Maximum Marks: 200

Time allowed: 45 minutes

General Instructions:

- (i) The examination will consist of Objective type with Multiple Choice Questions (MCQs).
- (ii) There are **50** questions in total in this paper, out of which **40** questions are to be attempted.
- (iii) Each question carries five marks.
- (iv) There is negative marking of one mark for every incorrect answer.
- (v) Use of calculator and log tables is **NOT** permitted.

Choo	ose the correct option.										
1.	Which of the following conditions favours the existence of a substance in the solid state?										
	(a) High temperature		(b)	Low temperature							
	(c) High thermal energy		(d)	Weak cohesive forces							
2.	The van't Hoff factor <i>i</i> for a compound which undergoes dissociation in one solvent and association in oth solvent is respectively										
	(a) less than one and grea	iter than one	(b)	less than one and less th	nan one						
	(c) greater than one and	less than one	(d)	greater than one and g	reater than one						
3.	Which one of the followi	ng is a strongest reducing	agen	t?							
	$(a) \operatorname{Zn}^{2+}$	(b) Fe ²⁺	-	H_2	(d) Cu ²⁺						
4.	In a 1st order reaction A then the half-life is	$A \longrightarrow B$, if k is rate constant	tant	and the initial concentr	ration of reactant A is 0.5M,						
	ĸ			$\frac{\log 2}{k\sqrt{0.5}}$	(d) $\frac{0.693}{0.5k}$						
5.	•	and colloid can be separate									
	(a) filtration			dialysis							
	(c) cataphoresis		(d)	diffusion							
6.	Adsorption is a phenome (a) goes into the body of t (c) remains close to other			accumulates on the surnone of the above	face of the other substance						
7.	$(a) 2NO + O_2 \longrightarrow 2NO$ $(b) H_2 + Cl_2 \longrightarrow 2HCl$	eaction is of pseudo first of O_2 $O_2 \longrightarrow CH_3COOH + C_2H$									

8.	The amount of charge required for conversion of 1 mole of MnO ₄ to Mn ²⁺ is										
	(a) 96										
		(a) 96500 (b) 96500×3 (c) 96500×5 (d) 96599×7									
9.											
	Column I Column II										
	A. Soda water (i) A solution of gas in solid										
	B. Sugar solution (ii) A solution of gas in gas										
	C. German silver (iii) A solution of solid in liquid										
	D.	Air			(iv) A	solutio	on of sol	id in so	olid		
	E.	Hydrogen gas in palla	adium		(v) A	solutio	on of ga	s in liqu	ıid		
	(a) A-	-(v), B-(iii), C-(iv), D-	-(ii), E-(i)			(b) A-(v)	, B–(iii	i), C–(i	i), D–(it), E-(i)
	(c) A-	-(iii), B-(v), C-(iv), D-	-(ii), E-(i)			(d	(ν)	, B-(iii	i), C–(i	v), D-(i), E–(<i>ii</i>)
10.	The t	ype of crystal defect	indicated	in the	diagra	ım bel	ow is				
				Na ⁺	Cl	Na ⁺	CI-	Na ⁺	Cl ⁻		
				Cl ⁻	0	Cl ⁻	Na ⁺	0	Na ⁺		
				Na ⁺	Cl_	0	CI ⁻	Na ⁺	Cl ⁻		
				Cl ⁻	Na ⁺	Cl	Na ⁺	\cap	Na ⁺		
	(a) En	ankal dafaat			1,11			l al and		المان المان	ort
	(a) Frenkel defect (b) Frenkel and Schottky defect									ect	
	` '	terstitial defect) Scho	,			
11.		h of the following is	true about	the c	harge a	-			semico	nducto	rs?
	(a) Po					•	 (b) Neutral (d) Depends on concentration of p impurity 				
10		egative	0 5000	~ . I							
12.	weigh	at of X is $(K_b = 0.52)$	Km ⁻¹ .)		n b g o				s disso	olved in	100 g of water. Molecular
	(a) 120 g/mol (b) 60 g/mol (c) 180 g/mol (d) 342 g/mol									d) 342 g/mol	
13.		tion taking place at c		_	lectrol				d as		
		ssociation	(b) oxidati) redu			(d) none of the above
14.	For t	he reaction, 2a + b —				etic da	ita were	e obtai	ned:		
		[a] (mol L ⁻¹)	[b]] (mol	$\frac{d[c]}{dt}$ (mol L ⁻¹ s ⁻¹)						
		4.0		1.0			1.0				
		4.0		4.0			2.0				
		1.0		4.0	1.0						
		rate expression is $a][b]^{1/2}$	(b) $k[a]^2[b]$]		(c	(c) $k[a]^{\frac{1}{2}}[b]^{\frac{1}{2}}$			($d) \ k[a]^{\frac{1}{2}}[b]$
15.	Whic	h of the following re	actions is 1	not a t	ype of	redox	reaction	on?			
	(a) 4I	$(a) \ 4 \text{KClO}_3 \longrightarrow 3 \text{KClO}_4 + \text{KCl}$ $(b) \ \text{SO}_2 + 2 \text{H}_2 \text{S} \longrightarrow 2 \text{H}_2 \text{S}$								→ 2H ₂	S + 3S
	$(c) \ \mathrm{BaO}_2 \ + \ \mathrm{H}_2\mathrm{SO}_4 \ - \longrightarrow \ \mathrm{BaSO}_4 \ + \ \mathrm{H}_2\mathrm{O}_2 \qquad \qquad (d) \ \mathrm{Zn} \ + \ \mathrm{NiSO}_4 \ - \longrightarrow \ \mathrm{ZnSO}_4 \ + \ \mathrm{ZnSO}_4 \ - \longrightarrow \ $										
16.		equivalent conductive hm ⁻¹ cm ² eq ⁻¹ . The o							m ⁻¹ cn	n ² eq ⁻¹	and at infinite dilution is
	(a) 1	1								d) 0.5	

