Rotational Mechanics

Exercise Solutions

Solution 1:

we are given that, $\omega_0 = 0$, Final angular velocity, $\omega' = 100$ revs/s . t = time = 4 s.

Let α be angular acceleration.

Now, $\omega' = \omega_0 + \alpha t$

Where ω_0 is initial angular velocity

or $\alpha = 25 \text{ rev/s}^2$

Again, from second equation of kinematics.

 $\theta = \omega_0 + (1/2) \alpha t^2$

[angle rotated during 4 seconds, so t = 4 sec]

 θ = 400 π radians

Solution 2:

Given: $\theta = 50$ time = t = 5 sec.

By equation of kinematics,

 $\theta = \omega t + (1/2) \alpha t^2$

or $\alpha = 4 \text{ rev/s}^2$

Let After 5 second angular velocity will be $\omega^{\prime}.$

 $\omega' = \omega + \alpha t$

 $\Rightarrow \omega = 20 \text{ rev/s}$

Solution 3:

Time duration = t =10sec. angle rotation = θ

Maximum angular velocity = 4 x 10 = 40 rad/s

Area under the curve will decide the total angle rotated.

Area under the curve = (1/2)x10x40 + 40x10 + (1/2)x40x10 = 800 rad = total angle rotated.

Solution 4:

rom first equation of kinematics-

 $\omega = \omega_0 + \alpha t \dots (1)$ Where Initial angular velocity= $\omega_0 = 5$ rad/s and Final angular velocity = $\omega = 15$ rad/s and $\alpha = 1$ rad/s²

(1) => t = 10 sec

Again, from second equation of kinematics.

 $\theta = \omega_0 t + (1/2) \alpha t^2$

Here θ is the total angle rotated

 $\Rightarrow \theta = 100 \text{ rad.}$

Solution 5:

 α = 2 rev/s², θ = 5 rev, ω_{o} = 0 and ω = ?

Change in angular velocity

ω² = 2θα ...(1)

 $\Rightarrow \omega = 2\sqrt{5} \text{ rev/s}$

or $\theta = 10\pi$ rad and

 $\alpha = 4\pi \text{ rad/s}^2$

then (1)=> ω = 2V5 rev/s

Solution 6:

Radius of disc = 10 cm = 0.1 m and Angular velocity = 20 rad/s

(a) linear velocity of the rim = ω_r = 20x0.1 = 2 m/s

(b) Linear velocity at the middle of radius

 $\omega_r/2 = (20x0.1)/2 = 1 \text{ m/s}$

Solution 7:

t = 1 sec and r = 1 cm = 0.01 m

Tangential acceleration:

 $a_T = r x a = 0.01 x 4 rad/s^2$

Angular velocity : $\omega = \alpha t = 1 \times 4 = 4 \text{ rad/s}$

Radial acceleration: $a_r = \omega^2 x r = 0.16 m/s^2$ or 16 cm/s²

Solution 8:

Relation between angular speed and linear speed

 $v = r x \omega$

Where, Angular speed of the disc = ω = 10 rad/s and Radius of the disc = r = 20 cm or 0.20 m

v = 10 x 0.20 = 2 m/s

The perpendicular distance from the axis AD = $\sqrt{3}/2 \times 10 = 5\sqrt{3}$ cm

```
Moment of inertia about BC = I = mr^2
=200 K (5V3)<sup>2</sup> gm-cm<sup>2</sup>
```

= 1.5 x 10⁻³ kg-m²

(b) Let's take AD as perpendicular side.

moment of inertia along BC

 $I = 2mr^{2}$

= 2 x 200 x 10² gm-cm²

= 4 x 10⁻³ kg-m²

Solution 10:

Consider the two particles at the position 49 cm and 51 cm

Moment of inertia due to these 2 particles = $49x1^2 + 51 + 1^2 = 100 \text{ gm-cm}^2$

Similarly, if consider 48th and 52nd term, we have $100 \times 2^2 \text{ gm-cm}^2$

Thus, we will get 49 such set and one alone partcle at 100 cm.

