
2. Molecular Physics and Thermodynamics

2 .1. Two balloons of the same volume are filled wi t.h
gases at the same pressure, one with hydrogen and the
other with helium. Which of the two has the greater buoy­
ancy (including the weight of the bag) and what is the
ratio of buoyancies?
2.2. Which of the lines in the figure reflects correctly
on the log-log scale the temperature dependence of the
root-mean-square veloci t y of mo leculcs?
2.3. Why is the trace of the silver molecules in the
Stern experiment for measuring the velocities of mole-
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cules sharp in the case of fixed cylinders (Figure (a)) and
blurred in the case of rotating cylinders (Figure (b))?
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2.4. Usually, in depicting the results of the Stern exper­
irnent , one registers the positions 1 and 2 of the traces of
silver for, respectively, fixed and rotating cylinders
(Figure (a)). However, a student depicted t.he traces ill a
manner shown in Figure (b). The instructor remarked that
such a position of traces contradicts the experimental re­
sults, and yet the student was able to defend his position.
Under what condition can such an experimental si tuation
occur? What are the chances of encountering it in actual
experiments?
2.5. The functions F (v) == ctN/dv and t (v) == (1/No) dN/dv,
with N the number of molecules having velocity v
and No the total number of molecules in a given volume,
are laid off on the vertical axes in Figures (a) and (b),
respectively. What is the physical meaning of each
hatched segment in these figures?
2.6. All the ordinates of curve 2 are twice the COlTe­
spending ordinates of curve 1. What is the di ffcrence be­
tween the velocity distribution functions represented by
these curves?
2.7. A segment from velocity V 2 to velocity Va on the
graph representing the velocity distribution function is
isolated (see Figure (b) accompanying Problem 2.5). flow
can we on the basis of this graph determine the energy of
all the molecules whose velocities lie within the specified
range and. the average energy of these molecules?
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2.8. The velocity ~istributioll !or molec~les can .be
represented as a function of the ratio of the given velocity
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to the most probable one. It is then expedient to layoff
on the vertical axis the ratio of the value of the function
for the given velocity to the value of the function for the

o v
Fig. 2.6

most probable velocity. Will the distribution curve con­
structed in this manner be valid for di fferent gases, di ffer­
ent number of molecules, and different temperatures or
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will it be necessary to reconstruct the curve anew for
each case?
2.9. The Maxwellian distribution can be represented not
only by a function of molecule velocities but also .by a
function of the energies of the molecules. This latter
function gives the number of molecules whose energies
lie within the interval from w to w + dw, or

dN = No! (w) dw. (2.9.1)
Find the expression for this function and see whether it re­
fers only to one gas or is valid for any gas.
2.10. Let us assume that, contrary to the real (Maxwel­
lian) distribution of molecule velocities, all the molecules
at a certain level, say at sea level, have the same velocity
equal to the root-mean-square velocity at a given temper­
ature. Let us also assume that, in accordance with the
ideal gas model, there are no collisions between the mole­
cules. How would the kinetic energy of molecules vary
with altitude under such conditions? Up to what altitude
would an atmosphere consisting of nitrogen and oxygen
extend?
2.11. Here are two explanations of the buoyancy of a
balloon filled with a light "gas. According to the first, the
buoyancy is simply the Archimedes' force equal to the
weight of the air that would occupy the volume of the
balloon (filled with the gas), while according to the sec­
ond, the buoyancy is the difference between the haro­
metric pressures acting on the upper and lower sections of
the balloon. Do these explanations contradict each other?
2.12. The average displacement of a Brownian particle
in time t is (l). What is the average displacement (l) of
the same particle in time 2t?
2.13. If the mean free path of a molecule in a gas is
(l), what is the mean free path of the molecule along an
arhi trary coordinate axis?
2.14. Because of the chaotic motion ofmolecules in a gas
the free paths of molecules have different values. If on
the vertical axis we layoff the logarithm of the number of
molecules whose free paths exceed a certain value x and
on the horizontal axis the value of x, the graph repre­
senting the dependence of these two quantities is a
straight line with a negative slope, .

log N = log No - ax.
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How can one find the free path of molecules using such a
graph?

logN

logNo

Fig. 2.12 Fig. 2.14

2.15. A vessel is divided by a porous partition into two
parts, 1 and 2, of equal volume. After the air was pumped
out of the vessel, part 1 was filled with hydrogen and
part t with nitrogen. The initial pressures of the gases
are the same. Draw a rough sketch of the graph of how
the pressures of the gases in the vessel change with the
passage of time.
2.16. The temperature of a gas in a vessel changes de­
pending on whether the vessel is open or closed, and so

r
Fig. 2.15
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Fig. 2.t6
Fig. 2.'17

does the diffusion coefficient. The temperature dependence
of the diffusion coefficient D for both cases is shown in the
figure on the log-log scale. Which line corresponds to the
case of an open vessel and which to the case of a closed
vessel? The effective cross sections of the molecules are
assumed to be constant.

29



2.17. A vessel is divided by a solid partition into two
parts of equal volume. One part is filled with nitrogen
and the other with carbon monoxide. It may be assumed
that the cross-sect.ional areas of the molecules of the two
gases are the same. The relative molecular masses of
hoth gases are also the same (equal to 28). Finally, the
pressures in both parts are the same. After the partition is
lifted, the gases begin to diffuse into each other. flow
does the amount of each gas that has transferred to the
part occupied by the other gas depend on the initial
pressures of the gases?
2.18. A gas is inclosed in a vessel and has a pressure
at which the mean free path of the molecules exceeds con-

Fig. 2.18 Fig. 2.19

siderahly the size of the vessel. The collisions that the
molecules have with the walls of the vessel may be consid­
ered elastic. The vessel is placed in a vacuum and has a
small orifice through which the gas molecules escape into
the vacuum. Is the average energy of the molecules leav­
ing the vessel the same as that of the molecules remain­
ing in the vessel? Is the velocity distribution for the
molecules in both groups the same? The gas is assumed to
be ideal, so that no Joule-Thomson effect is present.
2. t9. A heat flux passes through a gas from a heated
plate with a temperature T1 to a cold plate with a tem­
perature T 2 • The linear dimensions of the plates are
large compared to the distance between them. Is the
temperature gradient the same along the entire heat
flux? Why when measuring the thermal conductivity
coefficient must we place the plates horizontally, with
the plate with the higher temperature placed above the
one with the lower temperature?
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2.20. Liquid nitrogen (t ~ -196°e) is inside a Dewar
vessel. The air surrounding the vessel has a temperature
t :=:: 20°C. The pressure of the residual gas between the
walls of the vessel is about 10-4 Pa (roughly 10-6 rnm fig).
The mean free pa th of the "molecules" of air at atmospher­
ic pressure is about 10-7 In. What is the temperature of
the air between the walls of the vessel?
2.21. Steady-state heat transfer through a gas occurs
between two parallel wal ls. The ex peri ment is conduct-

-t96° C

Fig. 2.20 Fig. 2.2t

ed in such conditions that the only process by which
the heat is transferred is pure thermal conduction. The
dependence of the thermal conductivity coefficient 'A is
measured as a function of the gas pressure p, with the
experiment conducted twice, for two different distances
between the walls. The results are shown in the figure.
What curve corresponds to the greater distance between
the walls?
2.22. Figures (a), (b) and (c) depict three cyclic processes
in the pV-, VT-, and pT-cooroinates. The ourvi l inear
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sections in Figure (a) are isotherms. Depict the same pro­
cesses in the pT- and VT-eoordinates (for process (a)),
the pV- and pT-coordinates (for process (b)), and the
pV- and VT-coordinates (for process (cj).
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2.23. A gas is inside a cylinder closed by a piston. The
piston is held from above by a spring whose elastic prop­
erties obey Hooke's law. Produce a rough sketch, in the
p V-coordinates, of the curve that represents the change
in state of the gas upon heating and determine the work