17.	Out of the f	following l	halides of	group 16.	which does not	possess reducing	property?

(a) H₂Te

(b) H₉Se

(c) H₂S

(d) H₂O

18. The composition of 'Copper Matte' is

(a) FeSiO₃

(b) FeS + SiO₉

(c) $FeS + Cu_9S$

(d) CuS + SiO₉ + FeO

19. Which of the following is the IUPAC name of K₄[Fe(CN)₆]?

(a) potassium ferricyanide

- (b) potassium ferrocyanide
- (c) potassium hexacyanoferrate (III)
- (d) potassium hexacyanoferrate (II)

20. Which of the following is vinylic halide?

21. Which of the following arrangements represents the correct order of electron gain enthalpy (with negative sign) of the given atomic species?

(a) S < O < Cl < F

(b) F < Cl < O < S

(c) Cl < F < S < O

- (d) O < S < F < Cl
- 22. Which of the following is an ambidentate ligand?
 - (a) NO₂

(b) SO₄²⁻

(c) C₂O₄²

- (d) NH₃
- 23. Which is the correct IUPAC name for CH₃—CH—CH₂—Br?

(a) 1-Bromo-2-ethylpropane

(b) 1-Bromo-2-ethyl-2-methylethane

(c) 1-Bromo-2-methylbutane

(d) 2-Methyl-1-bromobutane

24. Given below are two statements labelled as Assertion and Reason:

- Assertion (A): Nitrogen does not form compounds in +5 oxidation state with halogens.
- **Reason** (R): All oxidation states of nitrogen from +1 to +4 tend to disproportionate in acid solution.
- (a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
- (b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
- (c) Assertion is correct statement but reason is wrong statement.
- (d) Assertion is wrong statement but reason is correct statement.

