CBSE Test Paper 02 CH-9 Areas of Parallelograms & Triangles

- 1. The figure obtained by joining the mid-points of the adjacent sides of a rectangle of sides 8 cm and 6 cm is :
 - a. a rectangle of area 24 cm²
 - b. a trapezium of area 24 cm²
 - c. a rhombus of area 24 cm^2
 - d. a square of area 25 cm^2
- 2. ABC is a triangle in which D is the mid-point of BC. E and F are mid-points of DC and AE respectively. If $ar (\triangle ABC) = 16 \ cm^2$, then $ar (\triangle DEF)$ is

- a. $4 \ cm^2$.
- b. $1 \ cm^2$.
- c. 8 cm^2 .
- d. $2 \ cm^2$.
- 3. Medians of riangle ABC intersects at G. If $ar~(riangle ABC)=27~cm^2$, then ar~(riangle BGC) is

- a. $12 \ cm^2$.
- b. $9 \ cm^2$.
- c. $18 \, cm^2$.
- d. 6 cm^2 .
- 4. In the given figure, the area of quadrilateral ABCD is

5. ABCD is a parallelogram in which DC is produced to P such that DC = CP. AP intersects BC at Q. If $ar (\triangle BQD) = 3 \ cm^2$, then $ar(\parallel ABCD)$ is

- a. $9 \ cm^2$.
- b. $6 \ cm^2$.
- c. $15 \ cm^2$.
- d. $12 \ cm^{2}$.
- 6. Fill in the blanks:

Two parallelograms are on the same base and between the same parallels, then the ratio of their areas is _____.

7. Fill in the blanks:

Triangles on the same base and having equal areas lie between the _____.

8. Is the given figure lie on the same base and between the same parallels. In such a case, write common base and the two parallels:-

9. In a given figure, OCDE is a rectangle inscribed in a quadrant of a circle of radius 10

cm. If OE = $2\sqrt{5}$, find the area of the rectangle.

- 10. In a triangle ABC, E is the midpoint of median AD. Show that $ar(\triangle BED) = \frac{1}{4}ar(\triangle ABC)$.
- 11. Prove that as

 $\mathrm{ar}(\Delta ROS) = \mathrm{ar}\;(\Delta PQO)$ if PS||RQ

- 12. Show that ar (ABC) = ar (ABD). ABC and ABD are two triangles on the same base AB if line segment CD is bisected by AO at O
- 13. In a parallelogram, ABCD, E, F are any two points on the sides AB and BC respectively. Show that ar (\triangle ADF) = ar (\triangle DCE)
- 14. Show that the area of a rhombus is half the product of the length of its diagonals.

15. Prove the parallelogram which is a rectangle has the greatest area.

CBSE Test Paper 02 CH-9 Areas of Parallelograms & Triangles

Solution

1. (c) a rhombus of area 24 cm^2

Explanation: We know, that the figure obtained on joining the midpoints of a rectangle is a rhombus.

Let ABDE be a rectangle in which AB = 8 cm and BD = 6 cm.

And F, G, H and I are the mid-points of the sides AB, BD, DE and AE respectively. FGHI is a rhombus.

Now, the diagonals of the rhombus FGHI are FH and GI.

FH = AB = 8 cm and GI = BD = 6 cm

Area of rhombus FHGI = $\frac{1}{2} \times$ FH \times GI = $\frac{1}{2} \times$ 8 \times 6 = 24 cm²

Therefore, the figure obtained by joining the mid-points of the adjacent sides of a

rectangle of sides 8 cm and 6 cm is a rhombus with area 24 cm^2 .

2. (d) $2 \ cm^2$.

Explanation:

Given: $ar (riangle ABC) = 16 \ cm^2,$

Since AD is median of triangle ABC, and median of triangle divided it into two triangles of equal area, therefore,

 $\mathrm{area}\left(riangle \mathrm{ABD}
ight) = \mathrm{area}\left(riangle \mathrm{ADC}
ight) = rac{16}{2} = 8 \ \mathrm{cm}^2$

Now, since AE is median of triangle ADC, and median of triangle divided it into two triangles of equal area, therefore,

 $\mathrm{area}\left(riangle \mathrm{ADE}
ight)=\mathrm{area}\left(riangle \mathrm{AEC}
ight)=rac{8}{2}=4\ \mathrm{cm}^2$

Now, again since DF is median of triangle ADE, and median of triangle divided it into two triangles of equal area, therefore,

$$\mathrm{area}\left(riangle \mathrm{ADF}
ight)=\mathrm{area}\left(riangle \mathrm{DEF}
ight)=rac{4}{2}=2~\mathrm{cm}^2$$

3. (b) $9 \ cm^2$.

Explanation:

According to quesiton, area ($\triangle ABD$) = area ($\triangle ADC$)(i) And, area ($\triangle GBD$) = area ($\triangle GDC$)(ii) Subtracting eq.(ii) from eq.(i), we get area ($\triangle AGB$) = area ($\triangle AGC$) Similarly, area ($\triangle AGB$) = area ($\triangle BGC$) Therefore, area ($\triangle AGB$) = area ($\triangle BGC$) = area ($\triangle AGC$) But area ($\triangle AGB$) + area ($\triangle BGC$) + area ($\triangle AGC$) = area ($\triangle ABC$) $\Rightarrow 3 \times \text{area} (\triangle BGC) = \frac{27}{3} = 9 \text{ cm}^2$ (a) 42 area²

4. (a) $42 \ cm^2$.

