ISC SEMESTER 2 EXAMINATION SAMPLE PAPER - 1 MATHEMATICS

Maximum Marks: 40

Time allowed: One and a half hour

Candidates are allowed an additional **10 minutes** for **only** reading the paper.

They must Not start writing during this time.

The Question Paper consists of three sections A, B and C.

Candidates are required to attempt all questions from Section A and all questions <u>EITHER</u> from Section B <u>OR</u> Section C

All working, including rough work, should be done on the same sheet as, and adjacent to the rest of the answer.

Mathematical tables and graph papers are provided.

Section-A

Question 1.

Choose the correct option for the following questions.

- $\int_{0}^{a} f(x) dx = \int_{0}^{\infty} f(k-x) dx$, then the value of k is : (i) (a) 0 (c) 2*a* (b) a (d) None of these If A and B are two independent events with $P(A) = \frac{3}{5}$ and $P(B) = \frac{4}{9}$, then $P(\overline{A} \cap \overline{B})$ equals : (ii) (a) $\frac{4}{15}$ (b) $\frac{8}{45}$ (c) $\frac{1}{3}$ (d) $\frac{2}{9}$ (iii) $\int \frac{x}{4+x^4} dx$ is equal to : (a) $\frac{1}{4} \tan^{-1} x^2 + c$ (b) $\frac{1}{4} \tan^{-1} \left(\frac{x^2}{2} \right) + c$ (c) $\frac{1}{2} \tan^{-1} \left(\frac{x^2}{2} \right)$ (d) None of these (iv) Write the order and degree of the differential equation $a^2 \frac{d^2 y}{dx^2} = \left\{ 1 + \left(\frac{dy}{dx}\right)^2 \right\}^{1/4}$. (b) 2, 2 (a) 2, 1 (c) 2, 4 (d) None of these (v) $\int \frac{(\sin x + \cos x)}{\sqrt{1 + \sin 2x}} dx =$ (a) $\frac{-x}{2} + c$ (b) $\frac{x}{2} + c$ (c) x + c(d) None of these (vi) A four-digit number is formed using the digits 1, 2, 3, 5 with no repetition. Find the probability that the number is divisible by 5.
 - (a) $\frac{1}{2}$ (b) $\frac{1}{4}$ (c) $\frac{1}{24}$ (d) $\frac{1}{6}$

Question 2.

Evaluate :
$$\int \frac{\cos x}{\sin x + \sqrt{\sin x}} dx$$

OR

Evaluate : $\int_0^{2\pi} \sqrt{1 + \sin \frac{x}{2}} \, dx.$

Question 3.

Solve : dy = (5x - 4y) dx where y = 0 and x = 0.

OR

Solve:
$$\frac{dy}{dx} + y = 1$$

Question 4.

Evaluate : $\int_0^{\pi/2} \log \sin x \, dx$.

Question 5.

A problem in mathematics is given to three students A, B and C. The chances of solving it by A, B and C are $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{4}$ respectively. Calculate the probability that the problem will be solved.

OR

Bag A contains 5 white and 4 black balls and Bag B contains 7 white and 6 black balls. One ball is drawn from the bag A and, without noticing its colour, is put in the bag B. If a ball is then drawn from bag B, find the probability that it is black in colour.

Question 6.

Evaluate : $\int_0^{\pi/4} \log (1 + \tan x) \, dx.$

Question 7.

A class consists of 50 students out of which there are 10 girls. In the class, 2 girls and 5 boys are rank holders in an examination. If a student is selected at random from the class and is found to be a rank holder, what is the probability that the student selected is a girl ?

Question 8.

Evaluate : $\int \tan 2x \tan 3x \tan 5x \, dx$.

OR

Evaluate : $\int \frac{\sin(x-\alpha)}{\sin(x+\alpha)} dx$.

Section-B

Question 9.

Choose the correct option for the following questions :

(i)	The intercepts made on the coordinate axes by the plane $2x + 3y + 6z = 18$ are :						
	(a) 9, 9, 3	(b) 9, 6, 3	(c) 3, 6, 9	(d) None of these			
(ii)	The distance between the planes $2x + 2y - z + 2 = 0$ and $4x + 4y - 2z + 5 = 0$ is :						
	(a) $\frac{1}{2}$	(b) $\frac{1}{4}$	(c) $\frac{1}{6}$	(d) 1			

Question 10.

