Reg. No. :

Name :

SECOND YEAR HIGHER SECONDARY EXAMINATION, MARCH 2021

Part – III

CHEMISTRY

Time : 2 Hours Cool-off time : 20 Minutes

Maximum : 60 Scores

General Instructions to Candidates :

- There is a 'Cool-off time' of 20 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

വിദ്യാർത്ഥികൾക്കുള്ള പൊതുനിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 20 മിനിറ്റ് 'കുൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും.
- 'കൂൾ ഓഫ് ടൈം' ചോദ്യങ്ങൾ പരിചയപ്പെടാനും ഉത്തരങ്ങൾ ആസൂത്രണം ചെയ്യാനും ഉപയോഗിക്കുക.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- നിർദ്ദേശങ്ങൾ മുഴുവനും ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദൃങ്ങൾ മലയാളത്തിലും നല്ലിയിട്ടുണ്ട്.
- ആവശൃമുള്ള സ്ഥലത്ത് സമവാകൃങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

SY-225

P.T.O.

	Answer quest	ions from 1 to 11	. Each carries 2	scores.	(11 >	× 2 = 22)
1.	(i) Which of	f the following is a	an anisotropic so	lid ?	,)
	(A) Na	27	(B)	Glass	.Ť	
	(C) Rul		(D)	Plastic	· /	(1)
	ii) - Glass is c	alled pseudo solic	l. Give reason.			(1)
2.	An element has	cubic close packe	ed structure.			
		e co-ordination n		om ?		(1)
(otal number of vo				(1)
						(1)
-		liquids A and E ve for this solutio	n.		he vapour pressi	ire-
4: (i) The electro	lyte used in Lead	-storage battery	<u> </u>		(1)
(i) Give one e	xample for a prim	ary cell.	x		(1)
5. W	hat is a zero or	der reaction ? Giv	e the unit of rate	constant for zero	order reaction.	
5. – CI	assify followin	g as homogeneou	s and heterogene	Ous catalysis		
A.	$2SO_2(g) + ($	$D_2(g) \xrightarrow{NO(g)} 2g$	SO ₃ (g)	o uo outury 313.		
B.	$2SO_2(g) + (g)$	$V_2(g) = \frac{V_2O_5(s)}{(s)}$	• 2SO ₃ (g)			
(i)	Which of the	e following ore ca	n be concentrate	d by froth floatati	on method ?	
	(A) Bauxit	e.		derite		
	(C) Cuprite		(D) Zi	nc blende		(1)
(ii)	Zinc and Me	rcury are low boil	ing liquids. Nam	e the technique us	sed to refine thes	e
	metals.			-		(1)
						(4)

1 മുതൽ 40 വരെയുള്ള ചോദൃങ്ങൾക്ക് പരമാവധി ലഭിക്കുക 60 സ്കോർ ആയിരിക്കും.

1 മുതൽ 11 വരെയുള്ള ചോദൃങ്ങൾക്ക് 2 സ്കോർ വീതം. (11 × 2 = 22)

1. (i) അസമദൈശിക സ്വഭാവം കാണിക്കുന്ന ഖരവസ്സു ഏതാണ് ?

- (A) NaCl (B) ຜູວໜັ
- (C) റബ്ബർ (D) പ്ലാസ്റ്റിക് (1)
- (ii) ഗ്ലാസ് കപടഖരങ്ങൾ എന്നറിയപ്പെടുന്നു. എന്താണ് കാരണം? (1)

ഒരു മൂലകത്തിന് ccp ഘടന ആണ് ഉള്ളത്.

- (i) ഓരോ ആറ്റത്തിന്റെയും ഉപസംയോജക സംഖ്യ എത്രയാണ് ? (1)
- (ii) N മോൾ മൂലകത്തിൽ കാണുന്ന മൊത്തം ശൂന്യസ്ഥലങ്ങളുടെ എണ്ണം എത്ര ? (1)
- A, B എന്നീ ദ്രാവകങ്ങളുടെ മിശ്രിതം ഒരു ആദർശ ലായനി ആണ്. ഇതിന്റെ ബാഷ്പമർദ്ദത്തിന്റെ മോൾ ഭിന്നത്തിനനുസരിച്ചുള്ള വൃതിയാനം സൂചിപ്പിക്കുന്ന ഗ്രാഫ് വരയ്ക്കുക.
- 4. (i) ലെഡ് സ്റ്റോറേജ് ബാറ്ററിയിൽ ഉപയോഗിക്കുന്ന ഇലക്ട്രോലൈറ്റ് ____ ആകുന്നു. (1)
 (ii) പ്രൈമറി സെല്ലിന് ഒരു ഉദാഹരണം എഴുതുക. (1)
- എന്താണ് സീറോ ഓർഡർ രാസ പ്രവർത്തനം ? അതിന്റെ നിരക്ക് സ്ഥിരാങ്കത്തിന്റെ യൂണിറ്റ് എഴുതുക.
- ചുവടെ നൽകിയിരിക്കുന്നവയെ ഏകാത്മക ഉൽപ്രേരണം, ഭിന്നാത്മക ഉൽപ്രേരണം എന്ന് തരം തിരിക്കുക.

A.
$$2SO_2(g) + O_2(g) \xrightarrow{NO(g)} 2SO_3(g)$$

B. $2SO_2(g) + O_2(g) \xrightarrow{V_2O_5(s)} 2SO_3(g)$

- (i) തന്നിരിക്കുന്ന അയിരുകളിൽ നിന്നും പ്ലവന പ്രക്രിയ വഴി സാന്ദ്രണം ചെയ്യുന്നത് ഏതെന്ന് കണ്ടെത്തുക.
 - (A) ബോക്സൈറ്റ് (B) സിഡറൈറ്റ്
 - (C) കുപ്പൈറ്റ് (D) സിങ്ക്ബ്ലൻഡ്
 - (ii) താഴ്ന്ന തിളനിലയുള്ള ലോഹങ്ങളായ സിങ്കും മെർക്കുറിയും ശുദ്ധീകരിക്കുന്ന രീതി എഴുതുക. (1)

SY-225

P.T.O.

(1)

8. (i) Name the important Oxo acid of Nitrogen.	(1
(ii) Name the method used for the manufacture of this acid.	(1
9. Give reason for the following :	, , , , , , , , , , , , , , , , , , ,
(i) PCl_3 fumes in moist air.	
	(1)
(ii) PCl_5 is highly reactive.	(1)
10. (i) Write the IUPAC name of $K_2[Zn(OH)_4]$	
(ii) Metal present in chlorophyll is	(1)
· · · · · · · · · · · · · · · · · · ·	(1)
11. Identify the main product in the following reactions :	
(i) $CH_3 - CH_2 - OH \xrightarrow{PCl_3}$	
(ii) $CH = CH = H$	(1)
(ii) $CH_3 - CH = CH_2 \xrightarrow{HI}$	(1)
Questions 12-29 carries 3 scores each.	(19 - 7 - 74)
12. Define unit cell. Calculate the number of particles per unit cell in Body and Face centered cube	$(18 \times 3 = 54)$
and Face centered cube.	
 (i) What type of magnetic substances are used to make permanent magn (ii) Draw the substance of the	nets ? (1)
(ii) Draw the schematic alignment of magnetic moments in ferror ferrimagnetic substances.	magnetic and
substallees.	(2)
4. State Henry's Law. Give two applications of it.	
a pro-apprications of fit.	
5. (i) Daniel cell is represented as $\frac{7}{2}(c)/\frac{7}{2}c^{2+1}/(c-2+1)$	
5. (i) Daniel cell is represented as $Zn(s)/Zn_{(aq)}^{2+}//Cu_{(aq)}^{2+}/Cu(s)$. Write New for Daniel cell.	rnst equation
	(1)
 (ii) The conductivity of 0.2 M solution of KCl at 298K is 0.0248 Scm⁻¹. molar conductivity. 	
	(2)
Y-225	

8.	(i)	നൈട്രജന്റെ പ്രധാനപ്പെട്ട ഓക്രോ ആസിഡ് ഏതാണ് ?	(1)
0.	(i) (ii)	വ്യാവസായികമായി ഈ ആസിഡ് നി ർമ്മിക്കുന്ന പ്രക്രിയ ഏതാണ് ?	(1)
9.	(i)	ണം വിശദമാക്കുക: PCl ₃ ഈർപ്പമുള്ള വായുവിൽ പുകയുന്നു.	(1) (1)
		PCl ₅ ന് ക്രീയാശീലത കുടുതൽ ആണ്.	(1)
10.	(i) (ii)	IUPAC നാമം എഴുതുക K ₂ [Zn(OH) ₄] ഹരിതകത്തിൽ അടങ്ങിയിട്ടുള്ള ലോഹം ആണ്.	(1)

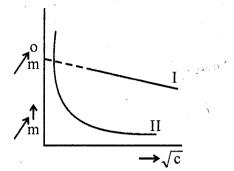
ചുവടെ തന്നിരിക്കുന്ന രാസ പ്രവർത്തനങ്ങളിലെ മുഖ്യ ഉൽപ്പന്നം ഏത്? 11.

