MATHEMATICAL REASONING

Mathematical Statement: The basic unit involved in mathematical neasoning is a mathematical statement.

Mothematically acceptable: A sentence is called a mathematically acceptable statement if it is eithen true on false but not both.

Negation of a statement: The denial of a statement is called the negation of the statement. If p is a statement and is denoted by ~p, and nead as 'not p'.

While forming the negation of a statement, phrases like. "It is not the case" on "It is also false that" ane also used.

Compound Statement: A compound statement is a statement which is made up of two on more statements. In this case, each statement is called a component statement.

Rules fon the compound statement with "AND"

- 1. The compound statement with 'And' is true if all its component statements are true.
- 2. The compound statement with 'And' is false if any of its component statement is false.

Rules fon the compound statement with "OR" () ote: "if and only if" ()

- 1. A compound statement with an 'On' is true when one component statement is true on both the component statements are true.
- 2. A compound statement with an 'On' is false when both the component statement are false.

Quantifiens: quantifiens ane phnases like, "There exists" and "for all".

Implications: Implications are "if-then", "only if" and "if and only if"

If p and q is same as the following: p: a number is a multiple of 9. q: a number is a multiple of 3.

1. p implies q ($p \Rightarrow q$) This says that a number is a multiple of 9 implies that it is a multiple of 3.

- 2. p is sufficient condition for q. This says that knowing that a number as a multiple of 9 is sufficient to conclude that it is a multiple of 3.
- 3. p only if q. This says that a no. is a multiple of 9 only if it is a multiple of 3.
- 4. q is a neccessary condition for p. This says that when a no is a multiple of 9, it is neccessary a multiple of 3.
- s. ~q implies ~p. This says that if a no. is not a multiple of 3, then it is not a multiple of 9.

Contnapositive and convense: Contrapositive and convense are certain other statements which can be formed from a given statement with "if - then".

Validating statements:

Poules: If p and q are mathematical statements, then in order to show that the statement "p and q" is true, the following steps are followed.

Step I snow that the statement p is true.

Step I snow that the statement q is true.

Quie 2. Statements with "or"

If p and q are mathematical statements, then in order to show that the statement "p and q" is true, one must consider the following:

case I By assuming that p is false, show that q must be true.

Case II By assuming that q is false, show that p must be true.

Value 3. Statements with "if-then"

In order to prove the statement "if p and q" we need to show that any one of the following case is true.

case I By assuming that p is false, show that q must be true. (Direct Method)

case II By assuming that q is false, show that p must be false. (Contrapositive Method)

ule 4. Statements with "if and only if"

In onder to prove the statement "if p if and only if q" we need to show

- (i) If p is true, then q is true.
- (ii) If q is true, then p is true.

By Contradiction: Hene to check whethen a statement p is true, we assume that p is not true i.e. ~p is true. Then we arrive at some result which contradicts our assumption. Therefore, we conclude that p is true.

Counten Example: The method involves giving an example of a situtation whene the statement is not valid.