
3. Electrostatics

3.1. Three charges are placed at the vertices of an iso­
sceles right triangle, with charges +Q and -Q at the acute
angles and a charge +2Q at the right angle. Determine
which of the numbered vectors coincides in direction with
the field produced by these charges at a point that is the
middle of the hypotenuse.
3.2. Two point-like charges a and b whose strengths are
equal in absolute value are positioned at a certain distance
from each other. Assuming the field strength is positive
in the direction coinciding with the positive direction of
the r axis, determine the signs of the charges for each
distribution of the field strength between the charges
shown in Figures (a), (b), (c), and (d).
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3.3. Two point-like charges are positioned at points a
and b. 1"he field strength to the right of the charge Qb on
the line that passes through the two charges varies accord­
ing to a law that is represented schematically in the
figure accompanying the problem (without employing a
definite scale). The field strength is assumed to Le posi­
tive if its direction coincides with the positive direction
011 the x axis. The distance between the charges is l.
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Find the signs of the charges and, bearing in mind that
the field strength at a point Xl is zero, the ratio of the ab­
solute values of charges Qa and Qb and the coordinate .L2

of the point where the field strength is maximal.
3.4. Two mutually perpendicular straight conductors
carry evenly distributed charges with linear densities 1'1

and 't 2. Among the lines of force representing the field
generated by these conductors there is a straight line pass­
ing through the point of intersection of the conductors.
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At what anglo a with respect to the conductor wil.h the
charge densi ty T 2 does this Ii ne pass? *

A

xt:!

• The statement of the problem is not quite proper. The electro­
static interaction between the charges makes it impossible
to maintain an even distribution of charge on the conductors.
The same situation is present in other problems (e.g. see
Problems 3.5 and 3.6). The difficulty can be overcome by
assuming that each conductor consists of a large number of
sufficiently small sections isolated from each other.

3.5. An infinitely long straight conductor carrying a
charge with a linear density +1' and a point charge
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-Q are at a certain distance from each other. In which
of the three regions (I, II, 01" I I I) are there points that (a)
lie on the line passing through tho point charge per­
pendicular to the conductor. and (b) at which ..th~ field
s trength is zero 1)
3.6. Two mut.uall y perpendicular infinitely long straight
cond uctors carrying uni Iorruly distributed charges
of linear densities 'tl and 't2 are positioned at a distance
a from each other. How docs the interaction between the
conductors depend on a?
3.7. Near an infinitely large flat plate with a surface
charge density o on each side, the field strength is**

E-~
- eo8 '

while the field produced by a point charge at a distance
r frorn the chargo is

E== Q
411808r 2 •

Prove that for a uniformly charged disk with a surface
charge density a (on each side), the electric field strength
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on the axis of the disk is the same as for an infinitely
large flat plate if the distances arc small in comparison
with the disk's radius R, and is the same as for a point
charge if the distances are large.

** Usually the value of the field strength given in textbooks is
half the one given here, since there it is assumed that the
charge is on a geometric plane.

3.8. At a certain distance r l'rorn an infinitely long
straight conductor with a unlforml y distributed l i nnar
charge 't there is a dipolo with an electric moment Pel

directed along the Ii no of Iorce represeul.ing the field gen­
erated by the conductor at the point where the dipole is

Fig. 3.6
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located. Assuming the arm of the dipole is very small
compared to the distance r, Iind the Iorce with which the
field acts on the dipole.
3.9. The figure shows the schematic of an absolute elec­
trometer. The potential difference that is to be mea­
sured is applied between the plates Z and 2, with the upper
plate connected to one arm of a balance beam.* The pan
connected to the other arm is loaded with weights until
balance is achieved, that is, when the upper plate begins
to move upward. In this way the force acting between the
charged plates is measured, and this enables one to de­
termine the magni tude of the potential di fference between
the plates. It the aquiltbrium in the electrometer stable or
unstable?

• The figure does not show the protecting rings around plates 1
and 2 with the same potentials. Theso are used to ensure
that the field is as uniform as possible.

3.10. A small thin metal strip lies on the lower plate of
a parallel-plate capacitor positioned horizontally. The
voltage across the capacitor plates is increased gradually
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to a value at which the electric force acting on the strip
becomes greater than the strip's weight and makes the
strip move toward the upper plate. Does the force acting
011 the strip remain coust.anj during the lifting process?

Fig. 3.9 Fig. 3.10

3.11. Into the region of space between the plates of a
parallel-plate capacitor there Ilies (a) an electron and (b)
a negatively charged ion with a velocity directed parallel
to the plates. Both the electron and the ion have rec.eived
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their initial kinetic energy by passing the same potential
difference U 0' and the potental difference across the ca­
pacitor is U. The distance between the plates is d. Which
of the two particles will travel a greater distance before
hitting the positively charged plate if both fly into the
capacitor at a point that is exactly in the middle of the
distance between the plates?
3.12. An electric dipole is positioned between a point­
like charge and a uniformly charged conducting plate. III
which direction will the dipole move?
3.13. A point-like charge Q and a dipole with an elec­
tric moment Pel are separated by a distance that is consid­
erably larger than the arm of the dipole, with the result
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that the dipole may be considered as being point. The
dipole's axis lies :'along the lines of force 'of the point
charge. Compare the force acting 011 the di pole ill the field
of the point charge with t.hat acting 011 the point
charge ill the Held of the di pole.
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3.14. A small uncharged sphere is positioned exactly
in the midpoint between two charges whose absolute val­
ues are the same but whose signs are opposite. Suppose
the sphere is shifted sornewhat. Will it remain in the
new position or will it move in some direction?
3.15. A. small uncharged metal sphere is suspended hy
a long nonconducting string in the region between t.he
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vertically positioned plates of a parallel-plate capacitor,
closer to one plate than to the other. How will the sphere
behave?
3.16. Two conducting spheres carry equal charges. 'I'he
distance between the spheres cannot be considered large
in comparison with the diameters of the spheres. In
which case will the force of interaction between the
spheres be greater (in absolute value): when they carry like
charges (Figure (a)) or when they carry unlike charges
(Figure (b))?
3.17. A point charge is surrounded by two spherical
layers (Figure (a)), with the electric field st.rengt.h as a
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function of distance having the form depicted in Fig­
ure (b) (on the log-log scale). In what layer (the inner or the
outer) is the dielectric constant greater and by what
factor?
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3.18. The region of space between the plates of a paral­
lel-plate capacitor is filled with a liquid dielectric with
a dielectric const.an t B1 • A solid dielectric wi th a dielec­
tric. constant g2 is immersed in the liquid. The lines of
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force in t.he liquid have the shape shown in the figure.
Which of the two dielectric constants is greater?
3.19. Various potential d istrihutions between two .point
charges are shown in Figures (a)-(d) (the charges are
equal in absolute value). Determine the signs of the
charges for each case.
3.20. Two point charges, QJ and Q2' are positioned
at a certain distance from each other. Tho curves in t.ho
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figure represent the distri bution of the potential along
the straight line connect.i ng the t\VO charges. At which
points (1, 2, and/or 3) is the electric field strength zero?