(i)
$$CH_3 - CH_2 - OH \xrightarrow{PCl_3}$$
 (1)

(ii)
$$CH_3 - CH = CH_2 \xrightarrow{HI}$$

 $(18 \times 3 = 54)$ 12 മുതൽ 29 വരെയുള്ള ചോദ്യങ്ങൾക്ക് 3 സ്കോർ വീതം.

- യൂണിറ്റ് സെൽ എന്തെന്ന് നിർവ്വചിക്കുക. അന്തർകേന്ദ്രീകൃത കുബിക് യൂണിറ്റ് സെൽ, 12. മുഖ കേന്ദ്രീകൃത കുബിക് യൂണിറ്റ് സെൽ എന്നിവയിലെ ഓരോന്നിലേയും മൊത്തം ആറ്റങ്ങളുടെ എണ്ണം കണക്കാക്കുക.
- സ്ഥിരകാന്തം നിർമ്മിക്കാൻ ഏത് തരം കാന്തികവസ്സുക്കളാണ് ഉപയോഗിക്കുന്നത്? (1) 13. (i)
 - ഫെറോ മാഗ്നറ്റിക്, ഫെറി മാഗ്നറ്റിക് വസ്തുക്കളുടെ മാഗ്നറ്റിക് മൊമന്റുകളുടെ (ii) (2) ക്രമീകരണ ചിത്രരുപം വരയ്ക്കുക.
- ഹെന്റിയുടെ നിയമം പ്രസ്താവിക്കുക. അതിന്റെ രണ്ട് പ്രായോഗിക് ഉപയോഗങ്ങൾ 14. എഴുതുക.

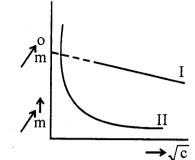

ഡാനിയൽ സെല്ലിന്റെ പ്രതിനിധീകരണം $Zn(s)/Zn^{2+}_{(aq)}//Cu^{2+}_{(aq)}/Cu(s)$ എന്നാണ്. (i) 15. (1) ഇതിന്റെ നെൺസ്റ്റ് സമവാക്യം എഴുതുക.

 $0.2~{
m M}~{
m KC}l$ ലായനിയുടെ ചാലകത $298{
m K}~{
m org}~0.0248~{
m Scm}^{-1}$ ആണ്. ഇതിന്റെ (ii) (2) മോളാർ ചാലകത കണ്ടുപിടിക്കുക.

P.T.O.

SY-225

Variation of molar conductivity (λ_m) versus concentration (\sqrt{c}) for a strong and weak electrolytes are given below :


Identify I and II as strong and weak electrolytes. (i) (1) What does λ_m° indicate ? (ii) (1) (iii) Suggest a method to determine λ_m° for the electrolyte II. (1) (i) (i) The vapour pressure of pure liquids A and B are 400 mm and 600 mm of Hg respectively. Calculate vapour pressure of the solution in which mole fraction of B is 0.4. (2) (ii) Which of the following is true for an ideal solution? (A) $\Delta H_{mix} > 0$ (B) $\Delta H_{mix} = 0$ (C) $\Delta V_{mix} > 0$ (D) $\Delta H_{mix} < 0$ (1) 1,8. The integrated rate equation for a first order reaction is $K = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$ (i) What is half life period? (1) Derive an expression for the half life period of a first order reaction. (ii) (2) 19.(i) Write any two characteristics of Chemisorption. (2) Why are finely powdered substances more effective adsorbents than their (ii)/ crystalline form ? (1) Differentiate between the following : (i) Calcination and Roasting. (ii) Pig iron and Wrought iron. (iii) Mineral and Ore.

SY-225

16.

6

 ജലീലലായനിയിലെ വിര്യം കുറഞ്ഞ ഇലക്ട്രോലൈറ്റിന്റെയും വിര്യം കൂടിയ ഇലക്ട്രോലൈറ്റിന്റെയും ഗാഡതയ്യനുസരിച്ചുള്ള (√c) മോളാർ ചാലകതയുടെ (λ_m) വൃതിയാനം കാണിക്കുന്ന ഗ്രാഫ് ചുവടെ ചേർത്തിരിക്കുന്നു :

I, II എന്നിവ തിരിച്ചറിയുക (വീര്യം കൂടിയത്, വീര്യം കുറഞ്ഞത്)

- (ii) λ_{m}° എന്തിനെ സൂചിപ്പിക്കുന്നു ? (1) (iii) $\,\,\mathrm{II}\,\,$ എന്ന ഇലക്ട്രോലൈറ്റിന്റെ $\,\lambda_{\mathrm{m}}^{\,\circ}$ കണ്ടുപിടിക്കുന്ന ഒരു രീതി നിർദ്ദേശിക്കുക. (1) A, B എന്നീ ദ്രാവകങ്ങളുടെ ശുദ്ധാവസ്ഥയിലുള്ള ബാഷ്പമർദ്ദം യഥാക്രമം (i) 400 mm, 600 mm ആണ്. ഇവയുടെ മിശ്രിതത്തിൽ B യുടെ മോൾ ഭിന്നത 0.4 ആണെങ്കിൽ ആ ലായനിയുടെ മൊത്തം ബാഷ്പമർദ്ദം കണ്ടുപിടിക്കുക. (2) (ii) ചുവടെ തന്നിരിക്കുന്നതിൽ ആദർശലായനിയെ സംബന്ധിച്ച് ശരിയായത് ഏത്? (A) $\Delta H_{mix} > 0$ (B) $\Delta H_{mix} = 0$ (C) $\Delta V_{mix} > 0$ (D) $\Delta H_{mix} < 0$ (1) ഒന്നാം ഓർഡർ രാസ പ്രവർത്തനത്തിന്റെ സമകാലിക നിരക്ക് സമവാകൃം ആണ് $K = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$ (i) അർദ്ധായുസ് എന്നാലെന്ത്? (1) (ii) ഒന്നാം ഓർഡർ രാസപ്രവർത്തനത്തിന്റെ അർദ്ധായുസ് കണക്കാക്കുന്ന സമവാക്യം നിർദ്ധാരണം ചെയ്യുക. (2) (i) രാസ അധിശോഷണത്തിന്റെ ഏതെങ്കിലും രണ്ട് സവിശേഷതകൾ എഴുതുക. (2) അതി സൂക്ഷ്യമായി വിഭജിച്ചിട്ടുള്ള പദാർത്ഥങ്ങൾ അധിശോഷകമെന്ന നിലയിൽ (ii)
- 20. ചുവടെ തന്നിരിക്കുന്നവ തമ്മിലുള്ള വൃത്യാസം രേഖപ്പെടുത്തുക :

കുടുതൽ ഫലപ്രദമാണെന്ന് പറയാൻ കാരണമെന്ത് ?

- (i) കാൽസിനേഷൻ, റോസ്റ്റിംഗ്
- (ii) പിഗ്ആയൺ, റോട്ട് ആയൺ

(iii) ധാതു, അയിര്

SY-225

(i)

17.

18.

19.

7

P.T.O.