Find the equation of the plane through the points (2, 2, 1), (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 9.

Question 11.

Find the area bounded by the curves $y = 6x - x^2$ and $y = x^2 - 2x$.

Section-C

Question 12.

Choose the correct option for the following questions.

- (i) Find the coefficient of correlation between x and y if the regression line 2x + 5y 9 = 0 is y on x and the regression coefficient x on y is -0.7.
 - (a) -0.529 (b) 0.52 (c) 5.2 (d) -0.40
- (ii) Equations of two regression lines are 4x + 3y + 7 = 0 and 3x + 4y + 8 = 0. Find mean of x and mean of y.

(a)
$$\frac{-4}{7}, \frac{11}{7}$$
 (b) $\frac{4}{7}, \frac{-11}{7}$ (c) $\frac{-4}{7}, \frac{-11}{7}$ (d) $\frac{4}{7}, \frac{11}{7}$

Question 13.

Find b_{xy} and b_{yx} from the following pairs of observations on X and Y :

(1, 2), (2, 3), (3, 5), (4, 6), (5, 4)

Question 14.

A company manufacture two types of products A and B. Each unit of A requires 3 gm of nickel and 1 gm of chromium, while each unit of B requires 1 gm of nickel and 2 gm of chromium. The firm can produce 9 gm of nickel and 8 gm of chromium. The profit is ₹ 40 on each unit of product A and ₹ 50 on each unit of product B. How many units of each type should the company manufacture so as to earn maximize profit ?

Section-A Answer 1. (i) (b) *a* Explanation :

From fundamental property of definite integral, we know that,

$$\int_0^a f(x) \, dx \quad = \int_0^a f(a-x) \, dx$$

(ii) (d) $\frac{2}{9}$

Explanation :

```
Given :
```

$$P(A) = \frac{3}{5}, P(B) = \frac{4}{9}$$

$$P(\overline{A} \cap \overline{B}) = P(A \cup B)' = 1 - P(A \cup B)$$

$$= 1 - \{P(A) + P(B) - P(A \cap B)\}$$

$$= 1 - \{P(A) + P(B) - P(A).P(B)\}$$

$$= 1 - \left(\frac{3}{5} + \frac{4}{9} - \frac{3}{5} \times \frac{4}{9}\right)$$

$$= 1 - \frac{35}{45}$$

$$= \frac{10}{45} = \frac{2}{9}.$$

(iii) (b)
$$\frac{1}{4} \tan^{-1} \left(\frac{x^2}{2} \right) + c$$

Explanation :

Let

$$I = \int \frac{x}{4 + x^4} dx$$
$$= \int \frac{x}{(2)^2 + (x^2)^2} dx$$
$$\Rightarrow x \, dx = \frac{dt}{2}$$

Putting $x^2 = t \Rightarrow 2x \ dx = dt \Rightarrow x \ dx = \frac{dt}{2}$

$$I = \frac{1}{2} \int \frac{dt}{(2)^2 + t^2}$$

= $\frac{1}{2} \left[\frac{1}{2} \tan^{-1} \left(\frac{t}{2} \right) \right] + c$ $\left(\because \int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} \right)$
= $\frac{1}{4} \tan^{-1} \left(\frac{x^2}{2} \right) + c$ $(\because t = x^2)$

(iv) (c) 2, 4

Explanation :

:.

$$a^{2} \frac{d^{2}y}{dx^{2}} = \left\{1 + \left(\frac{dy}{dx}\right)^{2}\right\}^{1/4}$$
$$a^{2} \frac{d^{2}y}{dx^{2}}\right)^{4} = 1 + \left(\frac{dy}{dx}\right)^{2}$$

 \therefore Order of the differential equation is 2. and degree of the differential equation is 4.