Cd)(0) (b) (C)

Fig. 3.19
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What are tho signes of the charges QI and Q2 and which
of the two is greater in magnitude?
3.21. Two equal like charges are positioned at a cer­
tain distance from each other. How do the electric field
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strength and the potential vary along the axis that passes
through the midpoint of the distance between the charges
at right angles to the line connecting the charges?
3.22. A potential difference is applied between a con­
ducting sphere and a conducting plate C'plus" on the sphere
and "minus" on the plate). The dimensions of the plate
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are much larger than the distance between sphere and
plate. A, point positive charge. is moved from P?int 1
to point 2 parallel to the plate. Is any work dono In the
process?
3.23. Two parallel-plate capacitors with different dis-
tances between the plates are connected in parallel to a
voltago source. A poin t posit.ivo charge is moved from a
point 1 that is ex aetly j n the midtl le between the plates
of a capacitor Cl to a point 2 (or a capacitor C2) that lies
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at a distance from the negative plate of C2 equal tOlllalf
the distance between the plates of Cl . Is any work done
in the process?
3.24. The space between the rectangular plates (with
sides a and b) of a parallel-plato capacitor (the distance
between the plates is l) is filled with a solid dielectric
whose dielectric constant is c. The capacitor is charged to
a certain potential difference and disconnected from the
voltage source. After that the dielectric is slowly moved
out of the capacitor, which lTIOanS that the section x not
fi lled with the dielectric gradually increases in size. How
wi ll the potential difference between the plates and the
surface charge densities on both parts of the capacitor
(with and without the dielectric) change in the process?
3.25. At which of the two points, 1 or 2, of a charged
capacitor with nonparallel plates is the surface charge
density greater?
3.26. The diameter of the outer conductor of a cylindri­
cal capacitor is D 2 • What should the diameter of the core,
D 1 , of this capacitor be so that for a given potential differ­
ence between the outer conductor and the core the elec­
tric field strength at the core is minimal?
3.27. Four capacitors, ct. C2, C3, and C4, are connected
as shown in the figure. A potential di fference is applied
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between points A and B. What should the relationship
between the capacitances of the capacitors be so that
the potential difference between points a and b is zero?
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3.28. An electric charge with a constant volume density
p is distributed within a solid sphere of radius R. Deter­
mine and represent graphically the radial distributions
of tho electric Held strength and tho potential inside and
outside the sphere.
3.29. In the region of space between the plates of a par­
allel-plate capacitor there is a uniforrnly distributed pos­
itive charge with a volurne density p. The plates are
connected electrically and their potential is set at zero.
Calculate and draw a sketch of the distributions of the
potential and electric field strength between the plates.
3.30. Two series-connected capacitors of the sarne size,
one filled with air and the other with a dielectric, are

C1 C2

Fig. 3.30
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connected to a voltage source. To which of the capacitors
a higher voltage is applied?
3.31. Two identical air capacitors are connected in se­
ries. How will the charge on and potential difference across
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each capacitor change when the distance between the
plates of OBe capacitor is increased in the following cases:
when the capacitors are connected to a DC source, and
when the capacitors are first charged and then disconnected
from the DC source?
3.32. Two identical parallel-plate air capacitors are con­
nected in one case in parallel and in the other in series.
In each case the plates of one capacitor are brought closer
together by a distance a and the plates of the other are
moved apart by the same distance a. How will the total
capacitance of each system change as a result of such
manipulations?
3.33. A parallel-plate capacitor is filled with a dielec­
tric up to one-half of the distance between the plates.
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Fig. 3.33 Fig. 3.34

The manner in which the potential between the plates
varies is illustrated in the figure. Which half (lor 2)
of the space between the plates is filled with the dielectric
and what will be the distribution of the potential after
the dielectric is taken out of the capacitor provided
that (a) the charges on the plates are conserved or (b) the
potential difference across the capacitor is conserved?
3.34. A capacitor is partially filled with a dielectric.
In which of its parts is the electric field strength greater?
What about the electric displacement and the energy
density?
3.35. Two parallel-plate capacitors, one filled with air
and the other with a dielectric, have the same geometric
dimensions, are connected in parallel, and are charged to
a certain potential difference. In which of the two capac­
itors is the electric field strength greater, in which is the
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electric displacement greater, in which is the energy den­
sity greater, and in which is the surface charge density on
the plates greater?
3.36. Three point-like charges are positioned at the ver­
tices of an equilateral triangles. Two are equal in magni­
tude and are like, while the third is opposite in sign.
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What should the magnitude of the third charge be so
that the total interaction energy of the charges is zero?
3.37. The dielectric filling the space between the plates
of a capacitor that has been charged and then disconnect­
ed from the voltage source is removed. How should the
distance between the plates be changed so that the energy
stored in the capacitor remains the same? Explain the
origin of the change in energy.
3.38. A capacitor between whose plates there is a dielec­
tric with a dielectric constant e is connected to a DC
source. How will the energy stored in the capacitor change
if the dielectric is removed? Explain the cause of this
change.
3.39. A parallel-plate capacitor that has been first charged
and then disconnected from the voltage source is sub­
merged in the vertical position into a liquid dielectric.
How does the level of the dielectric. between the plates
change in the process?
3.40. A parallel-plate capacitor with vertical plates is
connected to a voltage source and then submerged into a
liquid dielectric. How does the level of the dielectric
between the plates change in the process? Explain the
change of the energy stored by the capacitor.
3.41. A cube has been CHt out from a piezoelectric crys­
tal. When the cube was compressed, it exhibited electric
charges on the faces: a positive charge on the upper face
and a negative charge on the lower (Figure (a)). When
the cube was stretched, the charges were found to change
their signs (Figure (b)). What will be the signs of the
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charges on these faces if pressure is applied as shown in
Figura (c)?
3.42. The relationship that exists between the electric
displacement and the electric field strength in a ferroelee­
tric is given by the curve of primary polarization and
a hysteresis loop. Are there any points on the hysteresis
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loop to which we might formally assign a dielectric con­
stant equal to zero or to infinity?
3.43. A charged parallel-plate capacitor is moving
with respect to a certain system of coordinates with a ve­
locity v directed parallel to the plates. What is the ratio
of tho electric field between the plates in this coordinate
system to the same quantity in the system of coordinates
in which the capaci tor is at rest?