25. Arrange the following compounds in the increasing order of their densities.

$$(d) (ii) < (iv) < (iii) < (i)$$

26. To which isomers the following compounds belong?

[Co(NO₂)(NH₃)₅]Cl₂ and [Co(ONO)(NH₃)₅]Cl₂

(a) Geometrical isomers

(b) Linkage isomers

(c) Ionisation isomers

(d) Ligand isomers

27.	Given below are two statements labelled as Assert	ion and Reason:									
	Assertion (A): F-F bond in F ₂ molecule is weak.										
	Reason (R): F atom is small in size.										
	(a) Assertion and reason both are correct statements and reason is correct explanation for assertion.										
	(b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.										
	(c) Assertion is correct statement but reason is wrong statement.										
	(d) Assertion is wrong statement but reason is correct statement.										
90			x/3+								
28.	The number of unpaired electrons in gaseous spe		v respectively are								
	(a) 4, 4 and 2	(b) 3, 3 and 2									
	(c) 4, 3 and 2	(d) 3, 3 and 3									
29.	To obtain metal from Cr ₂ O ₃ , the method used is										
	(a) carbon reduction	(b) aluminothermic									
	(c) CO reduction	(d) electrolytic redu	ction								
30.	What happens when potassium iodide reacts with	acidic solution of pota	ssium dichromate?								
	(a) It liberates iodine.	(b) Potassium sulpha									
	(c) Chromium sulphate is formed.	(d) All of these									
21	Which one of the following is a diamagnetic ion?										
31.	(a) Co^{2+} (b) Ni^{2+}	(c) Cu ²⁺	$(d) \operatorname{Zn}^{2+}$								
		(c) Gu	(a) ZII								
32.	Methyl ketone is identified by the reagent	a) v movv									
	(a) Tollen's reagent	(b) I ₂ /KOH									
	(c) Fehling's solution	(d) Schiff's reagent									
33.	Which of the following compounds is oxidised to		setone?								
	(a) Propan-2-ol	(b) Butanol									
	(c) Butan-2-ol	(d) Tert-butyl alcohol	l								
34.	Among the following a natural polymer is:										
	(a) Cellulose	(b) PVC									
	(c) Teflon	(d) Polyethylene									
35.	Which of the following monosaccharide is a pento	se?									
	(a) Glucose	(b) Fructose									
	(c) Arabinose	(d) Galactose									
36.	When a solution of HCHO and KOH is heated, it										
	(a) acetylene and methane	(b) methanol and po									
	(c) methanol and methane	(d) acetylene and me	ethanol								
37.	The reaction of benzyl chloride with sodium cyan	ide followed by reducti	on with hydrogen in the presence								
	of nickel gives:										
	(a) β-phenyl ethylamine	(b) N-isobutylaniline	:								
	(c) Benzyl amine	(d) Aniline									
38.	The ether $-\bigcirc$ O—CH ₂ $-\bigcirc$ when treated	with HI produces:									
	(a) \bigcirc \longrightarrow \bigcirc	(c) (O)—I	$(d) \langle \bigcirc \rangle$								
		_	_								
39.	Toluene can be oxidised to benzoic acid by										
	(a) KMnO ₄ (alk.)	(b) K ₂ Cr ₂ O ₇ (alk.)									
	(c) both (a) and (b)	(d) none of these									

ш

40.	Which one is maximum basic in the following compounds?									
	(a) NH ₃	(b) CH ₃ NH ₂								
	(c) (CH ₃) ₂ NH	(d) C ₆ H ₅ N(CH ₃) ₂								
41.	Which is the main storage polysaccharide of plants									
	(a) Starch	(b) Cellulose								
	(c) Glycogen	(d) Amino acids								
42.	Carbonyl group undergoes	(1)11'T1'E'								
	(a) electrophilic addition reactions	(b) nucleophilic addition reactions								
40	(c) both (a) and (b)	(d) none of these								
43.	Tincture iodine is	(h) solution of L in aqueous VI								
	(a) aqueous solution of I₂.(c) alcoholic solution of I₂.	(b) solution of I ₂ in aqueous KI.								
		(d) aqueous solution of KI.								
44.	In the following sequence of reactions,									
	$CH_3Br \xrightarrow{KCN} A \xrightarrow{H_3O^+} B \xrightarrow{LiAlH_4} C$									
	the end product (C) is									
	(a) acetone	(b) methane								
	(e) acetaldehyde	(d) ethyl alcohol								
45.	In the reaction given below, X is:									
	Neopentyl alcohol — conc X									
	(a) 2-methylpent-2-ene	(b) 2-methylpentane								
	(c) 2-methylbut-2-ene	(d) neopentane								
46.	Which of the following base is not present in DNA?									
	(a) Adenine (b) Guanine	(c) Cytosine (d) Uracil								
47.	The number of optically active stereoisomers are po	ssible for butane-2, 3-diol is								
	(a) 1 (b) 2	(c) 3 (d) 4								
48.	Which of the following amines gives carbylamine re	action?								
	(a) $C_2H_5NH_2$	(b) (C ₂ H ₅) ₂ NH								
	(c) (C ₂ H ₅) ₃ N	(d) CH ₃ NHC ₂ H ₅								
49.	Given below are two statements labelled as Statement	nt P and Statement Q:								
	Statement P: Glycine must be taken through diet.									
	Statement Q: It is a non-essential amino acid.									
	(a) P is true, but Q is false	(b) P is false, but Q is true								
	(c) Both P and Q are true	(d) Both P and Q are false								
50.	The fibre obtained by the condensation of hexameth	ylene diamine and adipic acid is:								
	(a) dacron	(b) nylon -6, 6								
	(c) rayon	(d) teflon								