(v) (c) x + c

Explanation :

$$\int \frac{(\sin x + \cos x)}{\sqrt{1 + \sin 2x}} dx = 1$$

Since
$$1 + \sin 2x = \sin^2 x + \cos^2 x + 2 \sin x. \cos x$$
$$= (\sin x + \cos x)^2$$
$$I = \int \frac{(\sin x + \cos x)}{\sqrt{(\sin x + \cos x)^2}} dx$$
$$= \int \left(\frac{\sin x + \cos x}{\sin x + \cos x}\right) dx$$
$$= \int dx = x + c$$

(vi) (b) $\frac{1}{4}$

Explanation :

Total four-digit numbers formed by 1, 2, 3 and 5 = 4! \therefore n(S) = 4! = 24Total number of four digit numbers divisible by 5 = 3! \therefore n(E) = 3! = 6 \therefore Probability that the number is divisible by 5 $= \frac{n(E)}{n(S)} = \frac{6}{24} = \frac{1}{4}$. Answer 2.

Let

$$\int \frac{\cos x}{\sin x + \sqrt{\sin x}} \, dx = \int \frac{\cos x}{\sqrt{\sin x} (\sqrt{\sin x} + 1)} \, dx$$
$$\sqrt{\sin x} = t$$
$$\frac{1}{2\sqrt{\sin x}} \cdot \cos x = \frac{dt}{dx}$$

$$\Rightarrow \qquad \frac{1}{2\sqrt{\sin x}} \cdot \cos x$$

$$\Rightarrow \qquad \qquad \frac{\cos x}{\sqrt{\sin x}} \, dx = 2 \, dt$$

$$\therefore \qquad \int \frac{\cos x}{\sin x + \sqrt{\sin x}} \, dx = \int \frac{2}{(t+1)} \, dt$$

$$= 2 \log |t+1| + c$$
$$= 2 \log |\sqrt{\sin x} + 1| + c.$$
$$OR$$
$$I = \int_{0}^{2\pi} \sqrt{1 + \sin \frac{x}{2}} dx$$

Let

Let $\frac{x}{2} = t \Rightarrow \frac{dx}{2} = dt$ or dx = 2dtWhen x = 0, t = 0When $x = 2\pi$, $t = \pi$ *.*:.

$$I = \int_{0}^{\pi} 2\sqrt{1 + \sin t} \, dt$$

= $2\int_{0}^{\pi} \sqrt{\cos^{2} \frac{t}{2} + \sin^{2} \frac{t}{2} + 2\sin \frac{t}{2}\cos \frac{t}{2}} \, dt$
= $2\int_{0}^{\pi} \sqrt{\left(\cos \frac{t}{2} + \sin \frac{t}{2}\right)^{2}} \, dt$
I = $2\int_{0}^{\pi} \left(\cos \frac{t}{2} + \sin \frac{t}{2}\right) dt$

or

Let $\frac{t}{2} = u \Rightarrow \frac{dt}{2} = du$ or dt = 2duWhen t = 0, u = 0When $t = \pi$, $u = \frac{\pi}{2}$ *:*..

$$I = 2 \int_{0}^{\pi/2} (\cos u + \sin u) (2du)$$

= $4 \int_{0}^{\pi/2} (\cos u + \sin u) du$
= $4 [\sin u - \cos u]_{0}^{\pi/2}$
= $4 \left[\sin \frac{\pi}{2} - \cos \frac{\pi}{2} - \sin 0 + \cos 0 \right]$
= $4 [1 - 0 - 0 + 1] = 4 \times 2 = 8.$ Ans.
 $dy = (5x - 4y) dx$

Ans.