3. Electrostatics
3.1. 'I'he components of the electric field strength that
are generated by the charges at the acute angles are equal
and are directed toward the negative charge. If we denote
the length of the hypotenuse by 2a, each of these compo­
nents is QI4nEoca

2 and the sum is Ql2rteoea
2 • The corn­

ponent of the electric field strength generated by the
charge -1-2Q is the same, It is directed at right angles to
the hypotenuse away from the right angle. The resultant
fi eld strength is directed parallel to the leg connecting
the charges +2Q and -Q along vector 3.
3.2. Since in the case at hand all the electric field vec­
tors lie on a single straight line, the vector sum may be re­
placed with the scalar sum. For unlike charges the di­
rection of the resultant vector does not change while for
like charges it does. In the ease illustrated by Figure (a),
the electric lield strength is positive everywhere. Allowing
for the signs specified in the problem, we conclude that
the left charge is positive and the right charge is negati ve.
Similatly, for the case Illustrated by Figure (c), the left
charge is negative and the right charge is positive. In
Figures (b) and (d) the electric field strength changes its
sign at the midpoint of the distance between the charges.
Obviously, this can only occur if the charges are like.
Bearing in mind the aforesaid and allowing for the rela-
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tionship between the direction of the electric, field vector
and the sign of the charge generating the field, we con­
clude that for the case depicted in Figure (h) hoth charges
are positive, while for the case depicted in Figure (d)
both charges are negative.
3.3. Since both electric field vectors lie on a single
straight. line, they can be added algebraically, just as we
did in the previous problem. The electric field strength to
the right of charge Qb in the i mrued iat.o vicinity of the
charge i s negative; hence, the charg« i s negative (the
electric licld vector is directed toward t.ho charge). The
electric field strength may be positive to the right of Qb
only if Qa is positive and greater (in absolute value)
than Qb : The electric field strength is zero at point Xl if

Qa Qb 0
(l+Xt)2 -- XI - -= ,

whence

g: = ( l:;1 )2.
At all points that are to the right of Qb the electric field
strength is specified by the equation

E Qa Qb
.x= (l+X)2 - X2.

Taking the derivative with respect to x and nullifying it,
we find that the maximum is at the point

1
X 2 === (Qa/Qb)l/3 - t ·

3.4. The direction of the electric field vector at a point
with coordinates x and y (see
the figure accompanying the
answer) is determined by the
two components, Ex and E y :

E-~ E-~
x - 2rteox ' 11 - 2rtBoY ,

For the extension of the resul-
tant vector to pass through Fig. 3.4
the origin, which is where
the conductors intersect, the slope of the vector must
be equal to y/x, that is,

E y 'tlX Y
Ex =~=x·



Thus,

tan a :~: vtx:-== -V L 1/';2.

3.5. No such point can exist in region II, since the elec­
tric field vectors of the two charges point in the same di­
rection-fro.m the linear charge to the point charge. I II

regions I I I and I the electric field vectors of these charges

Fig. 3.5

point in different directions. Let us examine each region
separately. At a certain point to the right of the point
charge, the electric field strength produced by this charge
is

E 1 = -Q/4nEox
2

,

where x is the distance from the charge to the point. The
linear charge produces the following field at the same
point:

E 2 == 't/21tEo (x + a).

The sum 0 £ these fields is zero if

Q 't

2x2 == a+x ·

whence

X= ~~±V 1~~2 +a~.

Only the plus sign in front of the radical sign has any
meaning, since the minus sign corresponds to a point to
the left of the point charge, where the electric field
strengths of both charges are added rather than subtracted
from each other (the quantities are equal in absolute val-
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ue). Now iet us turn to region 1, that is, to the left of
the linear charge. To see whether there are points in this
region where the electric field strength is zero, we deter­
mine the electric field strengths produced by the two
charges in this region. For the sake of convenience we
direct the x axis to the left and take point A on the
linear conductor as the origin (see the figure accompany­
ing the problem). 'Then the field produced by the point
charge is

E - Q
1 - - 4neo (a+x)2 '

while that produced by the linear charge is

E __'t_

2 - 2neox •

The two vectors point in opposite directions, obviously.
The condition that their SUIn is zero yields the following
equation for x:

x2+(Za- ~ ) x+a2=O,

whence

X== i. (!L -2a) ± l/1. (-!L_ 2a)2 -a2
2 2't 4 21:' •

The net field strength in region I is zero if the radicand
is positive, obviously, that is, if

Q~ BaT.

dx

a

Fig. 3.6

If this condition is met, region I contains two points
where the electric field is zero. The distribution of the
electric field strength along the x
axis is shown schematically (with­
Gut a definite scale) in the figure
accompanying the answer.
3·.6. Let us first' solve this prob­
lem by dimensional considerations.
Here are the quantities on which
the interaction force between the
conductors might depend: the
charge densities, the distance between the conductors,
and the "absolute" permittivity
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which obviously has the same dimensions as the permit­
tivity of empty space eo, since the dielectric constant e
is dimensionless. The SI dimensions of these quantities
are

[F] = LMT-2, Ir l == L-ITI, [Ea] == L-3M-IT4/ 2,

[a] == L.