Total Moment of inertia = $100(1^2 + 2^2 + ... + 49^2) + 100(50)^2$

```
= 4292500 gm-cm<sup>2</sup>
```

= 0.43 kg-m²

Solution 11:

Moment of inertia of the first body and the 2nd body about the respective tangents becomes

 $MI_1 = mr^2 + (2/5) mr^2$ and $MI_2 = mr^2 + (2/5) mr^2 = (7/5) mr^2$

Net moment of inertia is:

 $MI_{net} = (7/5) mr^2 + (7/5) mr^2 = (14/5) mr^2$ units

Solution 12:

Length of the rod =L= 1 m, and its mass = 0.5 kg Let r = distance between the parallel axes. Let at a distance x from the center the rod is moving

 $I_{B} = I_{A} + I_{A}$. r²

[parallel axis theorem]

the moment of inertial at d

 $(mL^2/1^2) + md^2 = 0.10$

On Putting values, we have

d = 0.342 m

Solution 13:

First let's take a point on the rim, this point is perpendicular to the ring and moment of Inertia

 $I = mr^2$

About a point on a rim of the ring and the axis perpendicular to the plane of the ring, the moment of inertia = $mR^2 + mR^2 = 2 mR^2$

=> mK² = 2mR² [Paralel axis theorem]

 $= K = V(2R^2) = 2R$

Solution 14:

Moment of inertia : $I = mr^2/2$

Let us take a line parallel to this axis and at a distance d. Then the radius of gyration becomes r

Moment of inertia = $I' = L + md^2$

 $I' = mr^2/2 + md^2$

Also, I' = mr² (Given) Equating above equations, we have

 $d^2 = r^2/2$

or d = $r/\sqrt{2}$

Solution 15:

mass of that cross sectional area = $m/a^2 x$ (axdx)

moment of inertia along xx'

Therefore, for two lines

 $I = 2m x a^2/12$

 $= ma^{2}/6$

Moment of inertia for pair of perpendicular diagonals:

 $I' = 2m x a^2/12 = ma^2/6$

Moment of inertia: I' = 2I [perpendicular axis theorem]

 $I = ma^{2}/12$

Solution 16:

The inertia of the body for a point of mass is the product of the square of the radius with the mass of the body.

I = mAr

Where, I = moment of Inertia, A = area of the object and r = radius of the object.

The moment of inertia of a disc:

$$I = \int_{0}^{a} (A + Br) 2\pi r dr$$
$$I = \int_{0}^{a} 2\pi A r^{3} dr + \int_{0}^{a} 2\pi B r^{4} dr$$
$$I = 2\pi \alpha^{4} \left[\left(\frac{A}{4} \right) + \left(\frac{B\alpha}{5} \right) \right]$$
$$I = 2\pi \left(\frac{A\alpha^{4}}{4} + \frac{B\alpha^{5}}{5} \right)$$

Solution 17:

Formula used is that of a torque which tells us the mechanics of force which helps the object to rotate.

Torque = F. r(1)

F = force applied on the object and r = radius of the object turning.

The force of the object when in motion in linear path = τ = mgr/2 and radius is

$$r = \left(u^{2} \cdot \frac{\sin 2\theta}{g}\right)$$

$$r = \left(u^{2} \cdot \frac{2\sin \theta \cdot \cos \theta}{g}\right)$$

$$(1) \Rightarrow$$

$$\tau = F \cdot r$$

$$\tau = \frac{mg}{2} \cdot \left(u^{2} \cdot \frac{2\sin \theta \cdot \cos \theta}{g}\right)$$

$$\tau = mu^{2} \sin \theta \cos \theta$$

Solution 18:

Torque = F.r

The pendulum bob rotates at a distance of "I" from the center which is also the radius in terms of torque, the force, F = W

If angle of turning is θ , the radius in terms of turning angle is r = l sin θ

Torque = F.I sin θ = W. I sin θ

At lowest point the θ = 0, turning the torque equal to zero at the lowest point.

Solution 19:

The force exerted into the wrench is F= 6N, the angle of motion is 30° . The distance from the nut to the wrench end is 16 cm.

Therefore, total torque acting at A about the point 0.

Torque = F.r sin θ = 6 x 0.08 x sin 30 ° = 6 x 0.08 x (1/2)

Torque acting on the point B

 $6 \times 0.08 \times (1/2) = F.r \sin\theta$

 $6 \times 0.08 \times (1/2) = F \times 0.16 \sin\theta$

F = 1.5 N

Solution 20:

A torque which tells us the mechanics of force which helps the object to rotate.