Answer 3.
Given :
$$dy = (5x - 4y) dx$$

 $\Rightarrow \frac{dy}{dx} = 5x - 4y$
 $\Rightarrow \frac{dy}{dx} + 4y = 5x$
Compare with $\frac{dy}{dx} + Py = Q(x)$
 \therefore $P = 4 \text{ and } Q(x) = 5x$
 $LF = e^{\int t^4 dx} = e^{4x}$
Solution of differential equation is given by.
LF = $\int t^{14x} = e^{\int t^4 dx} = e^{4x}$
Solution of differential equation is given by.
 $\Rightarrow ye^{4x} = 5 \left[x \int e^{4x} dx - \int \left[\frac{d}{dx} x \int e^{4x} dx \right] dx \right]$
 $\Rightarrow ye^{4x} = 5 \left[x \int e^{4x} dx - \int \left[\frac{d}{dx} x \int e^{4x} dx \right] dx \right]$
 $\Rightarrow ye^{4x} = 5 \left[\frac{xe^{4x}}{4} - \int \frac{e^{4x}}{4} dx \right]$
 $\Rightarrow ye^{4x} = 5 \left[\frac{xe^{4x}}{4} - \frac{5e^{4x}}{16} + c \right]$
When $x = 0, y = 0$
 $0 = 0 - \frac{5}{16} \times 1 + c$
 $\Rightarrow c = \frac{5}{16}$
 $\therefore ye^{4x} = \frac{5xe^{4x}}{4} - \frac{5e^{4x}}{16} + \frac{5}{16}$
 $\Rightarrow 16y = 20x + e^{4x} - 5.$
OR
Given, $\frac{dy}{dx} + y = 1$
 $\Rightarrow \frac{dx}{dy} = \frac{1}{1-y}$
 $\Rightarrow dx = \frac{1}{1-y} dy$
Intergrating both sides, we get
 $\int dx = \int \frac{1}{1-y} dy$
 $x = -\log |1-y| + c$
Answer 4.
Let $1 = \int_0^{\pi/2} \log \sin x dx$
 $1 = \int_0^{\pi/2} \log \sin x dx$

 $= \int_0^{\pi/2} \log \cos x \, dx \qquad \dots (ii)$

Ans.

Ans.

...(i)

Adding (i) and (ii), we get

$$\int_{0}^{\pi/2} [\log (\sin x) + \log (\cos x)] dx$$

= $\int_{0}^{\pi/2} \log \sin x \cos x \, dx$
= $\int_{0}^{\pi/2} \log \frac{\sin 2x}{2} \, dx$
= $\int_{0}^{\pi/2} (\log \sin 2x - \log 2) \, dx$
= $\int_{0}^{\pi/2} \log \sin 2x \, dx - \int_{0}^{\pi/2} \log 2 \, dx$
[Putting $t = 2x$, $dt = 2 \, dx$]
= $\frac{1}{2} \int_{0}^{\pi} \log \sin t \, dt - \log 2 \, [x]_{0}^{\pi/2}$
= $\frac{1}{2} \cdot 2 \int_{0}^{\pi/2} \log \sin t \, dt - \frac{\pi}{2} \log 2 \, [\because \sin (\pi - t) = \sin t]$
2I = $I - \frac{\pi}{2} \log 2$ $\left[\because \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(t) \, dt\right]$
I = $-\frac{\pi}{2} \log 2$. Ans.

Answer 5.

Chances of solving the problem by A, $P(A) = \frac{1}{2}$

: Probability that problem will not be solved by A *i.e.*,

 $P(\overline{A}) = 1 - \frac{1}{2} = \frac{1}{2}$ Similarly $P(\overline{B}) = 1 - \frac{1}{3} = \frac{2}{3}$ and $P(\overline{C}) = 1 - \frac{1}{4} = \frac{3}{4}$

 $\therefore \qquad P(\text{Problem will be solved}) = 1 - P(\text{None of them can solve the problem})$ $= 1 - P(\overline{A}) \cdot P(\overline{B}) \cdot P(\overline{C})$

$$= 1 - \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4}$$
$$= 1 - \frac{1}{4} = \frac{3}{4}$$

 \therefore Probability of the problem will be solved = $\frac{3}{4}$.

Ans.

OR

Given :

Bag A contains : 5 White and 4 Black balls and Bag B contains : 7 White and 6 Black balls Let X be the event that black ball is drawn from bag B. Let E_1 be the event that white ball is drawn from bag A.

$$\therefore \qquad P(E_1) = \frac{5}{9}$$

Now, probability that black ball is drawn from bag B *i.e.*,

$$P(X/E_1) = \frac{6}{14}$$

Let E_2 be the event that black ball drawn from bag A.