Assuming that these quantities enter the expression for
force I? with exponents p, q, and r, we can write

(C is a dimensionless constant), and the equation for the
dimensions is

This yields the following equations for the exponents:

1 === -p - 3q + r, 1 == -q, -2 = p + 4q,

o == p + 2q.

Hence,
p === 2, q = -1, r == 0,

or

F == C 'tt't2 • (3.6.1)
co8

We have found, therefore, that the interaction does not
depend on the distance between the conductors.

It goes without saying that C cannot be determined by
dimensional analysis alone. The same problem can be
solved by direct integration via the Coulomb law. In
the figure accompanying the answer, A stands for the
point where the plane of the drawing "cuts" the conductor
with linear density 'ti. The electric field generated by
this conductor at the point with the element dx of the
second conductor distant r from the first is

E == Ll
2rteoEr •

The following force acts on element dx of the second con­
ductor:

dF = E't2 dz.
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We are interested, however, in the component of the force
that is perpendicular to the second conductor, or dF cos ex,
since the longitudinal component is canceled out by an
equal component acting on the symmetrical element.
Let us express all linear quantities in terms of distance a
and angle ct:

a
r == cos a '

dx:::=_a_ da.
coss (J.,

Substituting these quantities into the expression for the
perpendicular component of the force acting on element
dx, we get (after canceling out like terms)

dF -==: Ll't2 dee,
2neoe

Integration from -n/2 to +n/2 yields

that is, we arrive at an expression of the (3.6.1) type.
Hence C = 1/2.
3.7. The element of the disk 'hounded by radii p and
p + dp and angle drp carries a charge (taking into account
both sides of the disk) equal to 2apdpd(p. At a distance z
from this element and, hence, at a distance r from the
disk's center (Figure (a)), the electric field generated by
this charge is

E == 2crp dp dcp
4neoEz2 •

Only the component of this field that points in the di­
rection of r is of any interest to us since the perpendicular
component is canceled out by an equal component (point­
ing in tho opposite direction) from the symmetrically
situated charge. For this reason, the charge on the disk
limited by the radii p and p + dp creates an electric field

dE == pdp cr cos a.
Z2 •

(3.7.1)

We express all geometric quantities in terms of distance r
and angle ex:

13-01569

r
Z==-­

cos a. '
p ~ r tan cx" J

r du
( p = cos2 (J., •
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After substituting into (3.7.1) and canceling out like
terms, we get

dE ~ (J sin a da .
Eo~

Integration from ex === 0 to the value am corresponding
to the edge of the disk yields

(3.7.2)

For r ~ R, angle a is close to 90°. In this case, E ~

a/eoe, just as ill the ease with an infinitely large plate.

(a) p d~

Fig. 3.7a

Let us calculate E for r »R. To this end we express
cos am in terms of rand R:

r
cos am == - •

V 1l2 -i- r2

Using the rules of approximate calculations, we arrive at

Substituting this into (3.7.2), we get

E == crR2
2eoBr2 •

Since a:=: Q/2rtR2, we have

Q
E~--

4neocr
2 '

just as for a point charge (see the problem).
Figure (b) shows the variation of the electric field of

the disk with distance (curve .7); for comparison, the
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straight line 3 corresponds to the field created by an in­
finitely large plate with a surface charge density equal to
that of the disk, while curve 2 corresponds to the field
of a point charge whose magnitude coincides with
the charge of the disk. Dimensionless coordinates are

