time are $(\sqrt{3}, 3)$. The path of the particle makes with the X-axis an angle of

(c) 2u

- (a) 30° (b) 45° (c) 60° (d) 0°
- **9** A ball is rolled off along the edge of the table with horizontal with velocity 4 m/s. It hits the ground after time 0.4 s. Which of the following statement is wrong.

```
(q = 10 \text{ m/s}^2)
```

(a) *u*√2

- (a) The height of table is 0.8 m.
- (b) It hits the ground of an angle of 60° with the vertical.
- (c) It covers a horizontal distance 1.6 m from the table.
- (d) It hits the ground with vertical velocity 4 m/s.

- 10 A ship A is moving Westwards with a speed of 10 km/h and ship B 100 km South of A, is moving Northwards with a speed of 10 km/h. The time after which the distance between them becomes shortest, is → CBSE AIPMT 2015 (a) 0 h (b) 5 h (c) 5√2 h (d) 10√2 h
- **11** Two particles *A* and *B*, move with constant velocities \mathbf{v}_1 and \mathbf{v}_2 . At the initial moment, their position vectors are \mathbf{r}_1 and \mathbf{r}_2 respectively. The condition for particles *A* and *B* for their collision is \rightarrow CBSE AIPMT 2015

(a)
$$\frac{\mathbf{r}_{1} - \mathbf{r}_{2}}{|\mathbf{r}_{1} - \mathbf{r}_{2}|} = \frac{\mathbf{v}_{2} - \mathbf{v}_{1}}{|\mathbf{v}_{2} - \mathbf{v}_{1}|}$$
 (b) $\mathbf{r}_{1} \cdot \mathbf{v}_{1} = \mathbf{r}_{2} \cdot \mathbf{v}_{2}$
(c) $\mathbf{r}_{1} \times \mathbf{v}_{1} = \mathbf{r}_{2} \times \mathbf{v}_{2}$ (d) $\mathbf{r}_{1} - \mathbf{r}_{2} = \mathbf{v}_{1} - \mathbf{v}_{2}$

12 The position vector of a particle **R** as a function of time is given by **R** = 4 sin $(2\pi t) \hat{i} + 4 \cos(2\pi t) \hat{j}$

where *R* is in metre, *t* is in seconds and \hat{i} and \hat{j} denote unit vectors along *x* and *y*-directions, respectively. Which one of the following statements is wrong for the motion of particle? \rightarrow CBSE AIPMT 2015

- (a) Acceleration is along ${\bm R}$
- (b) Magnitude of acceleration vector is $\frac{v^2}{R}$, where v is the

velocity of particle

- (c) Magnitude of the velocity of particle is 8 m/s
- (d) Path of the particle is a circle of radius 4 m

(SESSION 1)	1 (b)	2 (b)	3 (d)	4 (d)	5 (a)	6 (a)	7 (a)	8 (b)	9 (b)	10 (a)
	11 (c) 21 (a)	12 (a) 22 (b)	13 (c) 23 (d)	14 (c) 24 (b)	15 (c)	16 (b)	17 (d)	18 (d)	19 (c)	20 (c)
(SESSION 2)	1 (c) 11 (a)	2 (a) 12 (c)	3 (a)	4 (b)	5 (a)	6 (b)	7 (b)	8 (c)	9 (b)	10 (b)

ANSWERS

Hints and Explanations

SESSION 1

- **1** A scalar quantity has same value for observers with different orientation of the axes. Since, value of scalar is independent of the direction of its observation.
- **2** Given, $\mathbf{R} = \mathbf{A} = \mathbf{B}$ $\therefore R^2 = R^2 + R^2 + 2RR\cos\theta$

or
$$\cos \theta = -\frac{1}{2};$$

 $\therefore \quad \theta = 120^{\circ}$

3 A vector parallel to **A** will be $n \text{ A or } (3n\hat{i} + 4n\hat{j})$ Now, |nA| = |B| is given Hence, $n\sqrt{9+16} = \sqrt{49+576}$ or n = 5

$$\therefore \qquad n\mathbf{A} = 15\hat{\mathbf{i}} + 20\hat{\mathbf{j}}$$

4 When two non-zero vectors are represented by the two adjacent sides of a parallelogram, then the resultant is given by the diagonal of the parallelogram passing through the point of intersection of the two vectors $\mathbf{b} + \mathbf{e} = \mathbf{f}.$