(1)

(1)

		+
21 Pot	assium dichromate is a very useful oxidizing agent.	
(i)	Name the ore of Potassium dichromate.	(1)
(ii)	Explain the preparation of Potassium dichromate from Sodium chromate.	(2)
22. (J)	Account for the following :	
	A. Zr and Hf have identical radii.	(1)
	B. Transition metals are very good catalysts.	(1)
(ii)	Calculate the spin only magnetic moment of $M_{(aq)}^{2+}$ ion (Z = 27).	(1)
e je je		
23. Exp	plain following reactions :	
(i)	Riemer-Tieman reaction.	
(ii)	Williamson's synthesis.	
(24.) (i)	How are the following conversions carried out ?	
•	A. Propene to Propan-2-ol.	
211	B. Ethanal to Ethanol.	(2)
(ii)	Name the enzyme which converts glucose to ethanol.	(1)
(25.) (i)	The test to distinguish Propanal and Propanone is	
	(A) Tollens' test (B) Lucas test	
	(C) Hinsberg test (D) Bromine-Water test	(1)
(ii)		
-	Give reason.	(2)
26. Ide	ntify the products and name the reactions.	,
(i)	HCHO $\xrightarrow{\text{Con:KOH}}$	(1)
(ii)	$\sim CH_3CHO \xrightarrow{\text{dil.NaOH}}$	(1)
27. (i)	Classify the following into monosaccharides and disaccharides.	•
	Ribose, Fructose, Maltose, Sucrose.	(1)
(ii)	How is starch different from glycogen ?	(1)
(iii)		
•	body.	(1)

SY-225

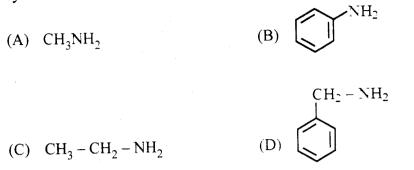
21.	പൊട്ടാസ്യം ഡൈക്രോമേറ്റ് ഒരു ഓക്സികാരിയായി ഉപയോഗിക്കുന്നു.	
	(i) പൊട്ടാസ്യം ഡൈക്രോമേറ്റിന്റെ അയിര് ഏതാണ്.	
	(ii) സോഡിയം ക്രോമേറ്റിൽ നിന്നും പൊട്ടാസ്യം ഡൈക്രോമേറ്റ് നിർമ്മിക്ക വിശാനം പാട്ടാ	(1
	വിശദമാക്കുക.	
		(2
22.	(i) കാരണം വിശദമാക്കുക :	
	A. Zr, Hf എന്നിവയുടെ ആറ്റോമിക ആരങ്ങൾ ഏകദേശം തുല്യമാണ്.	(1
	B. സംക്രമണ മൂലകങ്ങൾ നല്ല ഉൽപ്രേരകമായി പ്രവർത്തിക്കുന്നു.	(1)
	(ii) M ²⁺ അയോണിന്റെ കേവല ചക്രണ കാണിക ആഘുർണം കണക്കാ	(1)
	(Z = 27).	
		(1)
23.	ചുവടെ തന്നിരിക്കുന്നവ വിശദീകരിക്കുക :	
	(i) റീമർ-ടീമാൻപ്രവർത്തനം	
	(ii) വില്യംസൺ സംശ്ലേഷണം.	
24.	 ചുവടെ നൽകിയിരിക്കുന്ന രാസപരിവർത്തനം നടത്തുക എപ്രകാരമാവും ? 	
	A. പ്രൊപ്പീൻ → പ്രൊപാൻ-2-ഓൾ	
	B. എഥനാൽ → എഥനോൾ	(7)
	(ii) ഗ്ലൂക്കോസിനെ എഥനോൾ ആക്കി മാറ്റുന്ന രാസാഗ്നി ഏതാണ് ?	(2) (1)
2.5		
25.	 (i) പ്രൊപനാലും പ്രൊപനോണും തിരിച്ചറിയാൻ ഉപയോഗിക്കുന്ന ടെസ്റ്റ് ഏതാം 	ກັ?
	(A) ടൊളന്ത്സ് ടെസ്റ്റ് (B) ലൂക്കാസ് ടെസ്	
3	(C) ഹിൻസ്ബെർഗ് ടെസ്റ്റ് (D) ബോമിൻ വാട്ടർ ടെസ്റ്റ്	(1)
	(ii) ന്യൂക്ലിയോഫിലിക്ക് അഡിഷൻ പ്രവർത്തനത്തിൽ ഏതിനാണ് ക്രീയാൾ	ിലത
	കുടുതൽ CH ₃ CHO, C ₆ H ₅ – CHO. കാരണം വൃക്തമാക്കുക.	(2)
26.		. **
	ചുവടെ കൊടുത്തിരിക്കുന്ന രാസ പ്രവർത്തനങ്ങളിലെ ഉൽപ്പന്നം തിരിച്ചറിയുക. രാസ പ്രവർത്തനങ്ങളുടെ പേര് എഴുതുക.	ഈ
((i) HCHO $\xrightarrow{\text{Con.KOH}}$	(1)
((ii) $CH_3CHO \xrightarrow{dil.NaOH}$	
	,	(1)
7. ((i) ചുവടെ തന്നിരിക്കുന്നവയെ മോണോസാക്കറൈഡുകൾ, ഡൈസാക്കറൈഡു	
	എന്ന് വർഗ്ഗീകരിക്കുക.	കൾ
	റൈബോസ്, ഫ്രക്ടോസ്, മാൾട്ടോസ്, സൂക്രോസ്	(4)
(ii) ഗ്ലൈക്കൊജനും സ്റ്റാർച്ചും തമ്മിലുള്ള വൃത്യാസം എന്താണ് ?	(1)
((1)
	ണ് സന്ചച്ച പ്രവരത്തിച്ച രക്തത്തിലെ ഗ്ലൂക്കോസിന്റെ അളവ് ക്രമീകരിക്ക ഹോർമോണുകൾ ഏതെല്ലാം ?	•
Vaa		(1)
Y-22	5 9	P.T.O.
	· · · · · · · · · · · · · · · · · · ·	

28.	Writ	e the monomeric units and one use each of the following polymers :	
<u> </u>	(i)	PVC	
	(ii)	Teflon	
	(iii)	Nylon-6, 6	
_ / 29.	(i)	Explain the role of the following as food additives :	
\sim		A. BHT	
		B. Saccharin	(1)
	(ii)	Low level of noradrenaline is the cause of depression. What ty needed to cure this problem ? Give one example.	pe of drugs are (2)
	Ойе	estions 30 to 40 carries 4 scores each.	$(11 \times 4 = 44)$
30/	/(i)	Explain the following terms :	
e e		A. Schottky defect.	
		B. Frenkel defect	
		C. F-centre.	(3)
	(ii)	Which of the following show both Schottky and Frenkel defect?	
		(A) KCl (B) AgCl	
	/	(C) AgBr (D) NaBr	(1)
			. (
3 1,	(i)	What are colligative properties?	(2)
0	(ii)	400 cm ³ of an aqueous solution of a protein contain 1.26 g of	the protein. The
		osmotic pressure of such solution at 300K is found to be 2.	
		Calculate molar mass of protein. ($R = 0.0821 \text{ L atm} \text{K}^{-1} \text{ mol}^{-1}$)	(2)
32.	(i)	Explain the construction and working of $H_2 - O_2$ fuel cell.	(3)
	(ii)	Write two methods to prevent corrosion of metals.	(1)
	, t		
33.	(i)	Write Arrhenius equation.	(1)
	(ii)		
		308K. Calculate the activation energy.	(2)
	(iii) Give two differences between order and molecularity.	(1)
SY	-225	10	• •

3

-

25	لد ا	വടെ കൊടുത്തിരിക്കുന്ന പോളിമെറുകളുടെ മോണോമെറും ഓരോ ഉപയോഗവും)ഴുതുക :	
	(i)		
	(i) (ii)		
	(iii	·	
29	. (i)	ചുവടെ നൽകിയിരിക്കുന്ന പദാർത്ഥങ്ങൾ ഭക്ഷ്യ വസ്തുകളിൽ ചേർക്കുന്നതിന്റെ ഉദ്ദേശ്യം എന്ത് ?	
		A. BHT	
		B. സക്കാറിൻ	(1)
	(ii)	ശരീരത്തിൽ നോർ അഡ്രിനാലിന്റെ കുറവ് വിഷാദരോഗത്തിന് കാരണമാകുന്നു. ഏത് വിഭാഗത്തിലെ ഔഷധമാണ് ഈ അവസ്ഥ ചികിത്സികാൻ ഉപയോഗിക്കുന്നത് ? ഒരു ദൈം റരണം തുരുത്തം	(2)
	30 a	മുതൽ 40 വരെയുള്ള ചോദ്യങ്ങൾക്ക് 4 സ്കോർ വീതം. (11 × 4 = 4	
30.	(i)	ചുവടെ കൊടുത്തിരിക്കുന്നവ വിശദീകരിക്കുക :	14)
		A. ഷോഡ്കി ന്യൂനത	
		B. ഫ്രെങ്കൽ ന്യൂനത	
		С. F-onga	
	(ii)		(3)
	()	തന്നിരിക്കുന്നവയിൽ ഷോഡ്കി ന്യൂനതയും ഫ്രെങ്കൽ ന്യൂനതയും കാണിക്കുന്ന സംയുക്തം ഏത് ?	
2		(C) AgBr (D) NoDr	
		(D) Mabi	1)
31.	(i)	കോളിഗേറ്റീവ് ഗുണങ്ങൾ എന്നാലെന്ത് ?	2)
	(ii)	1.26 g പ്രോട്ടീൻ അടങ്ങിയ ജലില ലായനിയുടെ വ്യാപ്പം 400 cm ³ ആണ്. 300K ൽ	-)
		ഈലായനിയുടെ വൃതിവ്യാപന മർദ്ദം 2.57×10^{-4} atm ആണ്. പ്രോട്ടീനിന്റെ	
		മോളാർമാസ്കണക്കാക്കുക. ($R = 0.0821 \text{ L} \operatorname{atm} K^{-1} \operatorname{mol}^{-1}$) (2	n
			9
32.	(i)	H ₂ – O ₂ ഫ്യുവൽ സെല്ലിന്റെ നിർമ്മിതിയും പ്രവർത്തനവും വിശദീകരിക്കുക. (3	Ŋ
	(ii)	ലോഹനാശനം തടയാനുള്ള രണ്ട് മാർഗ്ഗങ്ങൾ നിർദ്ദേശിക്കുക. (1	
22			,
33.	(i)	അറീനിയസ് സമവാകൃം എഴുതുക. (1)
		താപനില 298K ൽ നിന്നും 308K ആയി വർദ്ധിക്കുമ്പോൾ രാസപ്രവർത്തനത്തിന്റെ നിരക്ക് ഇരട്ടിയാകുന്നു. ഉത്തേജനോർജ്ജം കണക്കാക്കുക	
		ഒാർഡറാം മോളികാലാരിറിന്നും തത്തിലാളെ മണ്ഡെന്നും വ	
SY-2			ļ
5174	<u>4</u> 3	11 Р.Т.О	•