r/R201.0

0.2

0.6

E/EQ

1.0 ---\-----~--- __

\
\
\
\
\2

\
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<,
<,

~~~

(0)

Fig. 3.7b

employed in Figure (b): r/R along the horizontal axis and
E/ Eo along the vertical axis (Eo is the electric field strength
generated by the infinitely large plate).
3.8. The force with which an electric field acts on a di­
pole is

dE
F === Pel d"r"" . (3.8.1)

Since an infinitely long straight conductor with an evenly
distributed charge (density) generates an electric field

E==_L__
23tB oEr '

we have (according to (3.8.1))

F ==: _ 'tpet
2ncoer2 . (3.8.2)

Nothing was said in the problem about the sign of the
charge on the conductor. Obviously, if the charge is
positive and the dipole moment coincides in direction
with the positive direction of the electric field vector,
the dipole will move toward the conductor, which agrees
with the "minus" sign in (3.8.2).
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3.9. If the field in the region between the plates can be
assumed to be uniform, the plates of the parallel-plate
capacitor interact with a force

F == 8 ocE2S /2,

where S is the area of the plates of the capacitor. Since
E = Ull, with U the potential difference between the
plates, we have

F = cocU2SIZl2.

Thus, for a given potential difference between the plates,
the attract!ve force is the greater the smaller the distance
between the plates. If the upper plate is balanced by
weights, a small decrease in the distance between the
plates leads to an increase in the attractive force, while
a small increase in the distance leads to a decrease in the
force. In both cases the balance will be violated. This
means that the plate equilibrium is unstable. There is
a special set screw in the electrometer that does not
allow the upper plato to move below the level at which
the measurement is taken.
3.10. The force acting on the strip when the strip lies
on the lower plate is determined by the formula for the
attractive force between the plates of a parallel-plate
capacitor,

F === EoeE2 S == QE ,
2 2

where S is the area of the strip, as if it was part of the
lower plate of the capacitor. When this force becomes
greater than the weight of the strip, the strip begins to
move upward, but retains. its charge Q === as.

When the distance between the strip and the lower
plate becomes great, the strip will not only be attracted
by the upper plate but will also be repulsed by the lower
plate where the charge density will gradually become
even. As a result, the force on the strip increases in mag­
nitude. If we ignore the distortions introduced by the
charge of the strip into the field (this can be done if the
strip is small), we can assume that the strip is in a field
of strength E and that the following force acts on it:
F = QE. The charged strip induces a charge on the upper
plate as it approaches the plate. This leads to a distortion
in the field and a slight increase in F. Although in the
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above discussion we have considered a flat strip, the same
line of reasoning is valid qualitatively for any small con­
ductor lying, at the initial stage, on the lower plate of
the capacitor.
3.11. Let us first solve this problem by dimensional
analysis. The following quantities are present in the
problem: the initial potential difference U that the
electron or ion has to pass, the potential difference U 0

between the plates, the distance d between the plates, the
sought distance l that the electron or ion has to tra vel
before it hits the plate, the charge Q of the particle, and
the particle's mass m. The equation for the dimensions
can be written as follows:

[l] = [dja[Uo]b[U]ofQ]x[m]Y,

or
L = Lo[L2MT-3/-1]b+c[IT]XMY.

For the exponents we have the following four equations:

a + 2b + 2c = 1, b + c + y = 0,
x - 3b - 3c = 0, x - b - c = 0,

whence
a == 1, b == -c, x = 0, y == o.

We see that the distance traveled by the particle (an
electron or an ion) does not depend on the charge-to-mass
ratio.

We arrive at the same result if we solve the equation of
motion of the particle. Under the potential difference Uo,
the particle acquires a velocity

v=V 2QUo/M ,

with which it moves parallel to the plates, while the
acceleration with which the particle moves transversely
to the plates is

w = QU/md.

The particle takes a time interval

.r:« d,/m
t=V w== V QU

to..cover the distance

'L == vt ==dV2Uo/U .

197



This conclusion has a broader meaning than the one
obtained earlier. It follows that for a given initial energy,
a charged particle moves in an electric field along a tra­
jectory that does not depend on the particle's charge-to­
.mass ratio.
3.12. A dipole that is placed in a nonuniform electric
field and is oriented along the fields direction is under
a force

dE
F== Pel dr '

where Pel is the dipole electric moment. If the direction
of the di pole's axis is taken as the positive direction, the
direction of the force will be determined by the sign of
the derivative. In the case at hand the derivative is
negative and, hence, the dipole is moving toward the
point charge.
3.13. A point dipole oriented along the lines of force
of the field created by a point charge is under a force

dEQ
Fp=Pel~.

Since the electric field created by a point charge is

E - Q
Q - 4rteoBr2 ,

we can write
Q

with the result that the force acting on the dipole is

F :== _ QPel
]> 2n8oer3 •

At points that lie on the axis of the point dipole, the
electric field of the dipole is

E == Pel
]J 2neoer3·

When a point charge Q is in this field, the force acting
on it is

F - QPel
Q - 2JteoEr 3 •

In accordance with Newton's third law, this force must
coincide in magnitude with, but be opposite to, force Fp.

198



The positive direction in the figure accornpanying the
problem is the one from the point charge to the
dipole. Therefore, the "minus" sign in the force acting
(on the dipole implies that this force is directed toward
the point charge. The field created by the dipole at
the point where the point charge is positioned has
a "plus" sign, that is, is directed toward the dipole. The
force acting on the point charge points in the same
direction.
3.14. The electric field in which the sphere is placed in­
duces charges of opposite sign on the sphere, in view of
which the sphere becomes a dipole. After the sphere is
shifted, it finds itself in a nonuniform field, which forces
it to move toward the charge to which it was shifted.
Thus, the equi librium of the sphere at the midpoint be­
tween the charges is unstable.
3.15. Due to electrostatic induction, one side of the
sphere becomes positively charged, while the other becomes
negatively charged, and the sphere becomes a dipole.
At first glance it might seem that since the dipole is
oriented along the lines of force of the field and the field
of the capacitor is uniform, no forces act on the sphere.
But this is not so. The presence of the sphere will distort
the field. The charge density, and hence the field strength,
at the points of the plates that lie on the straight line
that is perpendicular to the plates and passes through
the center of the sphere will increase. The dipole will find
itself in a nonuniform field and will be attracted to the
plate that is closer to it. If the string enables the sphere
to touch the plate, the sphere will lose its charge, which
is opposite to the one on the plate. But the sphere will
then acquire a charge that is of the same sign as that on