Fig. 2.23

v
Fig. 2.24

that is done in the process if the volume of the gas varies
from VI to V2 and the pressure varies from PI to P2.
2.24. The figure demonstrates the adiabatic curves for
two gases, helium and carbon dioxide. Which curve cor­
responds to which gas?
2.25. A gas expands from an initial state characterized
by a pressure PI and a volume VI in two ways, isotherrni­
cally and adiabatically, to the same volume V2- In
which of the two processes is the final pressure higher and
in which is the work greater?
2.26. The amount of heat supplied to an ideal gas is laid
off on the horizontal axis and the amount of work per­
formed by the g-as is laid off on the vertical axis. One of
the straight lines in the ligure is an isotherm and the
other two are isobars of two gases. The initial states of
hoth gases (pressure, temperature, volume) are the same,
and the scales on the two axes coincide. Which straight
line corresponds to which process? How many degrees of
freedom does each gas have? (Vibrational degrees of free­
dom are not to be taken into account.) The graphs of what
processes coincide with the coordinate axes?
2.27. The straight lines in the figure depict the varia­
tions in temperature as a function of the amount of heat
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supplied in different processes involving the change of
state of a monatomic and a diatomic gas. Which processes
correspond to these straight lines? The graphs of what
processes coincide with the coordinate axes? The initial
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states (temperature, volume, pressure) of the two gases
are the same.
2.28. One of the straight lines in the figure depicts the
dependence of the work done on" the temperature varia­
tions for an isobaric process. The other two are the adiabat­
ic curves for argon and nitrogen. Which straight line

A

Fig. 2.28 Fig. 2.29

corresponds to which process? How should one depict an
lsotherm and an isochor in these coordinates? Bear in
mind that on the horizontal axis we layoff the difference
between the higher and the lower temperature.
2.29. For temperatures close to room temperature and
somewhat higher, the molar heat capacity of hydrogen
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agrees, with gO()O accuracy, with the results predicted by
the classical theory of heat capacit.y for ideal gases, a
theory that allows for three translational and two rota­
tional degrees of Ireetlom for diatomic gases. However, at
low temperatures the heat capacity of hydrogen drops
and at about 40 K becomes the same a~ that of a monatom­
ic gas. What is the explanation for this? Why such
behavior is not observed in other diatomic gases?
2.30. When diatomic gases are heated, their heat capac­
ity exhibits a peak in the high-temperature region. SilTI­
i lar behavior is observed in multi atornic gases. What.
is the explanation for this?
2.31. Draw a rough sketch for the eompressibility of an
ideal gas as a function of pressure for two cases, one when
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the gas is compressed isothermically and the other when
the gas is compressed adiabatically.
2.32. A gas is transferred from a state 1 to a state 2 by
two processes: (a) frrst by an isochor and then by an iso­
bar, and (h) first by an isobar and then by an isochor.
Will the work done in both cases be the same, will the
amount of heat required in the processes be the same,
and will the increment of entropy in the processes be the
same?
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2.33. Draw the Carnot cycle for a monatomic gas on
the log-log scale using the p.T- and VT-coordinates.
2.34. A gas is transferred Irom an initial state 0 to
other states I, 2, 3, and 4 via di lierent isoprocesses.
Which curve representing the dependence of entropy on
temperature corresponds to which process?
2.35. Draw the Carnot eyele in the ST-('.oordinates.
2.36. Two objects with initial LeTllperatul'esT1 aud T 2
[with T1 > T 2) are brought int.o coul.act.. The objects are
isolated frorn their surroundings, and the masses and heat
capacities of the two objects coincirle. How does the total
entropy of these objects change as the temperatures be­
come equal?
2.37. Suppose that the entropy grows Iinearly with
temperature in a process. How does the heat capacity
vary with temperature?
2.38. A gas is transferred from a state 1 to a state 2 ill
two ways: (a) directly hy an isobar, and (2) llr~t. by the

3 .....-I!!--~4
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isochor 1-3, then by the isobar 3-4, and, finally, by the
isochor 4-2. Show, by direct calculation, that the entropy
increment in both cases is the same.
2.39. A heat engine operates according to a cycle that
consists of two isochors and two isobars. Prove that the
entropy of the heater-gas-cooler system increases as the
engine operates. How does the entropy of the gas change
in the process? The heat capacities of the heater and cool­
er are assumed to he i nfini te.
2.40. According to' the van der Waals equation, which
is a third-degree equation in the volume, the theoretical
isotherm of a real gas may have either one or three in­
tersections with a horizontal Iiue, the intersections cor-
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responding to either one or three real roots of the equa­
tion. With three roots it may so happen that two are equal
(maxima and minima on the isotherm) or even all three
are equal (the critical point). However, un an isotherm
built for a sufficiently low temperature there is a section
lyiug below the horizontal axis, and a horizontal line
in this ease intersects the section only at t.wo points (two
roots in V). Where in this case is the compulsory third
root?
2.41. The section 1-3 on the theoretical isotherm of a
real gas (the van der Waals isotherm) is assumed to be
unrealistic because of i ts absolute instabili t y. What is the
reason for this instability?
2.42. Changes in the state of a real gas or liquid that
are realized under ordinary conditions at a constant

p
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v v
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temperature are represented by the so-called Andrews
i sot.herm , which consists of a section (1-2) representing
the unsaturated vapor, a section (2-4-6) representing the
two-phase state (saturated vapor and liquid), and a sec­
tion (6-7) representing the liquid. This isotherm differs
Irom the theoretical van der Waals isotherm (1-2-3-4-5-6­
7), which corresponds to a one-phase transition of the
entire mass of vapor into liquid. On the van der Waals
isotherm there are sections corresponding to metastable
states (2-3 and 5-6), which can be realized in certain
conditions. What aro these stales and what are the con­
ditions for their realization?
2.43. Using the second law of thermodynamics, prove
that the areas of the hatched sections between the theoret­
ica1 and experimental isotherms of a real gas must be
equal.
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2.44. When a l iquirl evaporates, the hent supplied to it
is used partially to do work in overcoming the forces of
cohesion between the molecules (the internal heat of va­
porization) and partially to do work against the forces
caused by external pressure (the external heat of vapor­
ization). How to determine the external heat of vapor­
ization from the graph represent! llg the experimental
isotherm of a real gas?
2.45. Gas cylinders and pipes Intended for operation
under high pressures a1'0 us uul l y Lostod no thy Purn ping

g~ 0I

Fig. 2.43
v

(II) (c)

Fig. 2.46

Fig. 2.49

(d)

air or a gas into t.horn but hy filling thorn with a Iiquid ,
water or oil, and raising tho pressure up to the test value.
This is done in accordance with safety regulations. What
is the explanation for this?
2.46. To demonstrate the transition to the cri tical stale,
a liquid (usually ethyl ether) is placed inside a small
sealed thick-wal led glass tube. 'Tho tube is then sealed off
(Figure (a)) and Hlowly heated. It is found that in the
process of heating t.he houudury betwoeu the liquid and
the vapor above the liquid rises and the meniscus 1>8 0