 $P(E_2) = \frac{4}{9}$

Now, probability that black ball is drawn from bag B

$$P(X/E_2) = \frac{7}{14}$$

Now, probability that black ball is drawn from bag B

$$= P(E_1) \cdot P(X/E_1) + P(E_2) \cdot P(X/E_2)$$

= $\frac{5}{9} \times \frac{6}{14} + \frac{4}{9} \times \frac{7}{14}$
= $\frac{30}{126} + \frac{28}{126} = \frac{58}{126}$
Required probability = $\frac{29}{63}$.

Answer 6.

...

Let

$$I = \int_{0}^{\pi/4} \log \left[1 + \tan x \right) dx$$

$$I = \int_{0}^{\pi/4} \log \left[1 + \tan \left(\frac{\pi}{4} - x \right) \right] \qquad \left[\because \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx \right]$$

$$\Rightarrow \qquad I = \int_{0}^{\pi/4} \log \left(1 + \frac{1 - \tan x}{1 + \tan x} \right) dx$$

$$\Rightarrow \qquad I = \int_{0}^{\pi/4} \log \left(\frac{1 + \tan x + 1 - \tan x}{1 + \tan x} \right) dx$$

$$\Rightarrow \qquad I = \int_{0}^{\pi/4} \log \frac{2}{1 + \tan x} dx$$

$$\Rightarrow \qquad I = \int_{0}^{\pi/4} \log 2 dx - \int_{0}^{\pi/4} \log (1 + \tan x) dx$$

$$\Rightarrow \qquad I = \int_{0}^{\pi/4} \log 2 dx - I$$

$$\Rightarrow \qquad 2I = \log 2 \int_{0}^{\pi/4} dx = \log 2[x]_{0}^{\pi/4}$$

$$\Rightarrow \qquad I = \frac{\pi}{4} \log 2$$

$$\therefore \qquad I = \frac{\pi}{8} \log 2.$$

Answer 7.

Given :

Total number of students = 50

Total number of girls = 10

Total number of boys = 40

Total number of rank holders = 2 girls and 5 boys

Let E_1 be the event to select a boy, E_2 be the event to select a girl and A be the event that selected student is a rank holder.

So

$$P(E_1) = \frac{40}{50} = \frac{4}{5}$$
$$P(E_2) = \frac{10}{50} = \frac{1}{5}$$
$$P(A/E_1) = \frac{5}{40} = \frac{1}{8}$$
$$P(A/E_2) = \frac{2}{10} = \frac{1}{5}$$

... Required probability that selected rank holder is a girl

$$= \frac{P(E_2) \cdot P(A/E_2)}{P(E_1) \cdot P(A/E_1) + P(E_2) \cdot P(A/E_2)}$$
$$= \frac{\frac{1}{5} \times \frac{1}{5}}{\frac{4}{5} \times \frac{1}{8} + \frac{1}{5} \times \frac{1}{5}} = \frac{\frac{1}{25}}{\frac{1}{10} + \frac{1}{25}}$$
$$= \frac{\frac{1}{25}}{\frac{25 + 10}{250}} = \frac{1}{25} \times \frac{250}{35}$$
$$\therefore \qquad \text{Required probability} = \frac{2}{7} \cdot$$

quired probabili

Answer 8.

 $\int \tan 2x \tan 3x \tan 5x \, dx$

$$\Rightarrow \tan 5x - \tan 5x \tan 2x \tan 3x = \tan 2x + \tan 3x$$

$$\Rightarrow \tan 5x - \tan 2x - \tan 3x = \tan 5x \tan 2x \tan 3x$$

$$\therefore \int \tan 2x \tan 3x \tan 5x \, dx = \int \tan 5x \, dx - \int \tan 2x \, dx - \int \tan 3x \, dx$$

$$= -\frac{1}{5} \log \cos 5x + \frac{1}{2} \log \cos 2x + \frac{1}{3} \log \cos 3x + c$$

$$= \frac{1}{2} \log \cos 2x + \frac{1}{3} \log \cos 3x - \frac{1}{5} \log \cos 5x + c$$
 Ans.
OR

$$\int \frac{\sin(x-\alpha)}{\sin(x+\alpha)} dx$$
Let $x + \alpha = t$ $\therefore dx = dt$

$$\therefore \qquad \int \frac{\sin(x-\alpha)}{\sin(x+\alpha)} dx = \int \frac{\sin(t-2\alpha)}{\sin t} dt$$