the plate it has just touched. This leads to a repulsive
force between sphere and plate, with the result that the
sphere will move toward the other plate. After touching
this plate (if the string enables it to do this), the sphere
will reverse the sign of its charge and will move in the
direction of the first plate, and so on.
3.16. If the distance between the spheres is not very
large, the charges on the spheres are not evenly distrib­
uted over the surfaces. The effect of the spheres on each
other results ill that in the case of like charges the sections
of the spheres that are Ia rthcst frorn each other will
have an enhanced charge density, while in tho ease of
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unlike charges the sections of the spheres that are closest
to each other will have an enhanced charge densi ty. For
this reason, the distance between the "centers of charge"
for like charges is greater than that for unlike charges.
Hence, the attractive force between the unlike charges
will be greater (in magnitude) than the repulsive force
between the like charges.
3.17. The field strength in each layer is

E= Q
4rrEoer2 •

On the log-log scale,

log E1 = log -4Q - log 8 1- 2log r 111:eo
(3.17.1)

and

log E 2 == log -4Q -log 82 - 2log r1 (3.17.2)
neo

in each layer at the boundary between the layers. Sub­
tracting (3.1.7.1) from (3.17.2) and bearing in 'mind that
the difference of the logarithms of two quantities equals
the logarithm of the ratio of these quantities, we have

log (E2/E}) == log (Cl/C2).

Hence, in the inner layer the dielectric constant is higher
than in the outer. The difference of the logarithms of the
field strengths in Figure (b) accompanying the problem
is about 0.3, which corresponds to the ratio of the dielec­
tric constants of about 2.
3.18. The lines of force of electric induction become dens­
er as one moves closer to the solid dielectric, which means
that the density of bound charges on the surface of the
solid dielectric becomes enhanced. This density is the
higher the greater the dielectric constant. Whence 8 2 > el •

3.19. The potential at each point is the algebraic sum
of potentials of the field of each charge. For a point
charge, the potential at distance r from the charge is

Q
<p = 41tBoer

(it is assumed that the. potential at Infinity is zero).
When the charges are like, the absolute value of the
potential at a point r distant from, one of the charges is

q>=~ (~+ t~,.)· , .. " ":,it



The sign of the potential coincides with that of the charge.
Hence, in Figure (a) both charges are positive, whi le in
Figure (c) both are negative. When the charges are unlike,
the potential at midpoint between the charges is zero.
The potential is positive closer to the positive charge
to the left in the case shown in Figure (b) and to the right
in the case shown in Figure (d).
3.20. The field strength vanishes only at one point, 3,
where the derivative drp/dr is zero. Since near charge Q2

(a)

(b)

Fig. 3.21

the potential is negative while near Ql it is positive, we
can conclude that Q2 and Ql are negative and positive,
respectively. The potential at every point in space is
the algebraic sum of the potentials produced by all charges.
To the right of Q2 (except in the immediate vicinity
of Q2) the potential is positive. This implies that in
the entire region to the right of Q2 the potential produced
by Ql is greater in absolute value than the potential
produced by Q2. Hence, the absolute value of Ql is greater
than that' of Q2' too.'
3.21 .. Since potentials must be added algebraically, we
conclude that at a point removed from the middle of the
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distance between the charges by an interval of r tho
potential is

Q
([) :.== 2Jlf'(Ie (a~ -'1 - r2 ) 1/2

(the potential at infurit y is assumed to be equal to zero).
Hence, the potential falls off as r increases in exactly
the same manner on both sides of the straight line con­
necting the charges. At great distances (r ~ a), cp varies
in exactly the same way as the potential produced by
a point charge equal to 2Q does.

There are two ways in which one can determine the elec­
tric Held in this problem: either directly calculating the
values of the vectors and adding the vectors geometrically,
just as shown in Figure (a), or employing the formula
that links the electric field strength and the potential,
E == -d<p/dr. Both methods yield

Qr
E r ~ 2Qeoe(a2 +r2 )3 / 2 •

The electric field strength vanishes at exactly the middle
of the distance between the charges and at an infinite
distance from them. It is at its maximum, which can be
found by nullifying the derivative dErldr:

dE, _~ [ (a2+r2)a/2-3r2 (a2+r2) 1/ 2 J_
d - 6 -0.

r Jlfoe (a2 + r 2 ) /2

The electric field strength is maximal at r == a1V2, with

E == O.77Q
m 4neoea2'

Figure (b) shows the behavior of E and cp in dimensionless
coordinates: ~/CPm' E/Em, and ria.

~,~~
~3~

,. ~4~~~

Fig. 3.22

:-3.22. All the equipotential surfaces of the field between
the sphere and the plate are convex downward (that is,
toward the plate). Hence, on any straight line parallel
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to the plate, the points farther from the sphere have
a potential lower than those closer to the sphere. Hence,
the point charge is moved from a point with a lower
potential to a point with a higher potential. This requires
doing work against the forces of the electric field.
3.23. Point 1 has a positive potential with respect to
the negatively charged plate of Cl. This potential is half
the difference in potential between the plates of Cl (and
of C2). Since point 2 lies in capacitor C2 closer to the
negatively charged plate, its potential is lower than that
at point 1. When the point charge is moved from
point 1 with a higher potential to point 2 with a lower
potential, the electric field performs work equal to the
product of the strength of the point charge by the
potential difference between points 1 and 2:

A == Q (~1 -C(2) > o.
3.24. Initially the capacitance of the capacitor (filled
with the dielectric) is C = Boeab/l. After the dielectric
is moved out of the capacitor by a distance x, the ca­
pacitance becomes

C = Boa [x + B (b - x)]ll.

Since the total charge on the plates of the capacitor re­
mains unchanged, the potential difference between the
plates becomes

u == Ql
eoa[x+e(b-x)] ,

where Q is the charge on the plates. Since initially the
potential difference was U == Qlleoeab, we have

U Bb eb
U; x+e (b-x) eb-{e-1) x •

The field strength between the plates will increase by the
same factor. The charge density in the part without the
dielectric is

a e:=:: E == 80Q
1 0 a [E b-- (B- 1) x] '

while on the part with the dielectric it is

(1 - E eE - cocQ
2- 0 ~ aIBb-(e-t)x] •
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Initially the charge density on each plate was

0'0 ~ Qlab,

Of, respectively
b

Bn-(e-1) x[b
and ~~ e

ero B-(e-1)x/b

In the part filled with the dielectric, the charge density
gradually grows in the same proportion as the electric
field strength and the potential difference between the
plates, while the total charge of this part gradually de­
creases due to the increase in x, In the part not filled with
the dielectric, the charge density first drops B-fold (at
x « b) and then gradually grows, approaching the value
it had when the dielectric filled the entire space between
the plates.
3.25. Being a conductor, each plate has the same po­