•

comes flatter (Figure (b)). It,isextrenll~lytlifli~ulttoohsel'vo

the transition through the critical temperature because of
intense convective fluxes, but tho result is seen because at
this temperature the 1I1011isCliS disappears completely
(Figure (c)). UPOll slowly cooling the tuhe it is found that
at the same temperature the entire volume becomes cloudy,

37



so that. light cannot pass through the tube (Figure
(d)). If the temperature is lowered still further, the
volume becomes transparent and there appears a menis­
cus, which separates the two phases. Explain the reasons
for the observed phenomena.
2.47. flow does the temperature of a liquid change un­
der adiabatic evaporation?
2.48. The bending of the surface of a liquid creates excess
pressure (known as the Laplace pressure). Because of this
the pressure inside a soap bubble is somewhat higher than
the atmospheric pressure. In a drop, too, there is excess
pressure. Suppose we have a drop of liquid and a soap
bubble of the same liquid and the same diameter. Where
is the pressure greater: inside the drop or inside the bub­
ble?
2.49. Two soap bubbles of different diameters arc
blown out using a T-shnped pipe (see the figure). Will
the diameters of the bubbles remai 11 unchanged "?

2.50. Three drops of different diameters are in the at.mo­
sphere of the vapor of the liquid from which the drops are

(u) ( b)

Fig. 2.50
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Fig. 2.51

formed. The pressure of the vapor is such that the drop
with the medium diameter (Figure (b)) is in equilibrium
with the vapor. Is this equilibrium stable? How will the
drops of the smaller (Figure (c)) and the larger (Fig­
ure (a)) diameters behave?
2.51. Two drops are placed between two parallel glass
plates, a drop of water (Figure (a)) and a drop of mercury
(Figure (b)). What forces act on the plates in each case'?
2.52. Inside two conical pipes there is a drop of water
(Figure (a)) and a drop of mercury (Figure (b)). Where
does each drop lend to move?
2.53. Which of the curves shown ill the figure depicts
correctly the temperature dependence of surface tension?

38



Curve 1 falls off to zero at the boiling- point of the liquid,
curve 2 falls off to zero at the critical temperature, curve 3
tends to zero asymptotically, and curve 4 shows that sur­
face tension is temperature independent.
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2.54. A capillary tube is placed vertically in water. The
diameter of the tube is such that surface tension "lifts"
the liquid to an altitude hoe But the height of the tube
above the liquid, h., is less than hoe
How in this case will the column of
liquid in the tube behave?
2.55. A viscous liquid is flowing due
to a pressure head I1p along a pipe of
length 1 and diameter D. Will the
volume flow remain the same if instead
of this pipe we use four parallel pipes
of the same length but with the
diameter of each pipe being equal
to D/2?
2.56. A viscous liquid is flowing along a horizontal pipe
of diameter D == 2R. At some point in time a particle of
rust or boiler seale gets detached from. the upper part of
the pipe and falls downward. Assuming that this particle
acquires a constant fall velocity vy practically at once
(at this velocity the force of gravity, Archimedes' force,
and the drag of the liquid balance each other), find the
trajectory of the particle and the distance the particle
travels in the horizontal direction due to the flow of the
liquid. The maximal velocity of the liquid (along the
pipe's axis) is V:\"m.

2.57. When ice with a temperature below 0 °C is mixed
with water with a temperature above O°C, there are four
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possibilities: the ice rnel ts and the final temperature is
above 0 °C, the water freezes and the final temperature is
below 0 °C, part of the ice melts and the temperature of
the mixture becomes 0 DC, and part of the water freezes

t~C
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Fig. 2.57
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and the temperature of the mixture becomes 0 °C. On
the horizontal axis we layoff the amount of heat that the
water gives off in cooling and freezing (the upper straight

p
P3

p,

1

r- T

Fig. 2.58 Fig. 2.59

lines) and the amount of heat that the ice absorbs in
heating and melting (the lower straight lines). The scale
along the horizontal axis is arbitrary, that is, the scale
value is not specified. The temperature (in degrees Celsi-
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us) is laid off on the vort.ical axis. Find the, final result of
mixing whose beginning is shown in each figure. When
either all the water freezes or all the ice melts, determine
the final temperature.
2.58. A phase diagram represents the relationship be­
tween the temperature and pressure at the boundary that
separates two phases. To which phases do the regions 1, 2,
and 3 correspond?
2.59. The phase diagram of water is shown schematical­
ly in the figure. Using this d iagram , ex plain this partic­
ular dependence of the melting point of ice on the exter­
nal pressure.
2.60. The compressibility of a liquid does not remain
constant under pressure variations. How, knowing the
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dependence of compressibility on pressure within a cer­
tain pressure interval from PI to P2' can we find the ratio of
volumes at these values of pressure?
2.61. As is known, the density of water at first grows
when water is heated frorn 0 "C hut then, at 4 O(~, begins
to drop, as shown ill the figure. Does the ex planation of
this lie in the fact that in introducing the metric system
of units the weight of a definite volume of water at 4° C
was taken as the unit of weight (subsequently this was
taken as a unit of mass)?
2.62. The wall of a house consists of two layers with
different thermal conductivity coefficients. The ternpera-
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ture of the outer wall is 1\ and that of the inuer wall is
T 2. Temperature variations inside the wall are shown in
the figure. What layer, the inner or the outer, has a high­
er thermal conductivity coefficient?
2.63. A rod with a cross-sectional area 5' and initial
length l is elongated by ~l due to a tensile stress. The
modulus of longitudinal elasticity of the material of the
rod, or Young's modulus, is E. Find the bulk energy den­
sity for the deformation of the rod.
2.64. Two bars 1 and 2 of the same cross-sectional area
and the same length but made of different materials are

:t"ig. 2.63

clumped between two undeformahle walls. The materials
of the bars differ in mechanical and thermal properties.
What must be the relationship between Young's moduli
and the linear coefficients of thermal expansion so that
heating the bars does not change the position of the
boundary between them? Under what conditions does the
deformability of the walls have no effect 011 the result?



(2.1.1)

2. Molecular Physics and Thermodynamics

2.1. The buoyancy, or lifting power, is the difference
between the weight of the air ill the volume occupied by
the balloon and the weight of the gas lilling the hal loon.
According to the ideal-gas law, the latter weight i s

p pVM
==RT g ,

where V is the volume of the balloon, f) the pressure of
the gas, and M the molecular mass of the gas. Accordingly,
the lifting power is given by the formula

pVg
F= RT (Malr-Mgas),

and the buoyancy ratio is

F H 2 Ma l r - M H 2

FHe = lIf a l r-MHe·

nto Eq , (2.1.1) we can substitute the relative molecular
masses, The relative molecular mass of hydrogen is 2,
that of hel iurn is 4, and that of air we assume to be equal
to 29. Thus,

F H2 29-2
F

H e
== 29-4 === 1.08.

2.2. The root-mean-square velocity of molecules is

V= V3RT/M .

Tukiug logs, we get

1 1
logv==2 log (3R/M) +2log T.

The slope of the straight line log v vs. log 11 must be 0.5,
and the dependence of the logarithm of velocity Oil the
logarithm of temperature is given by straight line C in
the figure accompanying the problem.
2.3. Since the velocities of the molecules are elifferent,
it takes the molecules different times to fly from the slit
to the outer cylinder. Because of this the cyl inrlers rotate
through angles that are different for different molecules.
The greater the velocity of a molecule, the closer wi ll
its track be to the track for fixed cylinders.
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2.4. The position of the tracks shown in Figure (h)
accompanying the problem is possible if during the time
of flight of the molecules from the sli tin the inner cylinder
to the wall of the outer cylinder the cylinders perform
more than one-half of a full revolution (in Figure (b)
this is almost one full revolution). Of course, for this
to happen, the linear velocity of the outer cylinder must
exceed many times the velocity of the molecules, which
is practically impossible,
2.5. The number of molecules in the velocity interval
from u to v + dv is

dN == F (v) du.