Explanation:

In the given figure,

Area of quad. ABCD = Base \times Height = 7 \times 6 = 42 cm²

5. (d) $12 \ cm^{2}$.

Explanation:

Since triangles BQD and BQA are on the same base BQ and between the same parallels. Therefore,

 ${
m area}\left(riangle {
m BQD}
ight)={
m area}\left(riangle {
m BQA}
ight)=3$ sq. cm In triangles ABQ and CQP,

 $\angle \mathrm{AQB} = \angle \mathrm{CQP}$ [Vertically opposte angles]

AB = CP [Since CP = DC and DC = AB]

BQ = CQ [Given]

Therefore, $riangle ABQ \cong riangle CQP$ [By SAS congurancy]

 $\Rightarrow \mathrm{area} riangle \mathrm{ABQ} = \mathrm{area} riangle \mathrm{CQP} = 3$ sq. cm

Similarly using SAS criterion of congurancy, $riangle \mathbf{C}\mathbf{Q}\mathbf{P}\cong riangle \mathbf{D}\mathbf{C}\mathbf{Q}$

 $\Rightarrow \mathrm{area} \triangle \mathrm{CQP} = \mathrm{area} \triangle \mathrm{DCQ} = 3 \, \mathrm{sq. \, cm}$ Now, BD is diagonal of parallelogram ABCD $\mathrm{area} \left(\|gm\mathrm{ABCD}\right) = 2 \times \mathrm{area} \left(\triangle \mathrm{BCD} \right) = 2 \times (3+3) = 12 \, \mathrm{sq. \, cm}$

6. 1:1

- 7. same parallels
- 8. Since ABCD and PQR don't have a common base, so the two figures do not lie between the same parallel lines and common base.
- 9. We have, OD = 10 cm and OE = $2\sqrt{5}$ cm

$$\therefore OD^{2} = OE^{2} + DE^{2}$$

$$\Rightarrow DE = \sqrt{OD^{2} - OE^{2}} = \sqrt{(10)^{2} - (2\sqrt{5})^{2}} = 4\sqrt{5} \text{ cm}$$

$$\therefore \text{ ar(rect OCDE)} = OE \times DE = 2\sqrt{5} \times 4\sqrt{5} \text{ cm}^{2}$$

$$= 8 \times 5 \text{ cm}^{2} = 40 \text{ cm}^{2}$$

10. Given: In a triangle ABC, E is the mid-point of median AD.

To Prove : ar(\triangle BED) = $\frac{1}{4}$ ar(\triangle ABC)

Proof : In \triangle ABC,

As AD is a median

 \therefore ar(\triangle ABD) = ar(\triangle ACD) = $\frac{1}{2}$ ar(\triangle ABC) . . .[As median of a triangle divides it into two triangles of equal area] . . .(1)

In \triangle ABD,

As BE is median

 \therefore ar(\triangle BED) = ar(\triangle BEA) = $\frac{1}{2}$ ar(\triangle ABD) . . . [As a median of a triangle divides it into two triangles of equal area]

 $\Rightarrow \operatorname{ar}(\triangle BED) = \frac{1}{2} \operatorname{ar}(\triangle ABD) = \frac{1}{2} \times \frac{1}{2} \operatorname{ar}(\triangle ABC) \dots [From (1)]$

$$=\frac{1}{4}$$
 ar(\triangle ABC)

- 11. $ar(\Delta PSR) = ar(\Delta PSQ)$ $ar(\Delta PSR) - ar(\Delta PSO)$ $= ar(\Delta PSQ) - ar(\Delta PSO)$ $ar(\Delta ROS) = ar(\Delta PQO)$
- 12. AO is the median of $\triangle ACD$ $ar(\triangle AOC) = ar(\triangle AOD)$ $ar(\triangle BOC) = ar(\triangle BOD)$ $ar(\triangle AOC) + ar(\triangle BOC)$ $= ar(\triangle AOD) + ar(\triangle BOD)$ $ar(\triangle ABC) = ar(\triangle ABD)$

From the given figure it is clear that \triangle ADF and parallelogram ABCD lie on the same base AD and between the same parallels AD and BC.

 \therefore ar(\triangle ADF) = $\frac{1}{2}$ ar (\parallel^{gm} ABCD)(i)

Also, \triangle DCE and $\|^{gm}$ ABCD lie on the same base DC and between the same parallels DC and AB.

∴ar(\triangle DCE) = $\frac{1}{2}$ ar ($||^{gm}$ ABCD)(ii) From (i) and (ii), we get ar (\triangle ADF) = ar (\triangle DCE)

- 14. $ar(\triangle ABC) = \frac{1}{2} \times AC \times OB$...(i) $ar(\triangle ACD) = \frac{1}{2} \times AC \times DO$...(ii) Adding (i) and (ii) $ar(\triangle ABC + \triangle ACD) \frac{1}{2} \times AC \times (DO + OB)$ $= \frac{1}{2} \times AC \times BD$ Hence, area of rhombus ABCD = $\frac{1}{2} \times AC \times BD$
- 15. Let PQRS be a parallelogram in which PQ = a and PS = b and h be the altitude

corresponding to base PQ

Area of parallelogram PQRS = Base corresponding Altitude = ah \triangle PSK is a right angled triangle PS being its hypotenuse. But hypotenuse is the greatest side of \triangle Area of ||gram PQRS will be greatest when h is greatest H = b, then PS = PQ The ||gram PQRS will be a rectangle. Hence, the area of ||gram is greatest when it is a rectangle.