tential at each point, while the electric field strength,
which is minus one multiplied by the gradient of the
potential, is highest where the plates are closest to each
other. At the same time, the electric field strength near
the surface of a conductor is linked with the local surface
charge density through the formula E = a/B08. For this
reason, the surface charge density at point 1 is higher
than that at point 2.
3.26. The electric field strength at the core is

E == 2U
t D 1 In .(D2 / D l ) •

To find the extremum of E1 ' we take the derivative,

dEl __ 2U (in D 2-lnDl)-1

dD 1 - [D 1 (In D2-ln D t )]2 '

and nullify it. The result is

In D 2 - In D1 == 1,
or

D 1 = D 2/e.

This corresponds to a minimum, since E 1 tends to 00

as D 1 -+0 and D 1 -+D 2 o

3.27. Since the charges on the capacitors Cl and C2
are equal, the potential difference across these capacitors
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and the capacitance of each capacitor are linked through
the following formula:

C1U1 == C'2U2. (3.27.1)

For capacitors C3 and C4 there is a similar formula:

(3.27.2)

For a potential difference between points a and b to be
zero, we must make sure that U 1 == Us and U 2 == U 4 •

Dividing (3.27.1) by (3.27.2) termwise and canceling
equal potential differences, we get

C1IC3 == C2/C4 •

Note that if a constant potential difference is applied
between points A and B and the capacitors leak some
charge (i.e. their resistance is not very high), the distrib­
ution of potential between the capaci tors is the same
as in the Wheatstone bridge, that is, is proportional to
the resistances.*

* These considerations must bo taken into account in some other
problems, too (e.g. see Problems :-J.30 and 3.31).

3.28. The charge of the solid sphere is

Q _ 4 R3-- 3" rrp ,

(0.)

Fig. 3.28a

(3.28.1)

where p is the volume charge density. Outside the sphere,
that is, for r > R, the electric field strength coi ncides
with the electric field strength of
the same charge Q concentrated,
however, a t the center of the
sphere:

E== Q ~~ pR3
4n808r

2 3 8oEr2 •

On the surface of the sphere,
pR

E R ~ 38
0

8 . (3.28.2)

To find the electric field inside
the sphere, we isolate a sphere
of radius r < R inside the sphere (Figure (a) accom­
panying the answer). The charge contained in this
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smaller sphere is 4npr3/3. According to Gauss's theorem,
the electric field at the boundary of the isolated sphere is

E == 3 4~pr3 2 = -.!...~ (3.28.3)
X JtBoBr 3 BoB •

Thus, the electric field along r behaves in two ways: in­
side the sphere it increases linearly with r according to
(3.28.3) from zero to the value given by formula (3.28.2),
while outside tho sphere it decreases by a quadratic
(hyperbolic) law, just as in the case of a point charge.

The behavior of the potential inside and outside the
sphere must also be considered separately. Inside the
sphere,

~ r

1dip ~ - 3:
o
e ) r or = - 6:

0
£ r2

, Ip = Ipo- ~ ~:: •
CPI) 0

At the boundary of the sphere,
1 pR2

'PR ==.: fPo- 6 BoB •

Finally, outside the sphere the potential is distributed
thus:

-;:2 ,

q> r
· 1 pR3 r dr
~ dip == -"3 eoe J
~R R

Putting cp = 0 at r = 00, we get
1 pR2

fPR === 3 BoB •
(3.28.4)

If this is taken into account, we can write for the potenliaJ
outside the sphere the following formula:

1 pR3
fP == 3 Boer •

Formula (3.28.4) can also be used to find the potential
at the center of the sphere:

1 pR2
CPo:::::: 2 Boe •

For the potential distribution inside the sphere we then
get
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Figure (b) accompanying the answer shows the behavior
of the electric field and the potential inside and outside

lp/~mJE/E""
1.0

0.6

0.2

( b)

:Fig. 3.28b

3 r/R

1 x

( b)

Fig. 3.29

dx
(0)

the sphere. Dimensionless coordinates CP/CPln, E/Em ,
and r/R are employed.
3.29. Let us isolate a thin layer of thickness dx parallel
to the plates and lying between them (Figure (a) accom­
panying the answer). A
uni t area of this layer car­
ries a volume charge pdz,
According to Gauss's theo­
rem, the electric field gen­
erated by this layer is
equal in absolute value (on
each side of the layer) to

dE* = pdx/2Bo•

If all the charges to the
left of the isolated layer
generate a field of strength
E, the resultant electric field strength is E - dE* at
the left boundary of the layer and E + dE* at the
right. Thus, over a distance of dx the electric field
strength increases by

dE == 2dE* = p (dx/eo) ·

Integration yields
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with Eo the electric field at the left plate. According to
the basic equation of electrostatics (the one that links
the electric field strength with the potential),

px -+ E _ d~
~ - o--~·

Integration from 0 to x yields

px2 ECPt - CfJ2::-': 28
0

-1- oX, (3.29. /1)

where (Pl is the potential of the left plate, which is zero
by hypothesis. The potential is zero al~o at x == I. Hence,

Eo == -pZI2E·o·

Substituting this into (3.2U.1), we arrive at the relation­
ship between (p and x:

cp =.--- _P- x (l- x).
2Bo

This function represents a parabola with a maximum at
x == l/2. The sketches of the cp vs. x and E vs. .c curves
are shown in Figure (b) accompanying the answer.
3.30. When the capacitors are connected in series, the
charges on them are the same. Since these charges are

Q == CI VI === C2V2 ,

the capacitor voltages are inversely proportional to the
capacitances. Hence, the voltage applied to the capacitor
filled with the dielectric is smaller than that applied to
the air capacitor by a factor equal to the ratio of the di­
electric constant to unity (the dielectric constant of air,
roughly).
3.31. If Co is the initial capacitance of each capacitor,
t he total initial capaci tance of the two capaci tors is
C == C0/2. After the distance between the plates of one
capacitor is increased, the capacitance of this capacitor,
C', becomes srnaller than Co. The voltage U0 applied to
the capacitors is distributed among the capacitors in in­
verse proportion to the capacitances, since the charge on
the plates is

2()8

Q == UIC o == U2C'.
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Since Uo remains unchanged, the voltage across the capa­
citor whose plates are not moved will decrease, while that
across the second capacitor wi ll increase.

If the capacitors are first charged and then disconnected
from the DC source, the charge on them will remain UIl­

changed, The voltage across each capacitor will be

lJI == Q/('o, U2 == QIC1•

For this reason, the potential difference across the capa­
citor whose plates are not moved remains unchanged,
while that across the second capacitor increases.
3.32. When the capacitors are connected in parallel, the
initial capacitance is C == 2EoES/l. After the distance
between the plates is changed, the capacitance becomes

C == coBS -t- BoBS === 2eoeS
l + a l··-- a l- a2/ l •

(b)

~I

Fig. 3.33
(0)

2l
BoeS •

1
C

14-01569

After tho distance between
the plates is changed,

1 __ l + a + l- a _ 2l
C --- 8

0
8S · EoeS - 8

0B,'-.'
,

that is, the capacitance re­
mains unchanged.
3.33. The electric displace­
ment vector has the same
length in both halves, and
since E == Dle.se, the elec­
tric field. strength is lower in the half filled with the di­
electric (where the potential gradient is smaller in abso­
lute value), that is, part 1 (see the figure accompanying the
ploblem). If removal of the dielectric does not alter the
charge on the plates, the potential behaves in the same way