Accordingly, in Figure (a) accompanying the problem,
the hatched segments represent the following quantities:
segment A represents the number of molecules whose
veloci ties do not exceed VI' or

Vt

N A = ) F (v) dv,
o

segment /1 represents the number of molecules whose
velocities arc not lower than U2 and do not exceed V3 , or

V3

N B = ) F(v)dv,
V2

and segment C represents the number of molecules whose
veloci ties are not lower than v4' or

00

N c = JF (v) dv.
1'4

In T'iguro (b) accompanying the problem, each hatched
segment represents the ratio of the corresponding number
of molecules to the total number of molecules, that is,
the probability of molecules having velocities that lie
within the specified velocity interval.
2.6. Since for each velocity interval from v to v + dv
the number of Jnoleculcs is

dN = F (v) dv
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and since F2 (v) = 2Ft (v), the total number of molecules
corresponding to distribution 2 is twice the number of
molecules corresponding to dist.ribution 1.
2.7. The number of molecules ill the velocity interval
Irorn v to v + dv is

dN ~ F (v) d».

Each of these molecules has an energy 117,02/2. All l11o]e­
cules in the velocity interval Irom PI to 1)2 have the energy

V2r mv2
W:=: J -2- F (v) d».

'VI

To find the average energy w of such molecules, we must
divide W by the number of molecules:

m
lO=2

1)2

Sv2F (v) dv
t't

1)2

5 F (v)dv
VI

2.8. According to Maxwell's law, the number of mole­
cules of a gas whose velocities lie within the interval
from v to v ~- dv is given by the formula

tiN 0= N ot/:n: ( 2:T r/2
v2 exp ( - ;~ ) . (2.8. j )

Since the most probable velocity is

vp=V2kT/m,

we can represent (2.8.1) in the form

dN = No4:n:-1/2( :prexp [ - ( :p )2J d ( ~ ) .

The distribution function F (v/vp ) then assumes the form

F ( :p )= N04:n:-1/ 2 ( ~ ) 2 exp [( - :p )2J.
For v/vp = 1 we have

F (1) == No4n-1/ 2e-1 ~ O.83No•

The F (vlvp}-to-F (1) ratio (see the figure),

F ( :D )I F (1) = (:p)2exp [ 1 - ( :p )2] .
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kT 2kT 3kT w

is the same for any number of molecules of any gas at. any
t.emperature and, therefore, is a universal function.
2.9. From formul a (2.D.1) it follows that.

1 dN
f (w) == No dw '

or
1 dN dvt (IV) ~ -N -d--d ·o V 10

Since v:-= (2zvlm)1/2, elementary transformations yield

dN = No :n (:r r/2
exp ( - :;. ) d ( :r )·

This representation is convenient since the dimensionless
ratio ,vlkT is taken as the independent variable and the

f(w)

V/Vp

Fig. 2.8 Fig. 2.9

distribution function proves to be valid not only for all
gases but also for any temperature. The function f (w)
is shown in the figure.
2.10. The total energy of the molecules of a gas is the
SUIn of their kinetic and potential energies. Assuming that
the potential energy is zero at the initial level, for any
other level we have Wpot == mgh, Since the total energy
remains constant, or wkln + Wpot ~ const , we have

Wkln + Wpot = wklno·

Hence, at a given level the kinetic energy is

wkln = wkino - mgh,

The maximal altitude to which the molecules can rise
is deter mi ned by the condition Wkln == 0, whence

h = Wklno1mg.
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By hypothesis, Wklno == (3/2) IcT: Substituting k ~ RINA
a uri ni =-~ AliNA, we get

It :~ 31l1't2Jllg.

Substituting the values of the molecular masses, we find
that at T == 300 K the maximum altitude for nitrogen
is 13.G km , for ox ygeu t LB km , and for hydrogen 191 kin.
Since the kinetic, energy of the molecules decreases as the
alt.itude grows, the "temperature" of a gas decreases, too,
but differently for different gases. Different gases have
di fferent "temperatures" at the same alti tude above sea
level. At the highest level where the molecules of a given
gas can still be found, the "temperature' of the gas is 0 K.

Note, in conclusion, that by its very meaning the baro­
metric formula, which is derived on the assumption that
the temperature of the gas is constant, is equivalent to
the statement that the Maxwellian velocity distribution
is valid. Indeed, the barometric formula leads to Boltz­
mann's formula for the distribution of molecules in po­
tential energy. The same formula can be obtained using
the Maxwell formula.
2.11. To answer this quest ion, we assume, for the
sake of simplicity, that the balloon is a cylinder with
its axis vertical and having a length h. If we denote by Po
the pressure on the lower base of the balloon, then the
pressure on the upper base is

p = Po exp (-MghIRT).

Since Mgh/RT ~ 1, we can expand the exponential and
retain only the first two terms:

p = Po (1 - MghIRT). (2.11.1)

The buoyancy is given by the formula

F = S (Po - p),

where A.~ is the base area of the cylinder. Suhstituting the
difference Po - p from (2.11.1), we get

F == MghS/RT,
or

F ~ PoMgVIRT.

The fraction PoMIRT constitutes the density of air.
PoMVIRT the mass of the air that would occu py tho
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volume of the balloon, and PoMgVIRT the weight of
this mass of air. Thus, the two explanations are equiv­
alent.
2.12. If we take two subsequent displacements, li aud
l2' during time t in which these displacements took place
the particle is displaced by l*, with

l*2 == Ii ---1- l~ --1- 2l 1l 2 cos a

(see the figure accompanying the answer), Since the dis­
placements are cornpletely random both in length and
direction, while the angle between two successive displace­
ments is independent of the displacements, we conclude,
first, that

(l~> = (l:>
and, second, that the third term is zero because all di­
rections are equally probable. Thus,

(l*2) = 2 (1:> = 2 {l:>.
One must bear ill mind that we have averaged the squares
of the displacements and not the displacements proper .

./

1·

Fig. 2.12

y

a~_+----,..__

Fig. 2.13

However, since there is a constant relationship between
the mean square and the square of the arithmetic. mean
for a definite distribution function, we can always re­
place the ratio of mean squares with the ratio of the
squares of the mean,

«l*))2 «l»2
2T =-T-

and, hence,

(Z*)==V2 (l).
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This result can be applied to any interval of time, which
makes it possible to establish the following relationship
between the displacements of a Brownian particle and the
time it takes the particle to perfOfIn these displacements:

«1»2 == const.
t

This is the main law of Brownian motion. It is also valid
for the motion of molecules ill a gas.
2.13. Any concrete path of a moleculo can be decomposed
along three arbitrary coordinate axes of a Cartesian sys­
tem, with

l2 == Ii + l~ + l:.

For each separate path these projections are, generally
speaking, different, but since the motion is chaotic and,
hence, the probabilities are the same for all three di­
rections, these projections are equal, on the average, so
that

{l~} == (l;) = {Ii>.