$$= \int \frac{\sin t \cos 2\alpha - \cos t \sin 2\alpha}{\sin t} dt$$

$$= \int \frac{\sin t \cos 2\alpha}{\sin t} dt - \int \frac{\cos t \sin 2\alpha}{\sin t} dt$$

$$= \cos 2\alpha \int dt - \sin 2\alpha \int \cot t dt$$

$$= t \cos 2\alpha - \sin 2\alpha \log \sin t + c$$

$$= x \cos 2\alpha - \sin 2\alpha \log \sin (x+\alpha) + c + \alpha \cos 2\alpha$$
where
$$c_1 = c + \alpha \cos 2\alpha.$$

Ans.

Section-B

Answer 9. (i) (b) 9, 6, 3 **Explanation**: 2x + 3y + 6z = 18Given, Divide by 18 on both sides, we get $\frac{x}{9} + \frac{y}{6} + \frac{z}{3} = 1$...(i) Compare equation (i) with intercept form $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, we get a = 9, b = 6 and c = 3(ii) (a) $\frac{1}{2}$ **Explanation** : 2x + 2y - z + 2 = 0Given : 4x + 4y - 2z + 5 = 0and 2x + 2y - z + 5/2 = 0or Then we see that these are parallel planes because d.r.'s are same Distance between them = $d_2 - d_1$... $=\frac{5}{2}-2=\frac{1}{2}$ Answer 10. Let the direction ratios of the plane be $\langle A, B, C \rangle$. It passes throguh (2, 2, 1). A(x-2) + B(y-2) + C(z-1) = 0... ...(i) Plane also passes through (9, 3, 6). A(9-2) + B(3-2) + C(6-1) = 0... 7A + B + 5C = 0 \Rightarrow ...(ii) Plane (i) is perpendicular to the plane 2x + 6y + 6z = 9 \therefore Direction ratios of both the planes are equal. 2A + 6B + 6C = 0.... ...(iii) Solving equations (ii) and (iii) by cross-multiplication method, we get $\frac{A}{6-30} = \frac{B}{10-42} = \frac{C}{42-2}$ $\frac{A}{-24} = \frac{B}{-32} = \frac{C}{40}$ \Rightarrow $\frac{A}{3} = \frac{B}{4} = \frac{C}{-5}$ \Rightarrow A = 3k, B = 4k and C = -5k*.*.. From equation (i), 3k(x-2) + 4k(y-2) - 5k(z-1) = 03(x-2) + 4(y-2) - 5(z-1) = 0 \Rightarrow 3x - 6 + 4y - 8 - 5z + 5 = 0 \Rightarrow 3x + 4y - 5z - 9 = 0 \Rightarrow 3x + 4y - 5z = 9. \Rightarrow Ans.

Answer 11.

Given :

$$y = 6x - x^{2}$$
$$x^{2} - 6x = -y$$
$$x^{2} - 6x + 9 = -y + 9$$
$$(x - 3)^{2} = -(y - 9)$$

This represent a parabola with vertex (3, 9).

 $y = 6x - x^2$ intersect X-axis at (0, 0) and (6, 0). Also, $y = x^2 - 2x$

$$x^{2} - 2x + 1 = y + 1$$
$$(x - 1)^{2} = y + 1$$

This represent a parabola with vertex (1, -1). $y = x^2 - 2x$ intersect the X-axis at (0, 0) and (2, 0). The point of intersection of two parabolas is (4, 8)

Required

shaded area =
$$\int_0^4 (6x - x^2) dx + \int_0^2 (x^2 - 2x) dx - \int_2^4 (x^2 - 2x) dx$$

= $\left[3x^2 - \frac{x^3}{3}\right]_0^4 + \left[\frac{x^3}{3} - x^2\right]_0^2 - \left[\frac{x^3}{3} - x^2\right]_2^4$
= $\left[3 \times 16 - \frac{64}{3}\right] + \left[\frac{8}{3} - 4\right] - \left[\left(\frac{64}{3} - 16\right) - \left(\frac{8}{3} - 4\right)\right]$
= $\left[48 - \frac{64}{3}\right] + \left[\frac{8 - 12}{3}\right] - \left[\left(\frac{64 - 48}{3}\right) - \left(\frac{8 - 12}{3}\right)\right]$
= $\left[\frac{144 - 64}{3} - \frac{4}{3}\right] - \left[\frac{16}{3} + \frac{4}{3}\right] = \left[\frac{80}{3} - \frac{4}{3}\right] - \frac{20}{3} = \frac{76}{3} - \frac{20}{3}$
= $\frac{56}{3}$ sq. units Ans.