Answers

PRACTICE PAPER — 1													
1.	(b)	2.	(c)	3.	(a)	4.	(b)	5.	(b)	6.	(b)	7.	(c)
8.	(c)	9.	(a)	10.	(d)	11.	(b)	12.	(b)	13.	(c)	14.	(c)
15.	(c)	16.	(b)	17.	(d)	18.	(c)	19.	(d)	20.	(c)	21.	(d)
22.	(a)	23.	(c)	24.	(b)	25.	(a)	26.	(b)	27.	(a)	28.	(c)
29.	(b)	30.	(d)	31.	(d)	32.	(b)	33.	(c)	34.	(a)	35.	(c)
36.	(b)	37.	(a)	38.	(a)	39.	(c)	40.	(c)	41.	(a)	42.	(b)
43.	(c)	44.	(d)	45.	(c)	46.	(d)	47.	(b)	48.	(a)	49.	(b)
50.	(b)												

Solutions

PRACTICE PAPER — 1

- 1. (b) At low temperature, substance exists in solid state due to low thermal energy and hence decreased molecular motion, which in turn leads to strong intermolecular cohesive forces, i.e., which hold the constituent particles
- present in solution.

During dissociation number of particles increases while on association number of particles decreases.

3. (a) The strongest reducing agent should have more negative value of standard reduction potential.

 $Zn^{2+}/Zn = -0.76 \text{ V}, \text{ Fe}^{2+}/\text{Fe} = -0.44 \text{ V}, \text{ H}^{+}/\text{H}_{2}$ $= 0.00 \text{ V}, \text{ Cu}^{2+}/\text{Cu} = + 0.34 \text{ V}$

4. (b) Integrated rate equation for first order reaction

$$k = \frac{1}{t} \ln \frac{a}{a - x}$$

Half-life means 50% completion of the reaction. Hence, the formula becomes

$$k = \frac{1}{t_{1/2}} \ln \frac{a}{a - \frac{a}{9}}$$

$$k = \frac{1}{t_{1/2}} \ln \frac{2a}{a}$$

$$t_{1/2} = \frac{1n2}{k}$$

So, Half-life of a first order reaction does not depends on initial concentration.

- **5.** (b) The separation of crystalloids from the colloids is based on the principle that the particles of the crystalloids pass through semipermeable membrane whereas those of the colloids do not. The process based on this is called dialysis and the apparatus used is called a dialyser.
- **6.** (b) Adsorption is a phenomenon of attracting and retaining the molecules of a substance on the surface of a liquid or solid leading to a higher concentration on the surface in comparison to
- 7. (c) Acidic hydrolysis of ester is an example of pseudo first order reaction.

$$CH_3COOC_2H_5 + H_2O$$
 $\xrightarrow{H^+} CH_3COOH + C_9H_5OH$

In this reaction, the concentration of water is not considered as it present in excess amount.

- 8. (c) $8H^+ + MnO_4^- + 5e^- \longrightarrow Mn^{2+} + 4H_9O$ Hence, amount of charge required for conversion of 1 mole MnO₄ to Mn²⁺ is 5 × 96500 C.
- (d) Schottky defect due to equal number of cations and anions missing from the lattice sites.
- 11. (b) When an element of Group 14 doped with element of group 13, a large number of holes are created an the number of holes created and electrons in p-type semiconductor is same. Hence, it is electrically neutral.