If we are interested in a projection along a definite di­
rection, which, like all others, is arbitrary, then we can
write

Tho relationship between the mean of a square and the
square of a mean is the same for all directions, so that
we can write

The two signs correspond to two opposite directions of
motion.
2.14. If the Bleau free path of the molecules is A, then
the probability that on a segment dx a molecule expe­
riences a collision will be dX/A. Out of the N molecules
that have covered the distance x without colliding,
N (dX/A) molecules experience collisions over segment x,
Hence, the number of molecules that have traveled
without colliding will change by

dx
dN =-_.~ ---N T.
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If N is the total number of molecules, then the number of
molecules that have traveled a distance no less than x
without colliding is determined through integration:

N x)d: = -1 d: '
o 0

or

In N == In N 0 - x/A.

Since on the vertical axis we layoff base-10 logarithms,
a and A are linked in the following manner:

A == 2.3/a.

Modern electronics possesses a number of methods for
determining the number of particles (molecules, atoms,
ions, electrons) whose path exceeds a definite distance,
which makes it possible to find the mean free path.
2.15. Since the diffusion coefficient of hydrogen is
higher than that of nitrogen, hydrogen wi ll flow from

--- ) PI

Fig. 2.15

part 1 to part 2 faster than nitrogen will flow from part 2
to part 1. For this reason, at first the pressure in part 1
drops and in part 2 it rises. But then the rate of hydrogen
diffusion lowers (since the amount of hydrogen in part 2
grows and the nitrogen continues to diffuse into part 1).
As a result, the pressure in part 2 begins to drop and the
pressure in part 1 begins to grow. The process continues
until the pressure in both parts becomes equal and the
partial pressures of the two gases in each part become
equal.
2.16. The di ffusion coefficient of the gas is

1
D == p; 'Av.
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In the closed vessel, the mean free path remains constant"
and the temperature dependence of the diffusion cooffi­
cicnt is deturruiued only by the average velocit.y of the
molecules, which is proport.iouul to the SqUHl'O ..out of
the temperature. 'rho same rolutiouship exists between
the temperature and tho d i ffusion coefticient:

D ex: T1/2.

In the open vessel, that is, at constant pressuro, the con­
ccnt.rution of molecules is i n vursoly pro port.iounl to tho
l.emperuture and, hence, the mean free path is proportional
to the tern pera Lure. Therefore, for this ease we have

D oc T3/2.

On the logarithmic scale the slope of a straight line is
equal to the exponent in the power function. Hence,
curve (a) (with tho slope equal to 3/2) corresponds to the
open vessel and curve (h) (with the slope equal to' 1/2)
corresponds to the closed vessel.

* Hero we have ignored the temperature dependence of the
effective cross section (the Sutherland correction term).

2.17. The diffusion rate, which characterizes the vari­
ation of the number dN of molecules passing through the
cross-sectional area S of the vessel per unit t ime dt in
the direction of the concentration gradient dn/dx, is

dN =:-= -D~S
dt dx •

Here D ::= (1/3) 'Au is the diffusion coefficient. Since the
diffusion coefficient is inversely proportional to the
pressure (because the mean free path is inversely propor­
tional to the pressure) and the concentration gradient at
each moment is proportional to the pressure, the number
of molecules diffusing in this or that direction is pressure
independent. This conclusion holds, of course, only if the
mean free path of the molecules is many times smaller
than''the linear dimensions of the vessel. Note that since
the i~itial number of molecules of each gas is proportional
to the pressure, the evening out of the concentrations
occurs the faster the lower the pressure of the gas.
2.18. The average kinetic energy of translational motion
of molecules is (3/2) kT. The average energy of the mole­
cules moving toward a wall of the vessel is 2kT. This Is
explained by the fact that the flux of molecules with
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a certain velocity is proportional to n ,», where no is the
concentration of the molecules having this velocity.
Therefore, the higher the velocity, the greater the number
of rnolecules moving in a given direction. lienee, in the
velocity distribution 0 r tho molecules remaining in the
vessel there appears a deficit of fast molecules, which
leads to a decrease in the average energy of the molecules
and a distortion in the distribution function. On the
other hand, the average energy of tho molecules leaving
the vessel for the vacuum becomes higher than it was in
the vessel. If the pressure of the gas is not low but the
orifice is so small that no collisions occur in it, the average
energy inside the vessel still decreases, if only this de­
crease is not compensated for by heat supplied to the
walls of the vessel. Under these conditions, the Max­
wellian velocity distribution is restored via the collisions
of molecules in the vessel, but now this distribution cor­
responds to a lower temperature. The restoration of the
distribution function occurs partially because molecules
collide with the walls of the vessel.
2.19. The heat flux is determined by the relationship

dQ _ -A dT
dt - e1.r ..

For the thermal courluct.i vit.y of an ideal gas we have the
following formula:

"A ex: v, or "A ex: Tl/2.

For the flux to he steady-state (time independent), the
following formula must hold true:

dT
A -d- -.~-= const ..x

Hence,

Tl/2 dT ~.:-. const ,
dx

Wo see that tho higher the temperaturo the lower is the
gradient. The gradient must increase from the hot plate
to the cold plate. The position of the plates can be ex­
plained by the necessity of reducing convection to a
minimum.
2.20. Under the specified conditions, we cannot apply
the concept of..temperature to the residual gas between
the walls of the Dewar vessel. 'rho mean free path of the
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molecules of the gas is about 100 Ill, so that whi lo moving
between the walls the molecules practically never collide
with each other and no thermodynamic equilihriurn,
which could be characterized by a temperature, can estab­
lish itself between the walls.
2.21. Within a broad pressure range the thermal con­
ductivity coefficient is Independent of the gas pressure.
A dependence (i.o. a drop in thermal conductlvity as the
pressure lowers) becomes not.icon ble if the mean free path
of molecules becomes compurable to the distance between
the walls between which the heat transfer occurs. 'I'he
greater this distance, the greater tho mean free path (and
tho lower the pressure) at which the thermal conductivity
coefficient begins to change. Therefore, curve 1 corre­
sponds to the greater distance (see the figure accompanying
the problem).
2.22. Section 1-2 in Figure (a) accompanying the prob­
lem corresponds to isobaric heating, section 2-3 to

fD 2 /1\1 2~. 3

4 1 2 1 4

T V V

v

"D
j v

~r,/2 1

10 3
3

1 7. 1 2
I

T T
(n ) ~ b) (c)

!"ig. 2.22

isothermal ex pa nsion, section 3-4 to isochoric cooling,
and section 4-1 to isothermal compression. In the p 1'­
and VT-coordinates this process is depicted in Figure (a)
accompanying the answer. The processes depicted in Fig­
ure (b) accompanying the problem proceed in the Iollow­
ing order: 1-2 is isobaric heating, 2-3 isothermal C0111­

pression, 3-4 isobaric cooling, and 4-1 isothermal ex pan-
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sion. In the ])V- and pT-coordinates this cycle is depicted
in Figure (b) accompanying the answer. Tho cycle de­
picted in Figure (c) accompanying the problem consists
of Isochoric heating 1-2, isobaric heating 2-3, isothermal
expansion 3-4, and isobaric cooling 4-1. In the p V- and
VT-coordinates this cycle is depicted in Figure (c) accom­
panying the answer.
2.23. When the piston moves upward by ~x, the spring
is compressed by Sh, Suppose F == -k~h is the elastic
force produced in the spring by this compression. This
force contributes to the force acting on the piston and,
hence, increases the pressure of the gas in the cylinder by

~p==~== k~h =: k~V
S S 8 2 '

where S is the surface area of the piston. Thus, the in­
crease of the gas volume caused by heating is accompanied
by a proportional increase in tho pressure. On the dia-

p

P, -

Fig. 2.23

Pz

v
Fig. 2.25

gram this is depicted by a straight li no wi th a posi ti ve
slope whose value depends on the surface area of the piston
and the clastic properties of the spring. The work is
measured by the hatched area in the figure accompanying
the answer and is

A == (PI + P2) (V 2 - V1)/2.