Section-C

Answer 12.

(i) (a) – 0.529

Explanation : Given, and regression line *y* on *x* is

$$2x + 5y = 9$$

$$\Rightarrow 5y = -2x + 9$$

$$\Rightarrow y = \frac{-2}{5}x + \frac{9}{5}$$

$$b_{yx} = \frac{-2}{5} = -0.4$$

 $b_{xy} = -0.7$

and,

:..

$$\rho(x, y) = \text{coefficient of correlation between } x \text{ and } y$$
$$= -\sqrt{b_{xy} \cdot b_{yx}}$$
$$= -\sqrt{(-0.7)(-0.4)}$$

 $\rho(x, y) = -0.529$ [:: $\rho(x, y)$, b_{xy} and b_{yx} have same sign]

(ii) (c) $\frac{-4}{7}, \frac{-11}{7}$

Explanation :

Given :	4x + 3y + 7 = 0
and	3x + 4y + 8 = 0
Solving the two equations	s, we get
	$\frac{x}{24-28} = \frac{y}{21-32} = \frac{1}{16-9}$
	$\frac{x}{-4} = \frac{y}{-11} = \frac{1}{7}$
Δ.	$x = -\frac{4}{7}$ and $y = -\frac{11}{7}$
Hence, mean of x series	is $-\frac{4}{7}$ and mean of <i>y</i> series is $-\frac{11}{7}$.

Answer 13.

X	Y	X ²	Y ²	XY	
1	2	1	4	2	
2	3	4	9	6	
3	5	9	25	15	
4	6	16	36	24	
5	4	25	16	20	
$\Sigma X = 15$	$\Sigma X = 15$ $\Sigma Y = 20$		$\Sigma Y^2 = 90$	$\Sigma XY = 67$	

Here,

N = 5

$$\therefore \qquad b_{xy} = \frac{\Sigma XY - \frac{1}{N} \Sigma X\Sigma Y}{\Sigma Y^2 - \frac{1}{N} (\Sigma Y)^2}$$

$$\Rightarrow \qquad b_{xy} = \frac{67 - \frac{1}{5} \times 15 \times 20}{90 - \frac{1}{5} (20)^2}$$

$$\Rightarrow \qquad b_{xy} = \frac{67 - 60}{90 - 80} = \frac{7}{10} = 0.7 \qquad \text{Ans.}$$
and
$$b_{yx} = \frac{\Sigma XY - \frac{1}{N} \Sigma X\Sigma Y}{\Sigma X^2 - \frac{1}{N} (\Sigma X)^2} = \frac{67 - \frac{1}{5} \times 15 \times 20}{55 - \frac{1}{5} (15)^2} = \frac{67 - 60}{55 - 45}$$

$$\therefore \qquad b_{yx} = \frac{7}{10} = 0.7 \qquad \text{Ans.}$$

Answer 14.

Let the company manufactures *x* units of product A and *y* units of product B. Object : To maximise profit Z = 40x + 50yConstraint : $3x + y \le 9$

$x + 2y \le 8$;					
	$x \ge 0, y \ge 0$								
		3x +	<i>y</i> = 9				<i>x</i> + 2	y = 8	
	x	0	3	2		x	0	8	4
	у	9	0	3		у	4	0	2

The shaded region is the required feasible region.

	Maximum profit $Z = 40x + 50y$		
At A(3, 0),	$Z = 40 \times 3 + 50 \times 0 = ₹ 120$		
At B(2, 3),	Z = 40 × 2 + 50 × 3 = ₹ 230		
At C(0, 4),	Z = 40 × 0 + 50 × 4 = ₹ 200		

So, the company should manufacture 2 units of product A and 3 units product B to earn maximum profit. Ans.