5 Component of A along $\hat{i} + \hat{j}$ $\Rightarrow \mathbf{A} \cdot \hat{\mathbf{B}} = \mathbf{A} \cdot \frac{\mathbf{B}}{|\mathbf{B}|} = \frac{(2\hat{\mathbf{i}} + 3\hat{\mathbf{j}}) \cdot (\hat{\mathbf{i}} + \hat{\mathbf{j}})}{\sqrt{2}} = \frac{5}{\sqrt{2}}$ $|\mathbf{A} \times \mathbf{B}| = \sqrt{3} (\mathbf{A} \cdot \mathbf{B})$ **6** Given. $AB\sin\theta = \sqrt{3} AB\cos\theta$ \Rightarrow $\tan\theta = \sqrt{3} \implies \theta = 60^{\circ}$ \Rightarrow 7 $\mathbf{A} \times \mathbf{B} = (4\,\hat{\mathbf{i}} + 6\,\hat{\mathbf{j}}) \times (2\,\hat{\mathbf{i}} + 3\,\hat{\mathbf{j}})$ $= 12(\hat{\mathbf{i}} \times \hat{\mathbf{j}}) + 12(\hat{\mathbf{j}} \times \mathbf{i})$ $= 12(\hat{\mathbf{i}} \times \hat{\mathbf{j}}) - 12(\hat{\mathbf{i}} \times \hat{\mathbf{j}}) = 0$ Again, $\mathbf{A} \cdot \mathbf{B} = (4\hat{\mathbf{i}} + 6\hat{\mathbf{j}}) \cdot (2\hat{\mathbf{i}} + 3\hat{\mathbf{j}})$ = 8 + 18 = 26 $\frac{|\mathsf{A}|}{|\mathsf{B}|} = \frac{\sqrt{16 + 36}}{\sqrt{4 + 9}} \neq \frac{1}{2}$ Again, $\mathbf{B} = \frac{1}{2} \mathbf{A}$ Also, \Rightarrow A and B are parallel and not anti-parallel. **8** $\mathbf{A} \cdot \mathbf{B} = AB\cos\theta$ Given, $\mathbf{A} = 4\hat{\mathbf{i}} + 4\hat{\mathbf{j}} - 4\hat{\mathbf{k}}, \mathbf{B} = 3\hat{\mathbf{i}} + \hat{\mathbf{j}} + 4\hat{\mathbf{k}}$ $\Rightarrow \mathbf{A} \cdot \mathbf{B} = (4\hat{\mathbf{i}} + 4\hat{\mathbf{j}} - 4\hat{\mathbf{k}}) \cdot (3\hat{\mathbf{i}} + \hat{\mathbf{j}} + 4\hat{\mathbf{k}})$ $= 4 \times 3 + 4 - 16 = 0$

 $\Rightarrow \mathbf{A} \cdot \mathbf{B} = 0 \Rightarrow \cos \theta = 0 \Rightarrow \theta = 90^{\circ}$

9 The coefficients of **i**, **j**, **k** should be a constant ratio. or $\frac{2}{2} = \frac{3}{2} = \frac{1}{2}$ or $\lambda = -2$

$$-4 -6 \lambda^{-6} \lambda^{-4}$$
10 Given, $\mathbf{A} \cdot \mathbf{B} = \mathbf{A} \times \mathbf{B}$

 $\Rightarrow AB \cos \theta = AB \sin \theta \Rightarrow \cos \theta = \sin \theta$ $\Rightarrow \qquad \tan \theta = 1 \Rightarrow \theta = 45^{\circ}$