Torque = F r sin θ

The torque acting on the point O due to the force of 15N:

 τ_{15} = 15 x 6 x 10⁻² sin 37° = 0.54 Nm

The torque acting on the point O due to the force of 10N:

 τ_{10} = 10 x 4 x 10⁻² = 0.40 Nm

The torque acting on the point O due to the force of 20N

 τ_{20} = 20 x 4 x 10⁻² sin 30° = 0.40 Nm

Due to torque negation between τ_{10} and τ_{20} which leaves them to zero, leaving the resultant torque equivalent to 0.54 Nm.

Solution 21:

a torque which tells us the mechanics of force which helps the object to rotate.

Torque = $F r sin\theta$

The block of mass "m" moves with a uniform velocity on an inclined plane of angle θ , the force applied on the block.

 $F = mg sin\theta$

For the block not to roll the sum of the product of torque and force applied downwards and reactionary force due to the mass of the block should be zero.

 $\tau F + \tau F_N = 0$

 $F(a/2) = -F_N$

or - $F_N = (a/2) \text{ mg sin}\theta$

Torque on the sliding object is (-a/2) mg sin θ

Solution 22:

A torque which tells us the mechanics of force which helps the object to rotate. Torque = Fr sin θ and I = mL²/12

The mass of rod is given as "m" and length "L". So the torque acting on the rod:

$$\tau = F \times L/4$$

And, The moment of Inertia

 $I = mL^{2}/12$

The angle of rotation in terms of angular acceleration:

 $\alpha = \tau/I$

= 3F/mL

and angle of rotation in term of angular length is

 $\theta = \mathrm{ut} + (1/2)\alpha \mathrm{t}^2$

Substituting the value of α and u = 0.

 $\Rightarrow \theta = (1/2)(3F/mL) t^{2}$

Solution 23:

The mass of the plate is 120g, the edges of the square is 5.0 cm and the angular acceleration is 0.2 rad/sec^2

A torque which tells us the mechanics of force which helps the object to rotate.

Torque = Fr sin θ and I = mL²/12

The moment of Inertia of the plate:

$$I_{edge} = I + M \left(\frac{a}{2}\right)^{2}$$
$$I_{edge} = \frac{Ma^{2}}{12} + M \left(\frac{a}{2}\right)^{2}$$

By substituting the values of variables of mass and edge length

 $=> I = (0.12 \times 0.05 \times 0.05)/3$

Torque produced by the plate: T = I α

 $T = 0.0001 \times 0.2 = 2 \times 10^{-5} Nm$

Solution 24: Moment of inertia of a square plate abut its diagonal is $ma^2/12$ Where m = mass of square plate and a = edges of the square

Torque produced = $(ma^2/12) \times \alpha$

 $= [120x10^{-3}x5^{2}x10^{-4}]/[12x0.2]$

= 0.5 x 10⁻⁵ N-m

Solution 25:

A flywheel of moment of inertia 5.0 kg- m^2 is rotated at a speed of 60 rad/s.

Average torque = $I\alpha$

Calculation of work done from the torque of the flywheel:

W = $(1/2) I\omega^2$

The angular momentum of the wheel : L = I ω

Now, let us calculate the angular acceleration:

 $\alpha = -(60/5 \times 60) \text{ rad/s}^2 = -0.2 \text{ rad/s}^2$

(a) the average torque of the flywheel

average torque = $I\alpha$ = -Nm

and work done by the torque of the flywheel

 $W = (1/2) I\omega^2$

W = 9 KJ

(b) angular momentum of the wheel in a time span of 4 minutes

 $\omega = \omega_o + \alpha t$

= 60 - 240/5 = 12 rad/s

So, angular momentum = L = $I\omega = 5x12 = 60 \text{ kg/m}^2$

Solution 26:

The earth's angular speed decreases by 0.0016 rad/day in 100 years (Given)

```
and 1 year = 365 x 56400 sec
```

Torque produced by ocean water in decreasing earth's angular velocity is

τ = lα=(2/5) mr² x (ω - ω_o)/t = (2/5) x 6 x 10²⁴ x 64² x 10¹⁰ x [0.0016/26400² x 100 x 365] = 5.678 x 10²⁰ N-m

Solution 27:

The relationship of velocity and acceleration in basic kinematics.