2.24. The adiabatic p-V relation is of the form

pVv = const,



where the ex ponent v is the ratio of the specific heat ca­
paci t y of the gas at constant pressure to the speci ftc hca t
capacity of the gas at constant volume:

y = epic".

This ratio can he expressed in terms of the number of
degrees of freedom, i. A helium molecule has three de­
grees of freedom and that of carbon dioxide has six. There­
fore, for helium we have y == 5/3 == 1.67 and for carbon
dioxide we hava v == 8/6 = 1.33. The greater the expo­
nent, the steeper is the curve. The upper curve (see the
figure accompanying the problem) corresponds to carbon
dioxide and the lower curve corresponds to helium.
2.25. An adiabatic curve is steeper than an isotherm
(see the figure accompanying the answer), with the final
pressure being lower in the adiabatic process than that
in the isothermal process. This means that the area lying
below the appropriate curve (this area characterizes the
work) is smaller for the adiabatic process than for the
isothermal.
2.26. The first law of thermodynamics for an isothermal
process can be written in the form Q == A. Hence, the
straight line corresponding to this process must be in­
clined at an angle of 45° to the horizontal axis (curve 3
in the figure accompanying the problem). For an isobaric
process we have

Q == I1U + A.

Since the work for one mole of the gas done in an isobaric
process is

A === R~T

and the amount of the absorbed heat is

'f i+2Q =-= Cp ~t =-= -2- R~T,

with i the number of degrees of freedom, we have

A 2
Q i+2·

The slope of the straight line representing the A vs. Qde­
pendcnce must equal 2/5 for a rnonatomic gas, 2/7 for
a diatomic gas, and 2/8 for a multiatomic gas. Straight
line 1 corresponds to a multi atomic gas and straight line 2
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to a monatomic gas. Work is not performed in an iso­
choric process, and this coincides wi th the horizontal
axis, while heat is not absorbed in an adiabatic process,
and this coincides with tho vertical axis.
2.27. Processes depicted by straight lines coinciding
with the coordinate axes are quite obvious. The horizontal
axis (I1T == 0) reproson t.s an isotherm al process and the
vertical axis (Q == 0) represents an adiabatic process.
The molar heat capacit.y of a mo uatomic gas involved
in an isochoric process is

cV =.7.: (3/2) R,

and that of a diatomic gas is

Cv = (5/2) R.

The molar heat capacity of a monatomic gas involved
in an isobaric process is

C]> = (5/2)R,

and that of a diatomic gas is

Cp = (7/2) R.

The heat capacity Cv of a diatomic gas coincides with
the heat capacity Cp of a monatomic gas. For this reason
there are three straight lines in the figure accompanying
the problem instead of four, with straight line 2 corre­
sponding to C p of a monatomic gas and C v of a diatomic
gas. Straight line 3 corresponds to an isobaric process
involving a diatomic gas and straight line 1 corresponds
to an isochoric process involving a monatomic gas.
2.28. For the sake of brevity we denote (m/M) .R by a.
Then

pV ~ a1'.

For both gases the work performed in an iso baric process is

while that performed in an adiabatic process is
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Substituting the values of y IOJ' nitrogen (7/5) and argo n
(5/3), we got

A ==-= 2.5 I ~T I (for ni trogen),

A === 1.5 I 81' I (for argon).

Selecting the scales on the coordinate axes of the figure
accompanying the problem in such a manner that a ~::: 1,
we find the slopes of the straight lines to be 2.5 and 1.5
for the adiabatic processes and 1 for the isobaric process.
The straight line 1 depicts the adi abat.ic process involving
nitrogen, the straight line 2 depicts the adiabatic process
involving argon, and the straight line 3 depicts the iso­
baric process for both gases. Tho vertical ax.is (I ~ 7' 1~ 0)
depicts an isotherm and the horizontal axis (A ~ 0) an
isochor.
2.29. The classical theory of heat capacity does not
allow for the quantum nature of periodic motion (vibra­
tional and rotational). According to quantum theory, the
angular momentum of a rotating object may aSSUJnc only
values specified by the condition

J (I) == n'V Y{j-=1~ , (2.29.1)

where Ii is the Dirac-Planck constant (the Planck con­
stant h divided by 2n), J is the moment of inertia of the
object, and j is the so-called rotational quantum number,
which can take on any integral values starting from zero.
Equation (2.29.1) enables finding the possible values of
the rotational kinetic energy:

J CJ)2 1i2
W ~ -2-= 21 j(i+ 1).

The minimal nonzero value is

WIn = tt2/J .

A molecule acquires and exchanges rotational energy
through co ll'isious with other molecules. Thus, the question
of whether a molecule can have rotat.iouul energy in
addition to translational is solved by comparing the
value W m of the minimal nonzero rotational energy with
a quantity of the order of kT at r00111 temperature. The
separation of atoms in a hydrogen molecule is 0.74 nrn
and the mass of each aLOIn is 1.67 X 10-27 kg, so that
the moment of inertia of a hydrogen molecule is 4.6 X
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1(J-4~ kg-UI 2 • Heuring in mind t.hat h. ~ 1.05 X
10-34 J -s, we get

H/(u == 2.4 X 10-21 J.

At roo m temperature (T ~ 300 K),

kT == 4.1 X 10-21 J.

The fact that kT somewhat exceeds Wn l tnakes the occur­
rence of rotational motion in a molecule quite probable.
lIenee, the rotational degrees of freedom will contribute
(,0 the heat capacity of hydrogen. At temperatures of the
order of 40 K the probability of rotational motion is
practically nil; it is said that the rotational degrees of
freedom "freeze out" and only the translational degrees
of freedom remain, which is reflected in the value of the
heat capacity. The diatomic gas that is closest to hydrogen
in the Periodic Table is nitrogen, and the mass of a ni­
trogen atom is fourteen times the mass of a hydrogen
atom. The separation of the atoms in a nitrogen atom Is
0.'11 nm. Accordingly, the moment of inertia of a nitro­
gen molecule is thirty one times that of a hydrogen mole­
cule, so that down to very low temperatures the value
of kT is considerably higher than Wm and there is prac­
tically no "freezing out" of rotational degrees of freedom.
At the same time, for monatomic gases, whose moment of
inertia is several orders of magnitude lower than that of
hydrogen, the minimal energy of rotational motion
is so high that even at very high temperatures only the
translational degrees of freedom manifest themselves and
the heat capacity follows the predictions of classical theory
quite accurately.
2.30. According to classical theory of heat capacity of
ideal gases, the value of heat capacity for each given
process (say, an isochoric process) must not depend on
the temperature of the gas. This theory does not allow for
the quantum nature of periodic processes, namely, rota­
tional and vibrational motion. In classical theory, the
probability of rotational motion of diatomic and multi­
atomic molecules is assumed to be independent of the
temperature of the gas and the same (per each degree of
freedom) as that of translational motion. Quantum theory
requires allowing for tho different probabilities of periodic
processes, with the probability growing with temperature.
Calculations have shown that for many diatomic gases at
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low tern peratures the vibrational degrees of freedorn can
be ignored, but the role of these degrees of freedom grows
with temperature. For sufficiently high temperature the
bonds between the atoms may break and dissociation
occurs. This requires large energy expenditure. In some
respects this process resembles phase transitions (melting
and boiling, for instance), when supplying heat does not
lead to a rise in temperature.
2.31. The compressibility is defined by the following
formula:

~= - : ~:.
III an isothermal process,

d (pV) === pdV + Vdp

and, hence, (3 == ilp. In an adiabatic process,

ypVV-1dV + VVdp == 0

and, hence, ~ == 1/yp.
In all cases the dependence of the cornpressibi li ty on

pressure is depicted by hyperbolas that differ only in

1°9]3

.'ig. 2.31

6 V

~"ig. 2.32

a numerical factor. On the log-log scale the pressure de­
pendence of the compressibility is depicted by straight
lines (in the figure accompanying the answer the straight
lines correspond to adiabatic processes in' olving argon
and carbon dioxide and to the isothermal process).
2.32. In the figure accompanying the answer the pro­
cesses are depicted by broken lines 1-3-2 and 1-4-2. In
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(ad iabatic process).

tJ1(-~ nr'sl ease, the work is measured hy tho area hounded
hy the broken Jine5-4-2-()', whi Io in the second it is mea­
sured by the area bounded hy the hroken line 5-1 -3-(j and
exceeds the first area by the area of 4-1-3-2-4. Since in
both cases the initial states (1) and the final states (2)
arc the same, the increment of internal energy is the
HarHC, too, but the process 1-3-2 requires additional heat
for tho system to pcrforiu gTca tor work. Since entropy is
a Iuuctiou of st.ate , the chaugo or entropy in hoth cases is
t.he s.uue.
2.;i3. 'rho three quuutit.ies r lrarnctcrizi ng the state of
311 ideal gas, [J, V, and 1', (Ire linked through power re­
lationships fur a ll processes involving an ideal gas:

l' /1' =::. const (isohatic process),
pl T _:.... const (isochoric process),

p~1 =--= const (isothermal process),

f.J Jlv ~-- cons t }

1" 1" n» - 1) _ - eon s L

pi l 'V!(V .- 1) :=.:. COUH L

logY

log T

4

(u)

10gp

On t.he log-log scale all these processes are depicted by
straight lines that differ 111 their slopes. Isothermal

expansion is depicted
by a vertical straight
line in the downward
direction in the pT­
coordinates and in the
upward direction in the
l/l'-coordinates. An adi­
abatic processis depicted

logT hy ;.1 straight line with
(b) a slope Y/(V - 1) in the

pl'-COol'dillatcs and hy
a ~I raight Ii no wi th a

negative slope -(" - 1)-1 in 1he l/T-c.Ool~dillat,es. A co llec­
tio n of such straight Hegillell(.s rail he used to depict tho
Carnot cycle in the pT-eoordinates (Figure (a)) and in the
VT-eoordinates (Figuro (b)).
2.34. The incromunt of the cntro p y ill a process is given
by the formula

A/)~ ~-== I1QI']' ,
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Fig. 2.3;'

302

4 1

The straight line 0-1 in the figure accornpnnying the
problem corresponds to an Isothermal process, since it is
parallel to the vertical axis (1' -.== const). 'rho straight
line 0-4 depicts a process in which the entropy does not
change, that is, a process ill which 110 heat is supplied
to or removed from the system, or an adiabatic process.
Out of curves 0-2 and 0-3 the former corresponds to a
higher entropy increment. The process represented by
this curve wilJ require a larger amount of heat for bringing
the system to a given temperature than the process rep­
resented by curve 0-3 will require for bringing the system
to the same temperature. Of two processes, the isochoric
and the isobaric, the latter requires more heat to perform
work on the system. Thus, curve 0-2 corresponds to an
isobaric process and curve 0-3, to an isochoric.
2.35. The first process in the Carnot cycle is isothermal
expansion. In the process the gas absorbs heat and its
entropy increases. On the diagram
this process is shown by the straight
line 1-2. This is followed by adia­
batic expansion, which is accom­
panied by a drop in temperature.
Since in an adiabatic process the
gas is thermally isolated, the en­
tropy cannot change, which is rep­
resented by the straight line 2-3. At
the temperature achieved at the
end of this process the third process begins, namely , iso­
thermal compression, in which the gas gives off heat and
its energy decreases (the straight line 3-4). The final pro­
cess is adiabatic compression, which returns the gas to
the initial state. The entropy does not change in this last
process, just as in adiabatic expansion. The process is de­
picted by the straight line 4-1.
2.36. If In is the mass of each object and cis the specific
heat capacity, then the total entropy increment is

'1'2 Tl

\
-. dQ r dQ (T T )

i1.S= . T-+- J T,em In r;+Inr; ·
'j'1 '1'2

Replacing T with (T} + T2)/2, we can write

~S ~-= em In (T 1 + T 2) 2
4T1TIJ
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or

AS-co ASj + !iS2 --= em In [ (T~;:::)2 + 1 ] .

The expression in square brackets is greater than uni ty,
with the result that

tJ,S > o.
2.37. The entropy increment in the process is

dS === 8QfT == ct1T/T. (2.37.1)
According to the figure accompanying the problem,

dB = a dT. (2.37.2)

The straight line in the figure passes through the origin
since by the Nernst heat theorem the entropy at T == 0
is zero. Combining these two equations, we get

a dT == c dTfT and c === aT.

The heat capacity changes in proportion to the tempera­
ture, just as entropy does.

This result can be obtained without carrying out cal­
culations, solely on dimensional grounds. Entropy (irre­
spective of whether we are speaking of the entropy of the
system or the molar entropy or the specific entropy) has
the same dimensionality as heat capacity (irrespective of
whether we are speaking of the heat capacity of the system
or the molar heat capacity or the specific heat capacity).
For this reason the dependence of heat capacity on tem­
perature must be the same, to within a constant factor,
as the dependence of entropy on temperature. In the case
at hand the constant factors coincide, too.
2.38. The entropy increments on different segments are

T2

ss 1-2 = Cp )1~T 0= cp In ~: = cp In ~: I

T~

~S1-3 ==cv r dT ~cv In Is:.: -Cv In..E!...=:: -In ~,J T T 1 e« P..
1'1
T ..

!iSH=c p \ ~; =cpIn ~: =cpIn ~: =cpIn ~: I

f3

T2

ss10-2 = CIT )4 dJ = CIT In ~: 07C Cv In :: .
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If we add all four quantities, we get

t1S 1-3-/.-;l-'-' t1S 1-3 -I t1S3-d-- t1S~-2 = Cl' In ~: =- t1S1-2,

v
Fig. 2.39

which is what we set out to prove.
2.39. For the sake of making the calculations shorter,
let us select the mass in such a manner that in the approp­
riate system of units (m/M) R ==: 1. In this case the tem-
perature of the heater, which p
is the highest temperature Pz
in the cycle (point c) is

Th == P 2V2°
P1

The temperature of the cooler
(the coldest point in the cycle
is point a) is

r; = PIV)O

The temperatures at points band dare P2 VI and P1l
l '2 '

respectively. The entropy increment for the heater in the
a-b process is

and in the b-c process it is

j), S __ CpP2 (V 2 - V1)
.. b-e - P2V 2 ·

The entropy increment for the cooler in the c-d process is

~S == + cvV ~ (P2- PI)
~d PIV1 '

and in the d-a process it is

~S == + CpPl (V 2 - VI)
rl-a PtV I •

Adding all these entropy increments and carrying out the
necessary transformations, we get

ss =-= cv (P2 - PI) [ VV2 - VV1 ]
PI 1 P2 2

+c//(Vz-Vt ) (~1 - ~2)'

175



Fig. 2.40

All the differences in the brackets are positive, and hence

~S>O.