11 Let, $\mathbf{a} = 2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 8\hat{\mathbf{k}}$, $\mathbf{b} = 4\hat{\mathbf{j}} - 4\hat{\mathbf{i}} + \alpha\hat{\mathbf{k}} = -4\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + \alpha\hat{\mathbf{k}}$ Given, $\mathbf{a} \perp \mathbf{b} \Rightarrow \mathbf{a} \cdot \mathbf{b} = 0$ $\Rightarrow (2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 8\hat{\mathbf{k}})(-4\hat{\mathbf{i}} + 4\hat{\mathbf{j}} + \alpha\hat{\mathbf{k}}) = 0$ $\Rightarrow -8 + 12 + 8\alpha = 0 \Rightarrow 8\alpha = -4$ $\Rightarrow \qquad \alpha = -\frac{1}{2}$

12 Resultant,
$$R = \sqrt{A^2 + B^2 + 2AB \cos \theta}$$

Given, $R = P\sqrt{10}$, $A = 2P$, $B = \sqrt{2P}$
 $\therefore P\sqrt{10} = \sqrt{4P^2 + 2P^2 + 4\sqrt{2}P^2 \cos \theta}$
 $\Rightarrow P\sqrt{10} = \sqrt{6P^2 + 4\sqrt{2}P^2 \cos \theta}$
On, squaring both sides, we have
 $10P^2 = 6P^2 + 4\sqrt{2}P^2 \cos \theta$
 $4P^2 = 4\sqrt{2}P^2 \cos \theta$

$$\Rightarrow \cos \theta = \frac{1}{\sqrt{2}} \Rightarrow \theta = 45^{\circ}$$

13 Given, *AB* = Velocity of boat = 8 km/h *AC* = Resultant velocity of boat = 10 km/h

$$B = C$$

$$A$$

$$BC = Velocity of river = \sqrt{AC^2 - AB^2}$$

$$= \sqrt{(10)^2 - (8)^2} = 6 \text{ km/h}$$
14 From the figure, the x- component remain unchanged, while the y-component is reverse. Then, the velocity at point B is $(2\hat{1} - 3\hat{1}) \text{ m/s}$.
15 Given, $x = 5t - 2t^2$
Velocity of the particle,
 $v_x = \frac{dx}{dt} = \frac{d}{dt} (\text{St} - 2t^2) = 5 - 4t$
Acceleration, $a_x = \frac{d}{dt} v_x = -4 \text{ ms}^{-2}$
Also, $y = 10t$
Velocity, $v_y = \frac{dy}{dt} = 10$
 \therefore Acceleration, $a_y = \frac{dv_y}{dt} = 0$
 \therefore Net acceleration of the particle,
 $a_{ret} = a_r\hat{1} + a_r\hat{1} = (-4 \text{ ms}^{-2})\hat{1}$

$$\mathbf{a}_{\text{net}} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}} = (-4 \text{ ms}^{-2})$$

or
$$\mathbf{a}_{\text{net}} = -4 \hat{\mathbf{i}} \text{ ms}^{-2}$$

16 Given, initial velocity
$$(u) = 3i + 4j$$

Final velocity $(v) = ?$
Acceleration $(a) = (0.4 \ \hat{i} + 0.3 \ \hat{j})$
Time $(t) = 10$ s
From first equation of motion,
 $v = u + at$
 $v = 3\hat{i} + 4\hat{j} + 10 (0.4\hat{i} + 0.3\hat{j})$
 $v = 7\hat{i} + 7\hat{j} \implies |v| = 7\sqrt{2}$
17 Velocity, $v_{av} = \frac{(x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j}}{t_2 - t_1}$
 $= \frac{(13 - 2)\hat{i} + (14 - 3)\hat{j}}{5 - 0}$
 $= \frac{11\hat{i} + 11\hat{j}}{5} = \frac{11}{5}(\hat{i} + \hat{j})$

18
$$T = \frac{2u_y}{g}, \ H = \frac{u_y^2}{2g} \text{ and } R = u_x T$$

When a horizontal acceleration is also given to the projectile u_y , T and H will remains unchanged while the range will become

$$\begin{aligned} R' &= u_x T + \frac{1}{2} a T^2 \\ &= R + \frac{1}{2} \frac{g}{4} \left(\frac{4 u_y^2}{g^2} \right) = R + H \end{aligned}$$

and maximum height will be H.