34.	_(i)		
		y i waard sy opnoord bois . Give one example for each type.	(2
	(ii)) Explain the different types of emulsions.	(2
25	lo.		. · ·
35./	(i)	Explain the steps involved in the leaching of Bauxite ore.	(3
	(ii)	What is the role of cryolite in the extraction of Aluminium ?	(1
36.	(i)	Give the preparation and structure of XeF_2 .	(2
	(ii)	Which of the following does not exist :	
		(A) $Xe OF_4$ (B) $Xe F_4$	
		(C) $Xe O_3$ (D) $Ne F_2$	(1)
	(iii)) Why ICl is more reactive than I_2 ?	(1)
			(-
(37.)	(i)	List the various structural isomerism possible for co-ordination compounds.	(2)
\bigcirc	(ii)		
		paramagnetic. Explain.	(2)
38./	(i)	Give two differences between $S_N 1$ and $S_N 2$ reactions.	(2)
	(ii)	Arrange 1-chloropropane, 2-chloropropane and 1-chlorobutane in the increa	
		order of their boiling points.	•
			(1)
	(iii)	Give one use of chloroform.	
			(1) (1)
	(iii) (i)	How will you prepare Benzaldehyde from the followings :	
		How will you prepare Benzaldehyde from the followings : A. Toluene	
		How will you prepare Benzaldehyde from the followings :A. TolueneB. Benzene	
39.	(i)	 How will you prepare Benzaldehyde from the followings : A. Toluene B. Benzene C. Benzoyl chloride 	(1) (1) (3)
39.	(i)	How will you prepare Benzaldehyde from the followings :A. TolueneB. Benzene	(1)