12. (b)
$$\therefore \Delta T_b = K_b m$$

$$\Rightarrow 0.52 = \frac{0.52 \times 6 \times 1000}{100 \times M}$$

$$M = \frac{0.52 \times 6 \times 1000}{0.52 \times 100} = 60 \text{ g/mol}$$

- 13. (c) Reaction taking place at cathode during electrolysis can be classified as reduction pick up electrons there to form neutral species, i.e., cations undergo reduction.
- **14.** (c) Let the order with respect to a and b is m and n

respectively.

$$\therefore \frac{dc}{dt} = k[a]^m[b]^n$$

$$1.0 = k[4]^m[1]^n \qquad ...(i)$$

$$2.0 = k[4]^m [4]^n$$
 ...(ii)

On dividing equation(ii) by(i), we get

$$2 = [4]^n$$

$$\therefore n = \frac{1}{2}$$

On dividing equation(ii) by(iii), we get

$$2 = [4]^m$$

$$\therefore m = \frac{1}{2}$$

Thus, Rate =
$$k[a]^{1/2} [b]^{1/2}$$

15. (c) BaO₂ + H₂SO₄ \longrightarrow BaSO₄ + H₂O₂

There is no change in oxidation number of any element. So, this reaction is not a redox reaction.

16. (b) $\Lambda_{(eq)(CH_3COOH)}^c = 80 \text{ S ohm}^{-1} \text{ cm}^2 \text{ eq}^{-1}$ $\Lambda_{eq(CH_3COOH)}^{\infty} = 400 \text{ S ohm}^{-1} \text{ cm}^2 \text{ eq}^{-1}$

$$\alpha = \frac{\Lambda_{\rm eq(CH_3COOH)}^{c}}{\Lambda_{\rm eq(CH_3COOH)}^{\infty}} = \frac{80}{400} = 0.2$$

- 17. (d) Reducing property means tendency to donate electrons, as oxygen is most electronegative than other group elements, also the O-H bond is very strong in case of H2O. Hence, H₉O does not show reducing property.
- **18.** (c) Copper is produced in the form of Copper Matte. When copper pyrite after concentration by froth floatation process is roasted in a reverberatory furnace where copper pyrites (CuFeS₉) is converted into a mixture of FeS and Cu₉S (Copper Matte).
- 19. (d) The oxidation number of K is +1 and CN is -1. So, the oxidation number of Fe will be $K_4[Fe(CN)_6]$

+4 + x - 6 = 0

x = +2

The oxidation number of Fe in the given complex is +2 and the given complex is anionic complex.

Therefore, the IUPAC name potassium hexacyanoferrate(II)

- 20. (c) In vinylic halides, the halogen is attached to one of the carbon atoms of the C=C bond.
- 21. (d) The elements of group16 elements have large negative electron gain enthalpy next only to the halogens. It may be rated that the electrons affinity of fluorine is unexpectedly low (<Cl). This is due to presence of strong electronelectrons repulsions in the relatively compact 2p-orbitals of small size of F atom. Hence correct order is Cl>F>S>O.
- 22. (a) NO₉ ligand is an ambidentate ligand at it contains two donor atoms but only one of them forms a coordinate bond at a time with central metal atom/ion.
- 23. (c) $CH_3 \overset{2}{C}H \overset{1}{C}H_2 Br$ $\overset{3}{C}_2H_5$
- 24. (b) The correct explanation of assertion is nitrogen does not form compounds in +5 oxidation state with halogens due to absence of d-orbitals.
- **25.** (a) Density = $\frac{\text{Mass}}{\text{volume}}$, Density directly proportional to molecular mass. Hence, the correct order is (i) < (ii) < (iii) < (iv)
- 26. (b) Linkage isomerism shown by [Co(NO₉)(NH₃)₅]Cl₉ and [Co(ONO)(NH₃)₅]Cl₉ due to the presence of an ambidentate ligand.

- (a) F—F bond in F₂ molecule is weak due to strong electron-electron repulsions of small size of
- 28. (c) $Mn^{3+} \Rightarrow [Ar] 3d^4 = 4$ unpaired electrons $Cr^{3+} \Rightarrow [Ar] 3d^3 = 3 \text{ unpaired electrons}$ $V^{3+} \Rightarrow [Ar] 3d^2 = 2$ unpaired electrons
- 29. (b) The process of reduction of metal oxide by aluminium is known as aluminothermic reduction. Metals like manganese and chromium are extracted by thermite process.

$$Cr_2O_3 + 2Al \longrightarrow Al_2O_3 + 2Cr + Heat$$

30. (d) K₂Cr₂O₇ + 7H₂SO₄ + 6KI $\longrightarrow 2K_9SO_4 + Cr_9(SO_4)_3 + 7H_9O + 3I_9$ Therefore, the products obtained are potassium sulphate, chromium sulphate, water