as it did in part 2 prior to removal of dielectric and the
total potential difference will increase (Figure (a) accom­
panying the answer). If removal of the dielectric does
not alter the potential di fferencc, the points representing
the potentials on the plates (rp and 0) will remain nnchang-
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ed, while the slope of the straight line will acquire a vui­
ue intermediate between the one it had in the dielectric
and in the air prior to removal of dielectric (Figure (b)
accompanying the an swor).
3.34. Since the lines of force of the electric displacement
vector are continuous and the field in each part is uni­
form, with the lines of force being perpendicular to the
vacuum-dielectric interface; the electric displacements is
the same in both parts. The electric field strength, which
is defined by the formula E = Dlcoc, is higher in the va­
cuum. The electric-field energy density is determined via
the formula w = EDI2, which shows that this quantity
is higher in the vacuum.
3.35. Since the potential difference between the plates
of the two capacitors is the same and so is the distance
between the plates, the electric field, which for a paral­
lel-plate capacitor is E = UIZ, is the same for both capa­
citors. According to its definition, the electric displace­
ment D = BoeE, is greater in the capacitor with the dielec­
tric. In a parallel-plate capacitor, the surface charge den­
sity is numerically equal to the electric displacement and
therefore must be higher in the capacitor with the dielec­
tric. This also follows from the fact that the capacitor
filled with the dielectric has a higher capacitance, which
means that, with a fixed potential difference, the charge
on its plates is greater than that on the plates of the air
capacitor. The electric-field energy density, determined
via the formula w = ED/2, is also higher in the capaci­
tor with the dielectric.
3.36. The total energy is the sum of the interaction ener­
gies of each charge with the other charges in the system, or

w= Q2 2 QQl
4rtEoEr 4rceoEr·

By hypothesis, W == 0, whence Ql = Q12.
3.37. The energy stored by a capacitor is determined by
the electric-field energy density in the capacitor and the
capacitor's volume: W = wSZ. Since the energy density is

(3.37.1)

after the dielectric is removed, the energy of the capaci­
tor will increase e-Iold. Since the charge on the capaci­
tor remains unchanged, the value of the electric displace­
ment vector remains unchanged, too. If prior to removal
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of the dielectrlc the distance hetween the plates was 11
and after removal it was changed and became equal to
l2' tho fact that the energy remai ned unchanged in the
process can be expressed as follows:

D2Sl1 ::= D2Sl2
BOB! 8082

Hence the distance between tho plates must be decreased
e-Iold, Forrnula (;).37.1.) shows that after the c1 iclectric
is removed (hut prior to changi ng the distance between
the plates) the capacitor increases its energy. This increase
in energy is due to the work performed in removing the
dielectric. The work is done against the forces of attrac­
tion of the free charges on the plates of the capaci­
tor and the bound charges on the surface of the dielectric.
3.38. Since the capaci tor voltage remains constant, the ener­
gy stored in the capacitor, W == U2C/2, decreases because
when the dielectric is removed, the capacitance decreases
s-fold. If the entire system consisting of the DC source
and the capacitor is considered, it can be seen that
the charge flows from the capacitor to the source when the
dielectric is being removed, A fraction of the energy
stored in the capacitor is spent on heating the leads that
connect tho capacitor with the source of potential, while
still another fraction goes into the source. Note that re­
rnoving the dielectric from the capacitor requires perform­
ing mechanical work, which must be included in the
general energy balance. It is expedient, for the sake of
comparison, to consider the reverse process, the introduc­
tion of a dielectric in to the capacitor. Since in this case
the capacitance of tho capacitor grows, the energy grows,
too. This growth is provided by the energy stored in tho
source (a DC source), which supplies the capacitor with
the necessary charge as the capacitance is increased.
3.39. The problem can be related to Problem 3.38. The
answer can be obtained from the general formula for the
energy sLored in a charged capacitor: W == Q2/2C. When
the capaci tor i.s submerged into liquid dielectric, its ca­
pacitance increases, with the result that the energy stored
by the capacitor decreases, since the charge on it re­
mains unchanged. Thus, if the liquid dielectric is "sucked"
into the capaci tor, the capaci tor-dielectric system goes
over to a state with a lower energy, This process COJl­

tinues until the decrease in energy is compensated for by

211



the increase in the potential energy of the layer of dielec­
tric. between the plates in the gravitation field of the
earth. It Blust also be noted that work is done agai nst
viscosity forces when t.ho cupacitor is drawn out or sub­
rnerged into the dielectric. After the capaci tor is sub­
merged into the dielectric, its capacitance will increase,
while the potential difference between the plates will
drop. The electric Held strength, which is the same in the
parts with and without the dielectric, decreases too, while
the electric displacement proves to be greater by a factor
of e in the part with the dielectric as compared to the
value in the part without the dielectric.
3.40. The problem can be related to Problem 3.38. There
we found that into the general energy balance one must
include the energy flow through the current source, which
uses a fraction of its energy to increase tho energy stored
in the capacitor when the capacitor is submerged into
the dielectric. The liquid dielectric must be "sucked" into
the capacitor, just as in the previous problem. The effect
of the capacitor's field on the dielectric can also be taken
into account by considering the polarization of the di­
electric. As a result of this process, each volume element of
the dielectric becomes a dipole and is pulled into the field
at the edge of the capacitor. The strength of this field is
higher than that in the dielectric at a certain distance
from the plates.
3.41. When the cube is compressed in the transverse di­
rection, it is stretched in the longitudinal direction, as a
result of which the upper face becomes negatively charged
and the lower face becomes positively charged.
3.42. Formally, such points are determined by the ex­
pression

E = J)/EoE.

Obviously, at the point where l~ === 0 and D =1= 0 (point
0), the dielectric constant is formally equal to infinity,
while at points where D == 0 and E =1= 0 it is zero (points
3 and 6). Of course, such values of E are of a purely for­
mal nature.
3.43. If l is the length of the plates of the capaci tor in
the system where the capacitor is at rest, in a system where
the capacitor is rnoving with a velocity 1) this lengt.h i~

zV 1 -- V
2/C2

• Since the transverse dimensions of the plates
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do not change, the area ratio is also 1/Y1 - v2/e2 •

Since the charge on the capacitor remains unchanged,
the surface charge densi ty increases, with the result tha t

EIE o == 1/Y1 - V2/C2•
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