	(i)					
34,	(1)	ലായകാനൂകുലികെ എന്താണെന്ന് ഉദാഹ	ാളോയിഡുകൾ ലായക റരണ സഹിതം വിശദമാക	ം വിരോധി തുക.	കൊളോയിറ	-
	(ii)	വിവിധ തരം എമൽ	ഷനുകളെ കുറിച്ച് വിശദീക	ംപം		(2
				പ്രത്യക്കം		(2
35.	(i)	ബോക്സൈറ്റ് അയ	രിന്റെ ലിച്ചിംഗ് പ്രവർത്തറ			• •
	(ii)	അലൂമിനിയത്തിന്റെ	ലോഹനിഷ്കർഷണത്തിൽ		ാദമാക്കുക.	(3
		0		കയോലൈറ്റിം	ന്റെ പങ്ക് എന്താ	ണ്? (1
36.	(i)	XeF ₂ ന്റെ നിർമ്മാണ	വും ഘടനയും എഴുതുക.			
	(ii)		ു — ചെ നെയും എഴുതുക. വെയിൽ നിലനിൽക്കാത്ത			(2
		(A) Xe OF_4			2	• •
		(C) XeO_3	(B) Xe			
-		5	(D) Ne	F ₂		(1)
	(111)	പ്ര ജന്ദ് ക്രിതാശിലയ	I ₂ ന്റെ തിനേക്കാൾ കുടുത	ൽ ആണ്. കാര	ണമെന്ത്?	(1)
37. (ii) [Fe(H ₂ O) ₆] ³⁺ ശക്തിം	യുക്തങ്ങളിലെ വൃത്യസ്സ കൂടിയ അനുകാന്തിക അ	രസാണം (F	o(CND 13-	(1)
	ii) [Fe(H ₂ O) ₆] ³⁺ ശക്തിം	യുക്തങ്ങളിലെ വൃത്യസ്ത കൂടിയ അനുകാന്തിക അ ം അയോണും ആകുന്നു. ക	രസാണം (F	o(CND 13-	(2)
	ii) [d	Fe(H ₂ O) ₆] ³⁺ ശക്തിം കുറഞ്ഞ അനുകാന്തിക്	കൂടിയ അനുകാന്തിക അ ം അയോണും ആകുന്നു. ക	തയോണും [F ംാരണം വിശദമ	e(CN) ₆] ^{3–} ശം ാക്കുക.	(2) ഞി
2	ii) [d	Fe(H ₂ O) ₆] ³⁺ ശക്തിം കുറഞ്ഞ അനുകാന്തിക _N 1, S _N 2 രാസപ്രവർര	കൂടിയ അനുകാന്തിക അ ം അയോണും ആകുന്നു. ക തനങ്ങൾ തമ്മിലുള്ള രണ്ട	തയോണും [F പാരണം വിശദമ പ്വൃത്യാസങ്ങൾ	e(CN) ₆] ^{3–} ശം ാക്കുക. എഴ്ചതുക	(2) භාති (2)
(38. (i	ii) [4) S i) 1	Fe(H ₂ O) ₆] ³⁺ ശക്തിം കുറഞ്ഞ അനുകാന്തിക _N 1, S _N 2 രാസപ്രവർര -ക്ലോറോപ്രൊപെയ്ൻ	കൂടിയ അനുകാന്തിക അ ഞയോണും ആകുന്നു. ക തനങ്ങൾ തമ്മിലുള്ള രണ്ട , 2-ക്ലോറോപ്രൊപ്രെയ്ൻ	തയോണും [F പാരണം വിശദമ പ്വൃത്യാസങ്ങൾ	e(CN) ₆] ^{3–} ശം ാക്കുക. എഴ്ചതുക	(2) භා ි (2)
(38. (i (i	ii) [4) S i) 1 0	Fe(H ₂ O) ₆] ³⁺ ശക്തിം കുറഞ്ഞ അനുകാന്തിക _N 1, S _N 2 രാസപ്രവർര -ക്ലോറോപ്രൊപെയ്ൻ റിളനില കുടിവരുന്ന ക്ര	കൂടിയ അനുകാന്തിക അ ം അയോണും ആകുന്നു. ക തനങ്ങൾ തമ്മിലുള്ള രണ്ട , 2-ക്ലോറോപ്രൊപെയ്ൻ, മത്തിൽ എഴുതുക.	തയോണും [F പാരണം വിശദമ പ്വൃത്യാസങ്ങൾ	e(CN) ₆] ^{3–} ശം ാക്കുക. എഴ്ചതുക	(2) භා ි (2)
(38. (i (i	ii) [4) S i) 1 0	Fe(H ₂ O) ₆] ³⁺ ശക്തിം കുറഞ്ഞ അനുകാന്തിക _N 1, S _N 2 രാസപ്രവർര -ക്ലോറോപ്രൊപെയ്ൻ റിളനില കുടിവരുന്ന ക്ര	കൂടിയ അനുകാന്തിക അ ഞയോണും ആകുന്നു. ക തനങ്ങൾ തമ്മിലുള്ള രണ്ട , 2-ക്ലോറോപ്രൊപ്രെയ്ൻ	തയോണും [F പാരണം വിശദമ പ്വൃത്യാസങ്ങൾ	e(CN) ₆] ^{3–} ശം ാക്കുക. എഴ്ചതുക	(2) ക്തി (2) (2)
(38. (i (i	ii) [3 i) S i) 1 ത ii) പേ	Fe(H ₂ O) ₆] ³⁺ ശക്തിം കുറഞ്ഞ അനുകാന്തിക N ¹ , S _N 2 രാസപ്രവർര -ക്ലോറോപ്രൊപെയ്ൻ മിളനില കുടിവരുന്ന ക്ര ക്രാറോഫോമിന്റെ ഒരു വടെ തന്നിരിക്കുന	കൂടിയ അനുകാന്തിക അ ഞയോണും ആകുന്നു. ക തനങ്ങൾ തമ്മിലുള്ള രണ്ട , 2-ക്ലോറോപ്രൊപെയ്ൻ, മത്തിൽ എഴുതുക. ഉപയോഗം എഴുതുക.	തയോണും [F മാരണം വിശദമ ്വൃത്യാസങ്ങൾ 1-ക്ലോറോബു	e(CN) ₆] ^{3—} ശു ാക്കുക. 3 എഴുതുക. യ്യൂട്ടേയ്ൻ ഇവക	(2) emiliaria (2) (2) (1) (1)
(38. (i (i (ii	ii) [3 i) S i) 1 ത ii) പേ	Fe(H ₂ O) ₆] ³⁺ ശക്തിം കുറഞ്ഞ അനുകാന്തിക _N 1, S _N 2 രാസപ്രവർര ഏറ്റാവൊപെയ്ൻ മെനില കുടിവരുന്ന ക്ര ക്രാറോഫോമിന്റെ ഒരു	കൂടിയ അനുകാന്തിക അ ഞയോണും ആകുന്നു. ക തനങ്ങൾ തമ്മിലുള്ള രണ്ട , 2-ക്ലോറോപ്രൊപെയ്ൻ, മത്തിൽ എഴുതുക. ഉപയോഗം എഴുതുക.	തയോണും [F പാരണം വിശദമ പ്വൃത്യാസങ്ങൾ	e(CN) ₆] ^{3—} ശു ാക്കുക. 3 എഴുതുക. യ്യൂട്ടേയ്ൻ ഇവക	(2) emil (2) (2) (1) (1)
(38. (i (i (ii	ii) [3 i) S i) 1 ത ii) പേ	Fe(H ₂ O) ₆] ³⁺ ശക്തിം കുറഞ്ഞ അനുകാന്തിക N ¹ , S _N 2 രാസപ്രവർര -ക്ലോറോപ്രൊപെയ്ൻ മിളനില കുടിവരുന്ന ക്ര ക്രാറോഫോമിന്റെ ഒരു വടെ തന്നിരിക്കുന	കൂടിയ അനുകാന്തിക അ ഞയോണും ആകുന്നു. ക തനങ്ങൾ തമ്മിലുള്ള രണ്ട , 2-ക്ലോറോപ്രൊപെയ്ൻ, മത്തിൽ എഴുതുക. ഉപയോഗം എഴുതുക.	തയോണും [F മാരണം വിശദമ ്വൃത്യാസങ്ങൾ 1-ക്ലോറോബു	e(CN) ₆] ^{3—} ശു ാക്കുക. 3 എഴുതുക. യ്യൂട്ടേയ്ൻ ഇവക	(2) emil (2) (2) (1) (1)
(38. (i (i (ii	ii) [) S i) 1 ത ii) പേ ന്	Fe(H ₂ O) ₆] ³⁺ ശക്തിം കുറഞ്ഞ അനുകാന്തിക് _N 1, S _N 2 രാസപ്രവർര -ക്ലോറോപ്രൊപെയ്ൻ മിളനില കുടിവരുന്ന ക്ര ക്രാറോഫോമിന്റെ ഒരു വടെ തന്നിരിക്കുന്ന ർമ്മിക്കാം :	കൂടിയ അനുകാന്തിക അ ഞയോണും ആകുന്നു. ക തനങ്ങൾ തമ്മിലുള്ള രണ്ട , 2-ക്ലോറോപ്രൊപെയ്ൻ, മത്തിൽ എഴുതുക. ഉപയോഗം എഴുതുക.	തയോണും [F മാരണം വിശദമ ്വൃത്യാസങ്ങൾ 1-ക്ലോറോബു	e(CN) ₆] ^{3—} ശു ാക്കുക. 3 എഴുതുക. യ്യൂട്ടേയ്ൻ ഇവക	(2) emil (2) (2) (1) (1)
(38. (i (i (ii	ii) [3 i) S i) 1 ത ii) പേ ന് A.	Fe(H ₂ O) ₆] ³⁺ ശക്തിം കുറഞ്ഞ അനുകാന്തിക _N 1, S _N 2 രാസപ്രവർര -ക്ലോറോപ്രൊപെയ്ൻ മിളനില കുടിവരുന്ന ക്ര ക്രാറോഫോമിന്റെ ഒരു വടെ തന്നിരിക്കുന്ന ർമ്മിക്കാം : ടോളുവിൻ ബെൻസീൻ	കൂടിയ അനുകാന്തിക ആ ഞയോണും ആകുന്നു. ക തനങ്ങൾ തമ്മിലുള്ള രണ്ട , 2-ക്ലോറോപ്രൊപെയ്ൻ, മത്തിൽ എഴുതുക. ഉപയോഗം എഴുതുക. വെയിൽ നിന്നും ബെ	തയോണും [F മാരണം വിശദമ ്വൃത്യാസങ്ങൾ 1-ക്ലോറോബു	e(CN) ₆] ^{3—} ശു ാക്കുക. 3 എഴുതുക. യ്യൂട്ടേയ്ൻ ഇവക	(2) emoil (2) (2) (1) (1) (1)
(38. (i (i (ii	ii) [1 3 1 1 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3	Fe(H ₂ O) ₆] ³⁺ ശക്തിം കുറഞ്ഞ അനുകാന്തിക N ¹ , S _N 2 രാസപ്രവർര -ക്ലോറോപ്രൊപെയ്ൻ മിളനില കുടിവരുന്ന ക്ര ക്രാറോഫോമിന്റെ ഒരു വടെ തന്നിരിക്കുന്ന ർമ്മിക്കാം : ടോളുവിൻ ബെൻസീൻ ബെൻസീൽ	കൂടിയ അനുകാന്തിക ആ ഞയോണും ആകുന്നു. ക ന്തനങ്ങൾ തമ്മിലുള്ള രണ്ട , 2-ക്ലോറോപ്രൊപെയ്ൻ, മത്തിൽ എഴുതുക. ഉപയോഗം എഴുതുക. വെയിൽ നിന്നും ബെ ക്ലാറൈഡ്	ത്രയോണും [F പാരണം വിശദമ ്വൃത്യാസങ്ങൾ ി-ക്ലോറോബു	e(CN) ₆] ^{3–} ശു ാക്കുക. 3 എഴുതുക. ഗ്ലൂട്ടേയ്ൻ ഇവം റഡ് എങ്ങറെ	(2) erosil (2) (2) (2) (1) (1) (1) (1) (3)
(38. (i (i 9. (i)	ii) [1 3 1 1 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3	Fe(H ₂ O) ₆] ³⁺ ശക്തിം കുറഞ്ഞ അനുകാന്തിക N ¹ , S _N 2 രാസപ്രവർര -ക്ലോറോപ്രൊപെയ്ൻ മിളനില കുടിവരുന്ന ക്ര ക്രാറോഫോമിന്റെ ഒരു വടെ തന്നിരിക്കുന്ന ർമ്മിക്കാം : ടോളുവിൻ ബെൻസീൻ ബെൻസോയിൽ പ്ര	കൂടിയ അനുകാന്തിക ആ ഞയോണും ആകുന്നു. ക തനങ്ങൾ തമ്മിലുള്ള രണ്ട , 2-ക്ലോറോപ്രൊപെയ്ൻ, മത്തിൽ എഴുതുക. ഉപയോഗം എഴുതുക. വെയിൽ നിന്നും ബെ	ത്രയോണും [F പാരണം വിശദമ ്വൃത്യാസങ്ങൾ ി-ക്ലോറോബു	e(CN) ₆] ^{3–} ശു ാക്കുക. 3 എഴുതുക. ഗ്ലൂട്ടേയ്ൻ ഇവം റഡ് എങ്ങറെ	(2) emoil (2) (2) (1) (1) (1)

40. (i) Which of the following amine cannot be prepared by Gabriel Phthalimide synthesis ? (1)

εţ

. !