- (d) The electronic configuration of the given ions $\text{Co}^{2+} \Rightarrow [\text{Ar}] 3d^7$; $\text{Ni}^{2+} \Rightarrow [\text{Ar}] 3d^8$ $Cu^{2+} \Rightarrow [Ar] 3d^9$; $Zn^{2+} \Rightarrow [Ar] 3d^{10}$ Since, Zn2+ has no unpaired electrons and therefore it is a diamagnetic ion.
- 32. (b) Iodoform reaction (reaction with sodium or potassium hypoiodite) is used for the detection of methyl ketone(CH3CO) or a compound having CH₃CH(OH) group present.
- 33. (c) 1° alcohol $\xrightarrow{\text{Cu}}$ Aldehyde 2° alcohol \xrightarrow{Cu} Ketone 3° alcohol $\xrightarrow{\text{Cu}}$ Alkene

and iodine.

- **34.** (a) Cellulose is obtained from wood pulp.
- **35.** (c) Arabinose has a chemical formula C₅H₁₀O₅.
- **36.** (b) HCHO does not contain an α-hydrogen atom, when it treated with conc.KOH undergoes disproportionationi.e., selfoxidation-reduction.

37. (a)
$$C_6H_5CH_2Cl \xrightarrow{NaCN} C_6H_5CH_2C \equiv N$$

Benzyl chloride

 $C_6H_5CH_2CH_2NH_2$
 $C_6H_5CH_2CH_2CH_2NH_2$
 $C_6H_5CH_2CH_2NH_2$
 $C_6H_5CH_2CH_2CH_2NH_2$
 $C_6H_5CH_2CH_2CH_2NH_2$
 $C_6H_5CH_2CH_2CH_2NH_2$
 $C_6H_5CH_2CH_2CH_2CH_2NH_2$

38. (a) The ether when treated with HI produces both benzyl iodide or phenol, due to following mechanism:

- 39. (c) Benzoic acid can be obtained by vigorous oxidation of toluene with chromic acid or acidic or alkaline potassium permanganate or alkaline potassium dichromate.
- 40. (c) Due to delocalisation of lone pair of electrons of the N-atom over the benzene ring, all aromatic amines are less basic than alkylamines. (CH₃)₂NH is an aliphatic amine and has two electron donating methyl groups, thus maximum basic in nature.
- 41. (a) Starch is the main storage polysaccharide of plants. It is the most important dietary source for human beings. High content of starch is found in cereals, roots, tubers and some vegetables.
- 42. (b) Carbonyl group undergoes nucleophilic addition reaction because it behaves as an electrophile due to greater electronegativity of oxygen as compared to carbon.
- 43. (c) Tincture of iodine, iodine tincture, or weak iodine solution is an antiseptic. It is usually 2–3% elemental iodine, along with potassium iodide or sodium iodide, dissolved in a mixture of ethanol and water.

44. (d)
$$CH_3Br \xrightarrow{KCN} CH_3CN \xrightarrow{H_3O^+} CH_3COOH \xrightarrow{LiAlH_4} C_2H_5OH$$

45. (c)

$$CH_3 \xrightarrow{CH_3} CH_2 \xrightarrow{OH} \xrightarrow{H^+} CH_3 \xrightarrow{C} CH_2 \xrightarrow{CH_3} CH_3$$

Neopentyl alcohol

$$CH_3 \xrightarrow{CH_3} CH_3 \xrightarrow{CH_3} CH_3$$

$$CH_3 \xrightarrow{CH_3} CH_3 \xrightarrow{CH_3} CH_3$$

2-methylbut-2-ene

- 46. (d) DNA contains cytosine and thymine as pyrimidine bases and, guanine and adenine as purine bases while RNA contains cytosine and uracil as pyrimidine bases and guanine and adenine as purine bases.
- 47. (b) The number of optically active stereoisomers possible for butane-2, 3—diol is 2. They are d and l isomers which are optically active. The meso-compound is optically inactive due to internal compensation.

48. (a) Carbylamine reaction is given by only primary amines.

49. (b) Out of 20 amino acids required for protein synthesis, human body can synthesise only 10 and are called non-essential amino-acids.

50. (b)

$$n$$
H₂N—(CH₂)₆—NH₂+ n H—O—C—(CH₂)₄—C—OH
Hexamethylene diamine