 $\omega = \omega_o + \alpha t$

The angular velocity is taken in terms of rad/sec which is 10 and the time taken to rotate is 10 sec

 $0=10+10\alpha$

 $=> \alpha = -1 \text{ rev/s}^2$

Angular deceleration after 5 seconds we get

 $\omega_{dec} = \omega + \alpha t$

 $\Rightarrow \omega_{dec} = 5 \text{ rev/s}$

Solution 28:

A torque which tells us the mechanics of force which helps the object to rotate.

Torque = Fr sin θ and I = (1/2) Mr²

where, F = force applied on the object; r= radius of the object turning. Let θ be the turning angle and I = moment of Inertia, Also, L is the length at which the force is applied.

let us find the acceleration using below formula:

 $ω' = ω^2 - 2θα$

```
[\omega = 100 \text{ rev/min} = (5/8) \text{ rev/s} = 10\pi/3 \text{ rad/s} ]
[0 = 10 rev = 20\pi rad and r = 0.2 m ]
```

```
0 = (3.22)^2 - 2\alpha(10)
```

```
=> \alpha = 10\pi/36 \text{ rad/s}^2
```

Moment of inertia: $I = (1/2) Mr^2 = (1/2)(10)(0.2)^2 = 0.2 kg m^2$

Therefore, force applied to the wheel = T = Fa

=> T = Fr

or $I\alpha = Fr$

 $=> F = 2\pi/36 \times (1/0.2)$

F = 0.87 N

Solution 29:

A cylinder rotating at an angular speed of 50 rev/s is brought in contact with an identical stationary cylinder.

The wheel rotates at a speed angular speed of 50 rev/s, at constant torque both acting in positive and negative acceleration.

For the 1st cylinder = ω = 50- α t

 $=> t = (\omega - 50)/-1 \dots (1)$

For the 2nd cylinder = $\omega = \alpha_{2t}$

 $=> t = \omega/\alpha_2 = \omega/1 ...(2)$

From (1) and (2),

 $\omega = 25 \text{ rev/s}$

and (2)=> t = 25/1 = 25 sec

Solution 30: Initial angular velocity = 20 rad/s So, α = 2 rad/s²

 $=> t_1 = \omega_1/\alpha_1 = 20/2 = 10 \text{ sec}$

As, the time taken for the torque to be equal to the kinetic energy

Here initial angular velocity = angular velocity at that instant

Time require to come to that angular velocity, $t_2 = \omega_2/\alpha_2 = 20/2 = 10$ sec

Total time requires = $t_1 + t_2 = 10 + 10 = 20$ sec

Solution 31:

A light rod of length 1 m is pivoted at its centre and two masses of 5 kg and 2 kg are hung from the ends. Here, $\tau = I\alpha$

Where τ = average frictional torque, I = moment of inertia and α =angular acceleration.

The torque produced on both the ends is:

 $5g \times (I/2) - 2g \times (I/2) = I\alpha$

 $\alpha = 6/7$ g or 8.4 rad/s²

Solution 32:

The given is that, the problem the ord has a mass 1 kg.

The angular acceleration is: $\tau_{net} = I_{net} + \alpha$

The moment of the inertia = $I = mI^2/12$

 $=> I = 1/12 \text{ kg m}^2$

and total moment of inertia = I = 1.75 + 1/12 = 1.833 kg m²

(a) The angular acceleration of the rod at initial moment = α = T/I = 1.5 x (9.8/1.833) = 8 rad/s²

(b) For 2 kg mass

T - 2g = 2a

T = 19.6 + 8 = 27.6 N

For 5 kg mass T - 5g = 5a = 49 - 20 = 29 N

Solution 33:

The blocks are of "m" and "M" masses, with radius of r pulley and moment of Inertia "I"

Using second law of Newton when the Force/Tension applied is equivalent to the product of mass and acceleration

F = ma

Tension applied on the first block: $T_1 = M(g-a)$

Tension applied on the 2nd block of mass: T₂ = ma

Torque applied on the pulley : $\tau = I\alpha = Ia/r$

Solving above equations, we get

$$Mg = Ma + ma + I.\frac{a}{r^2}$$
$$a = \frac{Mg}{M + m + \frac{I}{r^2}}$$

Solution 34:

A string is wrapped on a wheel of moment of inertia = $I = 0.20 \text{ kg}\text{-m}^2$ and radius = r = 10 cm or 0.1 m. Mass of the block = m = 2 kg

We know, mg - T = ma

and T = Ia/r^2

From above equations,

 $mg = (m + I/r^2)a$

=> a = $[2x9.8] / [2+0.2/0.01] = 0.89 \text{ m/s}^2$, which is the acceleration of the block.