(ii) Explain the method to distinguish primary, secondary and tertiary amines. Also write the chemical equations involved. (3)

3

↓). (i) ചുവടെ തന്നിരിക്കുന്നവയിൽ ഗബ്രിയേൽ താലിമൈഡ് സംശ്ലേഷണം വഴി നിർമ്മിക്കുവാൻ കഴിയാത്ത അമീൻ ഏതാണ്? (1)
 (A) CH₃NH₂ (B) √NH₂

(C)
$$CH_3 - CH_2 - NH_2$$
 (D) (D)

 (ii) പ്രാഥമിക, ദ്വിതീയ, ത്രിതീയ അമീനുകളെ വേർതിരിച്ചറിയുന്ന ഒരു മാർഗ്ഗം വിശദമാക്കുക. രാസ സമവാകൃങ്ങളും എഴുതുക. (3)

SY-225

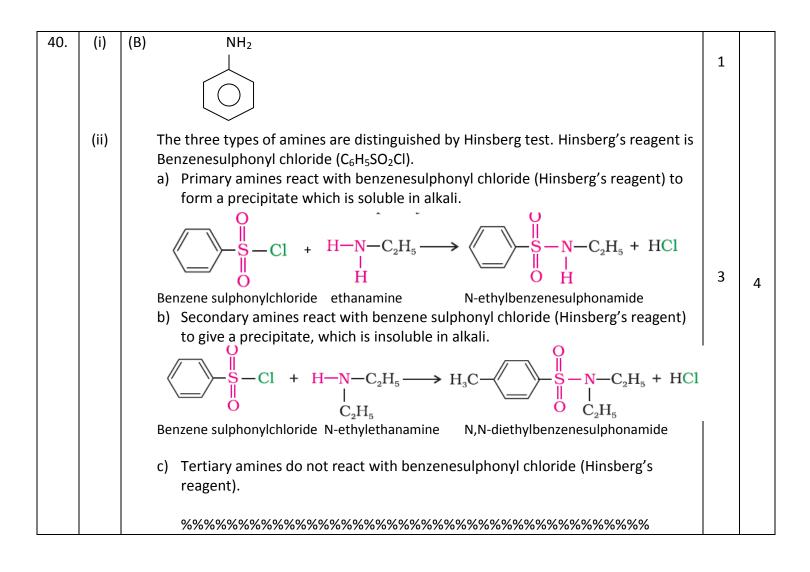
SECOND YEAR HIGHER SECONDARY EXAMINATION APRIL 2021

SUBJECT: CHEMISTRY

Qn. Code: SY 225

(ii) 2. (i) (ii) (ii) 3.	Answer Key/Value Points Answer questions from 1 to 11. Each carries 2 scores. (A) NaCl Like liquids, glass has a tendency to flow / since it is an amorphous solid/ in glass, the particles have only short range order. 12 Total no. of voids = 3N mol or 3N x 6.022 x 10^{23} voids $\int \int p_{g_1}^{p_2} p_{g_2}^{p_2} p_{g_2}^{p_2} p_{g_2}^{p_2}$ 38% H ₂ SO ₄ solution or Sulphuric acid solution	e 1 1 1 1 2 2	2 2 2
(ii) 2. (i) (ii) (ii) 3.	(A) NaCl Like liquids, glass has a tendency to flow / since it is an amorphous solid/ in glass, the particles have only short range order. 12 Total no. of voids = 3N mol or 3N x 6.022 x 10^{23} voids $ \int_{x_1=1}^{p_1} \int_{x_2=0}^{p_2} \int_{x_2=1}^{p_2} \int_{x_2=1}^{p$	1 1 1 2	- 2
(ii) 2. (i) (ii) (ii) 3.	Like liquids, glass has a tendency to flow / since it is an amorphous solid/ in glass, the particles have only short range order. 12 Total no. of voids = 3N mol or 3N x 6.022 x 10^{23} voids $ \int_{x_1=1}^{p_1} p_2 \frac{p_2}{p_1} \frac{p_2}{p_2} p$	1 1 1 2	- 2
(ii) 2. (i) (ii) 3. 4. (i) (ii) 5. 6. A. B. 7. (i) (ii)	particles have only short range order. 12 Total no. of voids = 3N mol or 3N x 6.022 x 10^{23} voids $\int_{x_1=1}^{p_1} \frac{p_2}{p_1} \frac{p_2}{p_2} p$	1 1 2	- 2
2. (i) (ii) 3. 4. (i) (ii) 5. 6. A. B. 7. (i) (ii)	12 Total no. of voids = 3N mol or 3N x 6.022 x 10^{23} voids $ \int_{p_1}^{p_2} \frac{p_1 + p_2}{p_2} \frac{p_1}{p_2} \frac{p_2}{p_2} $	2	
(ii) 3. 4. (i) (ii) 5. 6. A. B. 7. (i) (ii)	Total no. of voids = 3N mol or 3N x 6.022 x 10^{23} voids $ \int_{ansgald} f_{ansgald} f_$	2	
3. 4. (i) (ii) 5. 6. A. B. 7. (i) (ii)	$ \overbrace{x_{i} = 1}^{p_{1}} \underset{x_{2} = 0}{\text{Mole fraction}} \underset{x_{2} = 1}{\overset{x_{i} = 0}{\underset{x_{2} = 1}}} \stackrel{\text{Mole fraction}}{\underset{x_{2} = 1}{\overset{x_{i} = 0}{\underset{x_{2} = 1}}} \stackrel{x_{i} = 0}{\underset{x_{2} = 1}{\overset{x_{i} = 0}{\underset{x_{2} = 1}}} $	2	2
(ii) 5. 6. A. B. 7. (i) (ii)			
5. 6. A. B. 7. (i) (ii)	Dry coll/Marcury coll/button coll [Any one oversale required]	1	2
6. <u>A.</u> B. 7. (i) (ii)	Dry cell/Mercury cell/button cell [Any one example required]	1	2
B. 7. (i) (ii) (ii)	If the order of a reaction is zero, it is called zero order reaction.	1	
B. 7. (i) (ii) (ii)	Or , it is the reaction in which the rate of the reaction is independent of the		2
B. 7. (i) (ii) (ii)	concentration of the reactants. Or , Example for zero order reaction.		2
B. 7. (i) (ii) (ii)	For a zero order reaction, the unit of rate constant is mol/L/s or mol L^{-1} s ⁻¹ .	1	
7. (i) (ii)	Homogeneous catalysis	1	2
(ii)	Heterogeneous catalysis	1	2
	(D) Zinc blende	1	2
	Distillation	1	
8. (i)	HNO ₃ /Nitric acid	1	2
(ii)	Ostwald's process	1	-
9. (i)	PCl_3 reacts with moisture and form HCl gas/ due to the formation of hydrogen chloride gas. Or, the equation $PCl_3 + 3H_2O \rightarrow H_3PO_3 + 3HCl$	1	
(ii)	Since in PCl ₅ , the axial bond length is greater than the equatorial bond length/ due to its unsymmetrical structure/due to the greater repulsion between axial bond pairs and equatorial bond pairs/due to its trigonal bipyramidal structure.	1	2
10. (i)	[Any one reason]	1	
(ii)	[Any one reason] Potassiumtetrahydroxidozincate(II)	1	2
11. (i)		1	2
(ii)	Potassiumtetrahydroxidozincate(II)	1	