19 Horizontal component of velocity at
angle 60° = Horizontal component of
velocity at 45°
i.e.
$$u \cos 60° = v \cos 45°$$

or $147 \times \frac{1}{2} = v \times \frac{1}{\sqrt{2}}$ or $v = \frac{147}{\sqrt{2}}$ m/s
Vertical component of
 $u_y = u \sin 60° = \frac{147\sqrt{3}}{2}$ m
Vertical component of
 $v_y = v \sin 45° = \frac{147}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = \frac{147}{2}$ m
but $v_y = u_y + at$
 $\therefore \frac{147}{2} = \frac{147\sqrt{3}}{2} - 9.8t$ or $t = 5.49$ s
20 Velocity $v = v_0 + gt + at^2$
 $\frac{dx}{dt} = v_0 + gt + at^2$
Integrate on both sides,
 $\int dx = \int v_0 dt + \int gt dt + \int at^2 dt$
 $x = v_0 t + \frac{1}{2}gt^2 + \frac{at^3}{3} + C$
Given, $x = 0$ at $t = 0$
 \therefore $C = 0$
 $x = v_0 t + \frac{1}{2}gt^2 + \frac{1}{3}at^3$
At $t = 1$ second, $x = v_0 + \frac{1}{2}g + \frac{1}{3}a$
21 $y = x \tan \theta - \frac{gx^2}{2u^2 \cos^2 \theta}$
For equatorial trajectories for same angle of projection
 8 event et d

$$\frac{\frac{8}{u^2} = \text{constant}}{\frac{9.8}{5^2} = \frac{g'}{3^2}}$$
$$g' = \frac{9.8 \times 9}{25} = 3.528 \text{ m/s}^2$$
$$= 3.5 \text{ m/s}^2$$

22 Given, Range
$$(R)$$
 = maximum height (H)
Also, $R = \frac{u^2 (2\sin\theta\cos\theta)}{g}, H = \frac{u^2\sin^2\theta}{2g}$
 $\therefore \frac{u^2 (2\sin\theta\cos\theta)}{g} = \frac{u^2\sin^2\theta}{2g}$
 $\Rightarrow 2\cos\theta = \frac{\sin\theta}{2}$
 $\Rightarrow \tan\theta = 4$
 $\Rightarrow \theta = \tan^{-1}(4)$

- **23** Maximum range of projectile is given by $R_{\text{max}} = \frac{u^2}{g}$ Given, u = 20 m/s and $g = 10 \text{ m/s}^2$ $\therefore \quad R_{\text{max}} = \frac{(20)^2}{10} = \frac{400}{10} = 40 \text{ m}$
- given by v cos 45° $L = r \times m v$ $L = mvr \sin \theta$ *.*•. From figure, $L = r m (v \cos 45^\circ) \sin \theta$ $=\frac{mv}{\sqrt{2}}(r\sin\theta)=\frac{mvh}{\sqrt{2}}$ **SESSION 2 1** Given, x + y = 168N Also, $y^2 = 8^2 + x^2$ or $y^2 = 64 + (16 - y)^2$ [: x = 16 - y] or $y^2 = 64 + 256 + y^2 - 32y$ or 32y = 320 or y = 10 N $\therefore x + 10 = 16 \text{ or } x = 6 \text{ N}$ 2 Suppose two vectors are P and Q. It is given that $|\mathbf{P} + \mathbf{Q}| = |\mathbf{P} - \mathbf{Q}|$ Let angle between P and Q is $\boldsymbol{\varphi}.$ $\therefore P^2 + Q^2 + 2PQ \cos \phi$ $= P^2 + Q^2 - 2PQ \cos \phi$ $4PQ \cos \phi = 0$ \Rightarrow $\cos \phi = 0 \quad [\because P, Q \neq 0]$ \Rightarrow $\phi = \frac{\pi}{2} = 90^{\circ}$ \Rightarrow **3** For given vectors to be coplanar, $\mathbf{A} \times \mathbf{B} \times \mathbf{C} = 0$ $\mathbf{A} = 2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - 2\hat{\mathbf{k}} \implies \mathbf{B} = 5\hat{\mathbf{i}} + n\hat{\mathbf{j}} + \hat{\mathbf{k}}$ $\therefore \qquad \mathbf{C} = -\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ 2 3 -2 5 n 1 = 0-1 2 3 $\Rightarrow 2(3n-2) - 3(15+1) - 2(10+n) = 0$ $\Rightarrow 6n - 4 - 45 - 3 - 20 - 2n = 0$ 4n = 72, n = 18 \Rightarrow **4** The equation of trajectory of a particle, fired, with an initial velocity *u* at an angle of projection θ ,