Solution 35:

The moment of the inertia of the wheel, I = 0.20 and radius, r=10 cm and mass block of block, m = 2 kg. (Given)

We know, mg - T₁ = ma ..(1)

$$(T_1 - T_2)r_1 = l_1 \alpha \dots (2)$$

 $T_2 r_2 = l_2 \alpha \dots (3)$
(2)=>
 $(T_1 - l_2 \alpha/r_1)r_2 = l_1 \alpha$
[Using value of T₂]
=> T₁ = $[l_1/r_1^2 + l_2/r_2^2]a$
on substituting T₁ in (1)
 $a = \frac{mg}{[(l_1/r_1^2) + (l_2/r_2^2)] + m}$
 $a = \frac{2 \times 9.8}{(0.1/0.0025) + (0.2/0.01) + 2}$
= 0.316 m/s²
T₂ = $l_2a/r_2^2 = \frac{0.20 \times 0.316}{0.01}$
= 6.32 N
Solution 36:

Solution 37:

Let T is the tension of plane and T' of the side.

The angular acceleration of the pulley = α = (a/0.4) m/s²

So, the torque applied by the pulley due to the mass: $I = (T - T') \times 0.20$

 $= 0.20 \text{ kgm}^2$

Again, $\alpha = T/I$

=> (a/0.4) = (T - T') x 0.20/0.20 => (T - T') = -25 a(1)

Find the value of mass M using the moment of Inertia

 $I = Mr^{2}/2$ or M = 10 kg Now, Mg - T - T' = Ma/2 Here M = 10 and g = 9.8 => T + T' = 98 - 5a ...(2) Adding (1) and (2) we get 2T = 98 - 5a - 2.5a [Using formula, T = ma = 1xa = a] 2a = 98 - 5a - 2.5a or a = 10.31 m/s². Solution 38:

The radius of the pulley = 10 cm Inertia = 0.5 Mass of the blocks are given as 2 kg and 4 kg.

The mass and tension relationship of the 4 kg block and the 2kg block :

```
m_{1}g \sin\theta - T_{1} = m_{1}a \dots (1)

T_{1} - T_{2} = la/r^{2} \dots (2)

T_{2} - m_{2}g \sin\theta = m_{2}a \dots (3)

(1)+(3)=>
```

 $m_1g \sin\theta - m_2g \sin\theta + (T_2 - T_1) = (m_1 + m_2)a$

using equation (2) in above, we have

a = $\frac{(m_1 - m_2)g\sin\theta}{(m_1 + m_2 + 1/r^2)}$

=0.248 m/s²

Solution 39:

Form the above question's figure, $m_1g \sin\theta - T_1 = m_1a \dots(1)$

 $T_1 - T_2 = Ia/r^2$ (2)

 $T_2 - (m_2 g \sin\theta + \mu m_2 g \cos\theta) = m_2 a \dots (3)$

(1)+(3)=>

 $m_1g \sin\theta - (m_2g \sin\theta + \mu m_2g \cos\theta) + (T_2 - T_1) = m_1a + m_2a$

Given, $m_1 = 4 \text{ kg}$, $m_2 = 2 \text{ kg}$, g = 9.8, $\sin\theta = \cos\theta = 1/\sqrt{2}$, $\mu = 0.5$ and r = 0.1Using (2), and substituting above values, we get

 $a = 0.125 \text{ m/s}^2$

Solution 40:

Given, $m_1 = 200g$, l = 1 m, $m_2 = 20g$ The total tension formed due to the suspended weights: $T_1 + T_2 = 2 + 0.2 = 2.2$...(1)

The rod is kept at an equilibrium when the rod is at rest

 $-T_1 + T_2 = 0.04/0.5 = 0.08 \quad ...(2)$

Form (1) and (2)

 $T_2 = 1.14 N$

and (2)=> T₁ = (1.14 - 0.08) = 1.06N

Solution 41: The length of the ladder = 10 m Mass of the ladder is 16 kg which makes angle of 37° and also given Weight of the electrician is 60 kg, which stays at height of 8 cm.