,		Questions 12 to 29 carry 3 scores each.	Γ	
12.		A unit cell is the smallest portion of a crystal lattice which, when repeated in three	1	
		dimension to generate an entire lattice. Or, it is the building block of a crystal.		
		Number of atoms present per unit cell		
		bcc: Here the particles are present at the corners of the cube and also one atom at		
		the body centre.	1	
		The number of atoms at the corner = $8 \times 1/8 = 1$		3
		The number of atoms at the body-centre = 1		
		Therefore, total number of atoms in the unit cell = 1+1 = 2		
		Fcc: Here the atoms are present at the corners and also at the centre of each faces.	1	
		Number of corner atoms = $8 \times 1/8 = 1$		
		Number of face-centre atoms = $6 \times 1/2 = 3$		
-		Therefore, total number of atoms = 1+3 = 4		
13.	(i)	Ferromagnetic substances	1	
	(ii)	Alignment of magnetic moments in a ferromagnetic substance:		
		$ (\land $	1	
				3
		Alignment of magnetic moments in a ferrimagnetic substance:		
		$\bigcirc \bigcirc $	1	
14.		Henry's law states that at a constant temperature, the solubility of a gas in a liquid is	1	
		directly proportional to the pressure of the gas.		
		Or, the partial pressure of a gas in vapour phase is proportional to the mole fraction		
		of the gas in the solution.		
		Or, its mathematical form: $\mathbf{p} = \mathbf{K}_{H} \mathbf{x}$ (where p is the partial pressure of the gas, K_{H} is		3
		the Henry's law constant and x Is the mole fraction of the gas in the solution).		
		Applications: Preparation of soda water, a condition known as <i>Bends</i> in Scuba divers,	_	
		a medical condition known as <i>Anoxia</i> in people living at high altitudes. (Any 2	2	
		applications required)		
15.	(i)	$E_{cell} = E_{cell}^{0} - 2.303RT \log [Zn^{2+}]$	1	
		2F [Cu ²⁺]		
		OR ,		
		$E_{cell} = E_{cell}^{0} - \frac{0.0591}{2} \log \frac{[Zn^{2+}]}{[Cu^{2+}]}$ (at 298 K)		3
	<i></i>			
	(ii)	Conductivity and molar conductivity are related as: $\lambda m = 1000 \text{ k/M}$	1	
		Here $\hat{k} = 0.0248 \text{ S cm}^{-1}$ and molarity, M = 0.2 M		
	(1)	So $\lambda m = 1000 \times 0.0248/0.2 = 124 \text{ S cm}^2 \text{ mol}^{-1}$	1	
16.	(i)	I is strong electrolyte and II is weak electrolyte.	1	
	(ii)	λ^0 m indicates the limiting molar conductivity or molar conductivity at zero	1	3
	<i></i>	concentration.		
4-	(iii)	By using Kohlrausch's law	1	
17.	(i)	$P_{\text{Total}} = P_{A}^{0} + (P_{B}^{0} - P_{A}^{0}) x_{B}$	~	
		Here $P_A^0 = 400 \text{ mm of Hg}$, $P_B^0 = 600 \text{ mm of Hg and } x_B = 0.4$	2	
		So, $P_{Total} = 400 + (600 - 400) \times 0.4 = 480 \text{ mm of Hg}$		3
		OR OR		
		Since $x_B = 0.4$, $x_A = 1 - x_B = 1 - 0.4 = 0.6$		
		$P_A = P_A^0 x_A = 400 \times 0.6 = 240 \text{ mm of Hg}$		


		$P_B = P_B^0 x_B = 600 \times 0.4 = 240 \text{ mm of Hg}$		
		$P_{Total} = P_A + P_B = 240 + 240 = 480 \text{ mm of Hg}$		
	(ii)	(B) $\Delta H_{mix} = 0$	1	
18.	(i)	Half life period is the time taken for half of a reaction to complete. Or , it is the time	1	
		taken for the concentration of a reactant is reduced to half of its initial concentration.		
	(ii)	For a first order reaction, the integrated rate law equation is $k = 2.303 \log[R]_0$ (1)		
		t [R]		
		When t = $t_{1/2}$, [R] = [R] ₀ /2		
		Substitute these values in the above equation, we get		3
		$k = 2.303 \log[R]_0$	2	
		$\begin{bmatrix} t_{1/2} & [R]_0/2 \\ 0r & t_{1/2} & = 2.202 \text{ kg}_2 & = 2.202 \text{ k}_0.2010 \end{bmatrix}$	Z	
		Or, $t_{1/2} = \frac{2.303}{k} \log 2 = \frac{2.303 \times 0.3010}{k}$		
		Or, $t_{1/2} = 0.693$		
		$\frac{1}{k}$		
19.	(i)	In chemisorption, the force of attraction between adsorbent and adsorbate is		
	.,	chemical bond. It is irreversible, highly specific, very high heat of adsorption, only	2	
		unimolecular layer of adsorption occurs, its rate increases with increase in		2
		temperature etc. (<i>Only 2 characteristics required</i>).		3
	(ii)	Due to the greater surface area of finely divided substances/as the surface area	1	
		increases, extend of adsorption also increases.		
20.	(i)	In calcination, the ore is heated in the absence or limited supply of air but in roasting,	1	
		the ore is heated in presence of excess of air.		
	(ii)	Pig iron is the iron obtained from blast furnace. It contains about 4% C and smaller	1	3
	<i></i>	amounts of impurities. While wrought iron is the purest form of commercial iron.		-
	(iii)	The metallic compounds present in the earth crust are called minerals . A mineral	1	
21	(:)	from which a metal can be extracted conveniently and profitably is called ore .	1	
21.	(i)	Chromite ore/ FeCr ₂ O ₄	1	
	(ii)	First sodium chromate is acidified with sulphuric acid to produce sodium dichromate. $2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$		
		Then the solution of sodium dichromate is treated with potassium chloride so that		3
		orange crystals of potassium dichromate crystallise out.	2	5
		Na ₂ Cr ₂ O ₇ + 2 KCl \rightarrow K ₂ Cr ₂ O ₇ + 2 NaCl	_	
		[Either explanation or equation is required] (1 Score for each step)		
22.	(i)	A) Due to lanthanoid contraction/lanthanide contraction.	1	
		B) This is due to their large surface area and their ability to show variable		
		oxidation state.	1	3
	(ii)	The electronic configuration of M^{2+} (Z = 27) is [Ar]3d ⁷		
		So the no. of unpaired electrons = 3	1	
		Spin only magnetic moment, $\mu_s = \sqrt{n(n+2)} = \sqrt{3(3+2)} = \sqrt{15} = 3.87$ BM		
23.	(i)	Reimer-Tiemann Reaction: Phenol when treated with chloroform in the presence of	1½	
		NaOH, followed by acidification, we get salicylaldehyde (o-hydroxybenzaldehyde).		
		Or the equation.		2
		Or, the equation:		3
<u> </u>	1	1		

	(ii)	$\begin{array}{c} \overbrace{OH}\\ \overbrace{CHCl_{3}+aq \ NaOH}\\ \hline intermediate\\ \hline intermediate\\ \hline Williamson's \ synthesis: \ Alkyl \ halide \ reacts \ with \ sodium \ alkoxide \ to \ form \ ether. \ This \ reaction \ is \ called \ Williamson's \ ether \ synthesis. \ R-X + R'-ONa \rightarrow R-O-R' + \ NaX \ Or, \ any \ correct \ example \end{array}$	1½	
24.	(i)	 A. Propene reacts with water in the presence of acid as catalyst to form propan-2-ol. Or the equation: CH₃-CH=CH₂ + H₂O <u>H</u>⁺ CH₃-CH(OH)-CH₃ B. Ethanal when reduced using lithium aluminium hydride (LiAlH₄) or sodium borohydride (NaBH₄) or on catalytic hydrogenation, we get ethanol. CH₃-CHO + [H] <u>LiAlH₄</u> CH₃-CH₂OH 	1	3
	(ii)	Zymase	1	
25.	(i)	(A) Tollens' test	1	
	(ii)	CH_3 -CHO (Benzaldehyde) is less reactive because of the less electrophilicity of the	1	3
		carbonyl carbon due to resonance. Or , the polarity of the carbonyl carbon in C_6H_5 -CHO	1	5
		is less/due to the presence of bulky phenyl group (steric hindrance).	-	
26.	(i)	Methanol and potassium formate		
	.,	Or, the equation: 2 HCHO <u>Conc. KOH</u> CH ₃ -OH + H-COOK		
		This reaction is known as Cannizzaro reaction.	1½	
	(ii)	3-hydroxybutanal (β -hydroxybutyraldehyde) and but-2-enal (crotanaldehyde)		3
		Or , the equation:		
		$2CH_3$ -CHO <u>dil. NaOH</u> CH ₃ -CH(OH)-CH ₂ -CHO <u>A</u> CH ₃ -CH=CH-CHO		
		Ethanal 3-Hydroxybutanal But-2-enal		
27	(')	This reaction is known as Aldol reaction (Aldol condensation reaction).		
27.	(i)	Monosaccharides: Ribose, Fructose	1	
	(ii)	Disaccharides: Maltose, Sucrose Starch is the storage polysaccharide of plants while glycogen is the storage		3
	(")	polysaccharide of animals.		
	(iii)	Insulin and glucagon	1	
28.	(i)	Vinyl chloride/Chloroethene/CH ₂ =CHCl. PVC is used for making pipes, rain coats, hand	1	
		bags, vinyl flooring etc. [Any one use is required]		
	(ii)	Tetrafluoroethene ($CF_2=CF_2$). Teflon is used for making oil seals, gaskets and non-sticky	1	3
		cooking pans. [Any one use is required]		
	(iii)	Adipic acid and hexamethylene diamine. Nylon 6,6 is used for making sheets, bristles	1	
20	(;)	for brushes and in textile industry. <i>[Any one use is required]</i>	1	
29.	(i)	 A. BHT (Butylated hydroxytoluene) is used as an antioxidant in food. B. Saccharin is used as an artificial sweetener in food. 		
	(ii)	Antidepressant drugs/Tranquilizers.		
	(")	E.g. Iproniazid, phenelzine, chlordiazepoxide, meprobamate, equanil etc.		3
		[Any one example is required]		
	1			