24 The angular momentum of a particle is

$$y = x \tan \theta - \frac{gx^2}{2u^2 \cos^2 \theta}$$
$$= x \tan \theta - \frac{gx^2}{2u^2} \sec^2 \theta$$
$$= x \tan \theta - \frac{gx^2}{2u^2} (1 + \tan^2 \theta)$$

Now, magnitude of velocity vector $u = \hat{i} + 2\hat{j} \implies u = \sqrt{(1)^2 + (2)^2} = 5 \text{ m/s}$ and angle of projection is given by $\tan \theta = \frac{\hat{j} \text{ component}}{\hat{i} \text{ component}} = \frac{2}{1} = 2$ $\tan\theta = 2$ So, from eq (i), we have $y = 2x - \frac{10 \times x^2}{2 \times 5} (1+4) = 2x - 5x^2$ **5** $v_p = 90 \text{ km/h} = 25 \text{ m/s}$ $v_c = 72 \text{ km/h} = 20 \text{ m/s}$ In 10 s culprit reaches point B from A. Distance covered by culprit, $S = vt = 20 \times 10 = 200 \text{ m}$ At time t = 10 s, the police jeep is 200 m behind the culprit. Relative velocity between jeep and culprit is 25 - 20 = 5 m/sTime = $\frac{S}{V} = \frac{200}{5} = 40 \text{ s}$ [Relative velocity is considered] In 40 s, the police jeep will move from Ato a distance Swhere, $S = vt = 25 \times 40 = 1000$ m = 1 km away The jeep will catch up with the bike 1 km far from the turning.

6 Boat covers distance of 16 km in a still water in 2 h

 $v_B = \frac{16}{2} = 8 \text{ km/h}$ i.e.

Now, velocity of water $v_W = 4$ km/h Time taken for going upstream $t_1 = \frac{8}{v_B - v_W} = \frac{8}{8 - 4} = 2 \text{ h}$

As water current oppose the motion of boat, therefore time taken for going downstream

$$t_2 = \frac{8}{v_G + v_W} = \frac{8}{8+4} = \frac{8}{12}$$
 h

[water current helps the motion of boat]

$$\therefore \text{ Total time} = t_1 + t_2$$
$$= \left(2 + \frac{8}{12}\right) h$$

7 Let *v* be the speed of boatman in still water,

Resultant of v and u should be along AB. Components of v_b (absolute velocity of boatman) along *x* and *y* directions are, $v_x = u - v \sin \theta$

