028/B

[Maximum Marks : 90

Mathematics

(Common for Humanities, Sc & Agri Groups)

(Evening Session)

Time : Three Hours]

I.	i	If $\tan^{-1} x = y$, then				
		(a) $\frac{-\pi}{2} \le$	$y \leq \frac{\pi}{2}$	(b)	$0 < y < \pi$	
		(c) $\frac{-\pi}{2} <$	$y < \frac{\pi}{2}$	(d)	$0 \le y \le \pi$	
	ii	If A is any square matrix then A+A' is a :				
		(a) Skev	v-symmetric matric	(b)	symmetric matric	
		(c) null	matric	(d)	identity matric	
	iii	If $f(x) = \begin{cases} kx+2 & , x \le 2 \\ 3x-4 & , x > 2 \end{cases}$ is continuous at x=5 then value of k is :				
		(a) $\frac{3}{5}$		(b)	$\frac{4}{5}$	
		(c) $\frac{8}{5}$		(d)	9 5	
	iv	$\int_{-1}^{1} x^5 \cos^6 x dx \text{ is equal to }:$				1
		(a) $\frac{1}{9}$		(b)	$\frac{-1}{9}$	
		(c) 0		(d)	$\frac{1}{8}$	
	v	$\int_0^1 \frac{dx}{1+x^2}$ is equal to :				
		(a) $\frac{\pi}{3}$		(b)	$\frac{\pi}{4}$	
		(c) $\frac{\pi}{12}$		(d)		
	vi	Degree of differential equation $\left(\frac{d^2y}{dx^3}\right)^3 + \left(\frac{dy}{dx}\right)^2 = 0$ is;				
		(a) 0		(b)	1	
		(c) 2		(d)	3	
	vii	Position vector of mid-point of vector joining the points P (2,3,6) and Q (4,5,-2) is				
		(a) $3\hat{i} +$	$2\hat{j} + \hat{k}$	(b)	$6\hat{\imath} - 2\hat{\jmath} - 3\hat{k}$	
		(c) $8\hat{i} +$	$3\hat{j} - 8\hat{k}$	(d)	$3\hat{\imath} + 4\hat{\jmath} + 2\hat{k}$	
	viii	If line makes angles 90° , 45° , 135° with X,Y and Z axes respectively then its direction ratios are :				
		(a) <1,-1	,1>	(b)	<0,-1,1>	
		(c) <-1,(),1>	(d)	<0,1,-1>	

3

\mathbf{a}	
U	R

Show that relation $R + \{(P_1, P_2): P_2 \text{ is parallel to } P_2\}$, defined on the set of all lines, is an equivalence relation.

- 3 Prove that $2\tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{2} = \tan^{-1}\frac{22}{19}$
- ⁴ Express $\begin{bmatrix} 5 & 1 \\ 7 & 0 \end{bmatrix}$ as sum of symmetric and skew-symmetric matrices

OR

Using determinates find the equation on line passing from the points (2,4) and (6,10).

5 If
$$y = (x \tan x)^x$$
 then find $\frac{dy}{dx}$.

6 Verify Rolle's theorem for
$$f(x) = x^2 - 9x + 14$$
, $x \in [2,7]$.

- 7 Using differentials find the approximate value of $(0.065)^{1/3}$.
- 8 Evaluate $\int \frac{7x+1}{\sqrt{x^2+4x+11}} dx$

OR

Evaluate $\int \frac{(x^2-3)e^x}{(x-1)^2} dx$ 9 Evaluate $\int_{\pi/6}^{\pi/3} \frac{1}{1+\tan^{3/2}x} dx$

¹⁰ Using integration find the area of triangle with vertices (4,3), (4,1) and (6,0). 3 ¹¹ Find the particular solution of the differential equation $\cot x \frac{dy}{dx} = y; y = 1$ when x = 0 ³

$$12 \quad Solve \frac{dy}{dx} + 2y = \sin 2x$$

¹³ If : $|\vec{a}| = 7$, $|\vec{b}| = 1$ and $|\vec{c}| = 5$ and each of them is perpendicular to the sum of other two ³ them find value is $|\vec{a} + \vec{b} + \vec{c}|$.

OR

Using vectors find the area of the triangle whose vertices are (0,1,-2),(2,1,5)and (1,5,2).

- ¹⁴ Probability of solving specific problem independently by A,B and C are $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{5}$ ³ respectively, if all of them try to solve the problem independently then find the probability that problem will be solved.
- 15 A pair of dice thrown 4 times. If getting a doublet is considred success then find the probability of exactly 3 successes,
- 16 Solve the following system of linear equation by matrix method:

$$x + 2y + z = 6,2x + y + 2z = 6, x - y - z = 2$$

Using elementary transformation find the inverse of $\begin{bmatrix} 1 & 3 & 1 \\ 2 & 1 & -2 \\ 1 & 1 & 2 \end{bmatrix}$.

- 17 A window is in the form of a rectangle surmounted by a semi-circular opening. The total 5 perimeter of the window is 30 m. find the dimensions of the window to admit maximum light through the whole opening.
- 18 Find the distance of the (-1,-5,-10) from the point of intersection of the line

3

5

3

3

3

3

3

3

3

$$\vec{r} = 2\hat{\imath} - \hat{\jmath} + 2\hat{k} + \lambda(3\hat{\imath} + \hat{\jmath} + 2\hat{k})$$
 and the plane $\vec{r} \cdot (2\hat{\imath} - 2\hat{\jmath} + \hat{k}) = 7$.
OR

Find the shortest distance between the lines:

$$\vec{r} = \hat{\imath} + 2\hat{\jmath} + \hat{k} + \lambda(\hat{\imath} + 2\hat{\jmath} - \hat{k})$$
 and $\vec{r} = 2\hat{\imath} - \hat{\jmath} - \hat{k} + \mu(3\hat{\imath} + \hat{\jmath} + 2\hat{k})$

19 Graphically minimize Z = 7x + 4y subject to the constraints

 $3x + y \le 90, x + 5y \ge 100, 9x + 8y \le 400, x \ge 0, y \ge 0.$