	1	Questions 30 to 40 carry 4 scores each.	1	1
30.	(i)	A. Schottky defect: It is the stoichiometric defect arising due to the missing of equal	1	
		no. of anions and cations from the lattice site.		
		B. Frenkel defect: It is the stoichiometric defect arising due to the shifting of a cation	1	
	from the lattice site to the interstitial site.			4
		C. f-centres: These are the electrons occupied at the anion vacancies or lattice sites.	1	
		(C) AgBr	1	
particle		Colligative properties are the properties which depend only on the number of solute	2	
		particles and not on their nature.		
		Molarmass (M_2) = $w_2 RT$		
		πV	2	4
Here $w_2 = 1.26 \text{ g}$, V = 400 cm ³ = 0.4 L, T = 300 K, $\pi = 2.57 \times 10^{-4}$ atm and R = 0.0821 Latm K ⁻¹ mol ⁻¹ .				
		So, $M_2 = 1.26 \times 0.0821 \times 300 = 30.19 \times 10^4$ atm		
		$2.57 \times 10^{-4} \times 0.4$		
32.	(i)	In $H_2 - O_2$ fuel cells, hydrogen and oxygen gases are bubbled through porous carbon		
		electrodes into concentrated aqueous sodium hydroxide solution. Catalysts like finely		
		divided platinum or palladium metal are filled in the electrodes. Or, the Diagram:		
		Anode $ +$ Cathode		
		Aqueous electrolyte	2	
			3	
		$H_2 \rightarrow O_2$		
		The electrode reactions are:		4
		Cathode: $O_2(g) + 2H_2O(I) + 4e^{-} \rightarrow 4OH^{-}(aq)$		
		Anode: $2H_2(g) + 4OH^-(aq) \rightarrow 4H_2O(I) + 4e^-$		
	(ii)	Overall reaction is: $2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$		
	(11)	The methods to prevent corrosion of metals are:		
		a) By giving a non-metallic coating on the metal surface with paint, varnish etc.	2	
	b) By coating the metal surface with electropositive metal like zinc, magnesiumc) By coating with anti-rust solution.			
		d) By connecting the metal with a sacrificial electrode of another metal (like Mg,		
		Zn, etc.) which corrodes itself but saves the iron object (sacrificial protection).		
22	(:)	[Any 2 methods required] The Arrhenius equation is $k = A e^{-Ea/RT}$	1	
33.	(i)	The Arrhenius equation is $k = A.e^{-Ea/RT}$	1	
	/::\	Or, $\log k = \log A - Ea/2.303RT$		
	(ii)	We know that, $\log k_2/k_1 = \frac{Ea}{2.303 \text{ R}} \frac{[T_2 - T_1]}{T_1 \cdot T_2}$		
		Here $T_1 = 298$ K, $T_2 = 308$ K, and $R = 8.314$ J K ⁻¹ mol ⁻¹		4
		Suppose $k_1 = x$, then $k_2 = 2x$ Then	2	4
		Then,	_	
		$\log \frac{2x}{x} = \frac{Ea}{2.303 \times 8.314} \frac{[308 - 298]}{298 \times 308}$		
		$Ea = 0.3010 \times 2.303 \times 8.314 \times 298 \times 308 = 52897.78 \text{ J mol}^{-1}$		
	I	10		<u> </u>

	(iii)	Order	Molecularity			
		It is the sum of the powers of the	It is the total number of reactant species			
		concentration terms in the rate law	collide simultaneously in a chemical	1		
		expression	reaction			
		It is an experimental quantity	It is a theoretical quantity			
		It can be zero or fractional	It cannot be zero or fractional			
			(Any 2 required)			
34.	(i)	In lyophilic sols, the force of attraction betw				
		<i>medium is strong. E.g. Starch solution,</i> gum, gelatin, starch, rubber etc in suitable				
		dispersion medium.		2		
	But in lyophobic sols, the force of attraction between dispersed phase and dispersion					
		<i>medium is weak.</i> e.g. Arsenic sulphide (As ₂ S ₃) sol, sulpher sol and metal sols like gold				
	(;;)	sol, silver sol etc. Emulsions are of two types:				
					4	
		I) Oil in water (O/W) type and II) Water in oil (W/O) type				
		In oil in water type emulsion, oil is the disp	ersed phase and water is the dispersion			
		medium.		2		
		E.g. milk.				
		In water in oil type emulsion, water is the d	lispersed phase and oil is the dispersion			
	medium.					
		E.g. butter and cream				
35.	(i)	Leaching of alumina from Bauxite: Here th	•			
	concentrated solution of NaOH at 473 – 523 K and 35 – 36 bar pressure. Alumina					
		(Al_2O_3) dissolves in NaOH to form sodium a	luminate [2Na[Al(OH)4] leaving behind the			
		impurities. Al ₂ O ₃ (s) + 2NaOH(aq) + 3H ₂ O(I) \rightarrow 2				
			ised by passing CO_2 gas and hydrated AI_2O_3	3		
		is precipitated. The solution is seeded with freshly prepared hydrated Al_2O_3 which induces the precipitation.				
		$2Na[Al(OH)_4](aq) + CO_2(g) \rightarrow Al_2O_3.xH_2O(s) + 2NaHCO_3(aq)$				
		The hydrated alumina is filtered, dried and heated to give back pure alumina (AI_2O_3).				
		$Al_2O_3.xH_2O(s) = 1470 K$ $Al_2O_3(s) + xH_2O(g)$				
		[Either explanation or equation is required]				
	(ii)	Cryolite is added to lower the melting point	t of alumina and to increase the	1		
-	(.)	conductivity.	. стон I и I и -		<u> </u>	
36.	(i)		t 673 K and 1 bar pressure to produce XeF_2 .	4		
		Or, The equation: Xe (g) + F ₂ (g) <u>673K, 1</u> (xenon in excess)		1		
		Its structure is linear as follows:				
			F	1	4	
		F-Xe-	—F			
	(ii)	(D) NeF ₂				
	(iii) This is because the bond length in ICl is greater than that in I_2 /the bond length in in					
		halogen compounds are greater than that i	n halogens.	1		

37.	(i) (ii)	 The different types of structural isomerism shown by co-ordination compounds are: 1. Ionisation isomerism 2. Linkage isomerism 3. Solvate or hydrate isomerism 4. Co-ordination isomerism This is because [Fe(H₂O)₆]³⁺ is an outer orbital complex while [Fe(CN)₆]³⁻ is an inner orbital complex/ H₂O is a weak field ligand and hence electron pairing does not occur while CN⁻ is a strong field ligand and hence electron pairing occurs/ due to greater number of unpaired electrons in [Fe(H₂O)₆]³⁺ than that in [Fe(CN)₆]³⁻. 		2	4
38.	(i)	S _N 1 Reaction S _N 2 Reaction			
	.,	Proceeds in 2 steps	Proceeds in a single step		
		An intermediate (carbocation) is formed	No intermediate is formed		
		Order of the reaction is 1	Order is 2	2	
		For optically active compounds, the	For optically active compounds, the		
		reaction proceeds through retention of	reaction proceeds through inversion of		
		configuration.	configuration.		4
		The order of reactivity of alkyl halide is $3^0 > 2^0 > 1^0$	The order of reactivity of alkyl halide is $1^0 > 2^0 > 3^0$		
			[Any 2 differences are required]		
	(ii)	2-chloropropane < 1-chloropropane < 1-chloropropane = 1-chloroprop		1	
	(iii)	Chloroform is used as a solvent, for the production of freon refrigerant, as an			
39.	(i)	anaesthetic. [Any 1 use is required]			
55.		A. Toluene when oxidised by using chromyl chloride (CrO_2Cl_2) in CS ₂ followed by acidification, we get benzaldehyde. The reaction is known as Etards reaction. <i>Or the equation:</i> $CH_3 + CrO_2Cl_2 \xrightarrow{CS_2} CH(OCrOHCl_2)_2 \xrightarrow{H_3O^+} CHO$ Toluene Chromium complex Benzaldehyde			
		 B. When benzene is treated with carbon monoxide and hydrogen chloride in the presence of anhydrous aluminium chloride or cuprous chloride, we get benzaldehyde. This reaction is known as Gatterman-Koch reaction. Or the equation: 			4
		Benzene	Benzaldehyde a presence of Pd supported on BaSO ₄ , we mund's reduction.		
	<i>,</i>	$Cl = H_2$ Pd – BaS	\rightarrow	1	
	(ii)	Ethanoic anhydride or acetic anhydride or (CH ₃ -CO) ₂ O	1	