Since the ladder should not slip or rotate, the torques expression is

 $mg(8 \sin 37^{\circ}) + Mg(5 \sin 37^{\circ}) = F_2 (10 \cos 37^{\circ}) = 0$ and

 $60 \times 9.8 \times (8 \sin 37^{\circ}) + 16 \times 9.8 (5 \sin 37^{\circ}) - F_2 (10 \cos 37^{\circ}) = 0$ Where F_1 and F_2 : forces of the masses in terms of reactionary force

=> F₂ = 412N

let f be the friction force which is equal to the F_2 due to equilibrium of the ladder

=> f = 412 N

Normal force = $F_1 = (m + M)g = (60+16)x 9.8 = 744.8 N$

Now,

The minimum coefficient of friction = μ

=> μ = f/F₁
[on substituting the values]

 μ = 0.553. Answer!!

Solution 42:

The value of the reactionary force = $R_2 = 16g + mg$ and another value of R_2 is R_1/μ

The relationship between R_1 and R_2 is

R₁ x 10 cos 37° = 16g x 5 sin 37° + mgx 60g x 8 x sin 37°

The value of the reactionary forces = R_1 is

$$R_{1} = \frac{48g + \frac{24}{5}mg}{8}$$
$$R_{2} = \frac{48g + \frac{24}{5}mg}{8 \times 0.54}$$

$$16g + mg = \frac{48g + \frac{24}{5}mg}{8 \times 0.54}$$

Or m = 44 kg

Which is the mass of the mechanic that can go up the ladder.

Solution 43:

The length of the ladder = 6.5m Weight of the man = 60kg and

(a) Torque is exerted at the upper end of the ladder and the there is no friction against the wall.

Torque due to weight of body

 $\tau = Fr \sin \theta$

 $\tau = mg r sin\theta$

 $\tau = 60x10x \ 6.5.2 \ sinv[1-(6/6.5)^2] = 750 \ N$

(b)

force exerted by the man through the ladder on the ground

F= mg = 60x10 = 600 N

Solution 44:

The force exerted by the two hinges: $F_1 + F_2 = mg$

or $F_1 + F_2 = 8g$

When $F_1 = F_2$

=> F₁ = 40 [Using g = 10 m/s²]

The reactionary forces of the first hinge = $M_1 \times 4 = 8g \times 0.75$

=> M1 = 15 N

the resultant force due to force and reactionary forces:

 $R = F_1^2 + N_1^2$ $= 40^2 + 15^2$

or R = 43 N

Solution 45:

The vertical and the horizontal component of the reactionary forces of the rod: $R_2 = mg - R_1 \cos\theta$ and $R_1 \sin\theta = \mu R_2$

$$R_{1} = \frac{\frac{mgL}{2}\cos\theta}{(\cos^{2}\theta/\sin\theta)h + \sinh\theta)}$$
$$R_{1}\cos\theta = \frac{\frac{mgL}{2}\cos\theta^{2}\sin\theta}{(\cos^{2}\theta/\sin\theta)h + \sinh\theta)}$$

The coefficient of friction: $\mu = [R_1 \sin \theta]/R_2$

Using above equations, we get

$$\mu = \frac{Lcos\theta \sin^2\theta}{2h - Lcos^2\theta sin\theta}$$

Solution 46:

(a) The average momentum $L = I\omega$

We are given, $I = mr^2/3$

 $=> L = mr^{2}/3 \times \omega$

 $=> L = (0.3 \times 0.5^2 \times 2)/3$

=> L = 0.05 kgm²/S

(b) Speed of the center of rod

v = wr

=> v = 2 x (50/2) = 50 cm/s

(c) K.E. generated

K.E. = (1/2) x (0.025² = 0.05 J

Solution 47:

Here (ma²/12) x α = 0.10 N - m and ω = 60x5 = 300 rad/s

Therefore, average momentum = $L = I\omega$

=> L = (0.10/60) x 300 = 0.5 kgm²/s

Then, the K.E. = (1/2) $I\omega^2$

= (0.10/60) x 300²

= 75 J

Solution 48:

The angular momentum of earth about its axis:

(2/5) mR² x (2π x 35400)

And the value of moment of inertia of earth: $I = (2/5) MR^2$

Now the value of the sun's average mass: $mR(2\pi/86400 \times 365)$

Now, the ratio of the mass of sun and the mass of earth :

ratio =
$$\frac{\frac{2}{5} mR^2 \times \left(\frac{2\pi}{36400}\right)}{mR^2 \times \frac{2\pi}{36400 \times 365}}$$
$$= 2.65 \times 10^{-7}$$