and
$$v_y = v \cos \theta$$

Further, $\tan 45^\circ = \frac{v_y}{v_x}$
or $1 = \frac{v \cos \theta}{u - v \sin \theta}$
 $v = \frac{u}{\sin \theta + \cos \theta}$
 $= \frac{u}{\sqrt{2} \sin (\theta + 45^\circ)}$
v is minimum at,
 $\theta + 45^\circ = 90^\circ$ or $\theta = 45^\circ$
and $v_{\min} = \frac{u}{\sqrt{2}}$
8 Draw the situation
as shown. *OA*
represents the
path of the particle
starting from
origin *O*(0, 0).
Draw a
perpendicular
from point *A* to *X*-axis. Let path of the
particle makes an angle θ with the
X-axis, then
 $\tan \theta = \text{slope of line } OA$
 $= \frac{AB}{OB} = \frac{3}{\sqrt{3}} = \sqrt{3} \text{ or } \theta = 60^\circ$
9 Height of table
 $h = \frac{1}{2}gt^2 = \frac{1}{2} \times 10 \times (0.4)^2 = 0.8 \text{ m}$
Horizontal distance covered = $u_x t$
 $= 4 \times 0.4 = 1.6 \text{ m}$
Vertical velocity on reaching ground
 $v_y = u_y + a_y t = 0 + 10 \times 0.4 = 4 \text{ m/s}$
Horizontal velocity on reaching ground
 $v_c = u_x = 4 \text{ m/s}$
If θ is the angle at which the ball hits the
ground with the vertical, then
 $\tan \theta = \frac{v_x}{v_y} = \frac{4}{4} = 1 \Rightarrow \theta = 45^\circ$
0
N

 \Rightarrow **11** For two particles *A* and *B* move with two particles to collide, the direction of to other should be directed towards the relative position of the other particle. $\mathrm{i.e.} \, \frac{\mathbf{r}_1 - \mathbf{r}_2}{|\mathbf{r}_1 - \mathbf{r}_2|} \longrightarrow \text{ direction of relative}$ $\begin{array}{l} \text{position of 1 w.r.t. 2.}\\ \text{Similarly,} \frac{\mathbf{v}_1 - \mathbf{v}_2}{|\mathbf{v}_1 - \mathbf{v}_2|} \longrightarrow \text{direction of} \end{array}$ velocity of 2 w.r.t. 1. So, for collision of A and B, we get $\frac{\mathbf{r}_1 - \mathbf{r}_2}{|\mathbf{r}_1 - \mathbf{r}_2|} = \frac{\mathbf{v}_2 - \mathbf{v}_1}{|\mathbf{v}_2 - \mathbf{v}_1|}$ a function of time is given by $\mathbf{R} = 4\sin\left(2\pi t\right)\hat{\mathbf{i}} + 4\cos\left(2\pi t\right)\hat{\mathbf{j}}$ x-component, y-component, $v = 4\cos 2\pi t$ Squaring and adding both equations, we get $x^{2} + y^{2} = 4^{2} [\sin^{2}(2\pi t) + \cos^{2}(2\pi t)]$ circle and radius is 4 m. (ii) Acceleration vector, $a = \frac{v^2}{2}$ (iv) As, we have $v_x = + 4 (\cos 2\pi t) 2\pi$ and $v_y = -4 (\sin 2\pi t) 2\pi$ Net resultant velocity, $v = \sqrt{v_x^2 + v_y^2}$ $= \sqrt{(8\pi)^2 (\cos^2 2\pi t + \sin^2 2\pi t)}$

 $v = 8\pi$ [:: cos² 2 πt + sin² 2 πt = 1] So, option (c) is incorrect.

 $PS = \frac{100}{\sqrt{2}} = \frac{100\sqrt{2}}{2} = 50\sqrt{2}$ Relative velocity between A and B is $v_{BA} = \sqrt{v_A^2 + v_B^2} = 10\sqrt{2}$ $t=\frac{50\sqrt{2}}{10\sqrt{2}}$ t = 5 h

 $\Rightarrow \ \frac{1}{\sqrt{2}} = \frac{PS}{100}$

- constant velocities v_1 and v_2 . Such that the relative velocity of one with respect
- **12** (i) The position vector of a particle \mathbf{R} as

$$x = 4\sin 2\pi t \qquad \dots (i)$$

...(ii)

i.e. $x^2 + y^2 = 4^2$ i.e. equation of

$$a = \frac{v^2}{R} (-\hat{\mathbf{R}})$$
, while v is velocity of a particle

(iii) Magnitude of acceleration vector,