The entropy increment for H gas performing a cycle aud
returning as a result to the initial state is equal to zero.

2.40. If we solve the van
der Waals equation for p,
we get

m RT a
u> M (V --II) -~.

This equation is of a hyper-
v bolic nature, and because

of this it must have a
branch in the third quad­
rant, which contains, at a
su Ificiontly low tempera-
ture and a negative pressure,

the third root. Since this root corresponds to a neg­
ative volume, it has no physical meaning and is
usually not depicted on diagrams. Note that Boyle's law
also contains an "extra" root. It also lies in the third
quadran t and for this reason has no physical meaning and
is llSUH lly not depicted on diagrams.
2.41. Tho van del' Waals equation presupposes complete
hornogeneity of the substance (vapor or liquid), that is,
the same densi ty in all (however small) volumes. In real
media, however, there are fluctuations. Suppose we are
considering state 2 on the curve (see the figure accompany­
ing the problern). The parameters of this state (or point)
determine the average values of the concentration and
energy of the molecules, In small volumes the values of
the concentration are somewhat larger or smaller than
the average value because of the randomness of molecular
mot.ion. The same is true of the energy of molecules in
small vo lumes, In accordance with tho isotherm, in
volumes of higher density the pressure is somewhat lower
than the average, while in volumes of lower density the
pressure is somewhat higher. 'Therefore, in the former the
density continues to rise and in the latter, to drop. As
a result the entire substance separates into two phases
with a higher and a lower density, and the pressure in
both is the same, 'rho greater density is that of the liquiJ
and the lower is that of the saturated vapor of this liquid.
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Fig. 2.42

2.42. Section 2-3 corresponds to supersaturated vapor.
For this state to realize itself, there must be no d list,
ions, or aerosols in the space where this state occurs for
the vapor to condense 011 and form drops of liquid. Sec­
tion 6-5 corresponds to the so-called superheated liquid.
This state can be arrived at if we boil and degasify the
liquid prior to heating it, then heat it in such a way so
that it Iills the entire volume of the vessel, and finally
cool it again. The liquid wi ll find i t.sclf under a pressure
that is lower than that of tho
saturated vapor. Especially
interesting is the stale of a
liquid corresponding to the - - - -J
section of the isotherm lying 750p>O .-- mmHg
below the horizontal axis
(see the figure accompanying
Problem 2.40). This state
corresponds to uniform stretch­
ing of the liquid. The slate
can be achieved by repeat­
ing, say, Torricelli's experi­
ment in modern vacuum conditions. Before frlling the
tube with mercury, all gases must be evacuated from the
tube via prolonged heating and the mercury must be
pumped into the tube under a vacuum. In this case there
is no Torricellian vacuum above the mercury when we
turn the tube over, the mercury sticks to the inner surface
of the tube thanks to molecular adhesion, and the part
of it lying above the level corresponding to atmospheric
pressure will be under negative pressure (see the figure
accompanying the answer). Thus, it is possible to obtain
negative pressure (uniform stretching) of the order of
three atmospheres.
2.»43. We use the reductio ad absurdum proof. In Fig­
ures (a) and (b) accompanying the answer we have two
variants that differ from the variant shown in the figure
accompanying the problem. In each of these variants the
arrows show a cyclic isothermal process. As a result of
each of these processes, useful work is done (the amount
of this work is equal to the hatched area) with an effi­
ciency of 100 % thanks to complete utilization of the
heat received from the heater, which of course contradicts
the second law of thermodynamics and, hence, is impos­
sible. If we assume that the hatched areas in the figure
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accompanying the problem are the same, the works done
along the paths 2-4-6 and 2-3-4-5-6 are equal. But doesn't
this contradict the second law of thermodynamics, that
is, can a cyclic process along the path 2-4-3-2 be per-

\

~o.) (b)
v

Fig. 2.43

Vvap

Fig.~_2.44

PVQP - --f-'---...

formed? One must bear in mind that while points 2 and 6
correspond to a single (i.e. the same for both curves)
one-phase state, point 4 corresponds to two different
states, a one-phase state on the theoretical curve and a two-

phase state on the experi­
mental curve. The entropies
of these two states are di ffer­
ent, and so are the internal
energies of these states, ener-
gies related to the interaction
between the molecules.
2.44. Suppose that under the
piston there is a liquid and

v its saturated vapor, whose
pressure is counterbalanced by
the external pressure. If heat
is supplied to the liquid' iso­

thermally, the liquid evaporates and the piston rises.
'I'he work done by the vapor when the vapor increases
its volume by L\V is given by the formula

A = Pvap~V,

where Pvap is the pressure of the saturated vapor. If at
the beginning 'there is only liquid whose volume is V1tq
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and at the end only vapor whose volume is VYap' the
entire work done during evaporation is

A = Pvap (V yap - Vll q) ·

This work is measured by the area bounded by the hori­
zontal section of the isotherm, the horizontal axis, and
the segments Irorn 0 to Pvap at Vl1Q and Vv ap-
2.45. As the pressure is raised from the atmospheric to
the test pressure, a liquid or gas accumulates energy,
which is equal to the hatched area under the curve. If

l.i quid
(Q)

v

Fig. 2.45

(b)
v

the cylinder or pipe fails, only a small fraction of the
energy is liberated by the liquid (Figure (a)) because of
the small compressihilities of liquids, and the pressure
falls to the atmospheric practically immediately. In the
case of a gas the accumulated energy may be extremely
high (Figure (b)) and the consequences of its liberation
may be catastrophic.
2.46. When a liquid is heated, its density drops, so
that the volume it occupies may increase notwithstanding
evaporation. The decrease in the density of the liquid
and the simultaneous increase in the density of the vapor
lead to a drop in surface tension. As a result the meniscus
becomes flatter and at the critical point disappears com­
pletely. Of special interest is the phenomenon of critical
opalescence, discovered by T. Andrews in 1869, which
consists in the medium becoming suddenly "cloudy" at
the critical state. This phenomenon serves as a vivid
illustration of fluctuation effects. Extremely small fluctu-
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Fig. 2.48

ations in the density of the medium, fluctuations that
are due 1.0 the random movements of molecules, lead to a
situation in which the density in some microscopic vo l­
umes becomes, at certain moments, somewhat higher
than the one corresponding to the critical point, and
these volurnes transform into the liquid, while the neigh­
boring vo lumes remain being a gas (the ones with the
lower density). In subsequent moments this situation
may change. In this sense the entire volume filled with
the fluid consists of constantly changi ng liquid-gas i nl.er­
faces on which the light is scattered.
2.47. When a liquid is evaporating, energy is constantly
required for performing work against external forces (the
external heat of evaporation) and against the forces of
cohesion between the molecules (the internal heat of
evaporation). When a liquid is evaporating adiabatically,
the energy necessary for evaporation is taken away from
the internal energy, whence the liquid cools off. This
decrease in internal energy may be so great that the re­
maining liquid rnay transform into the solid state. Even
if the heat insulation is not perfect, cooling may still be

considerable. This property, for

Q)
one thing, is employed in some
types of commercial and house
refrigerators.
2.48. A drop has only one spher­
ical surface while a bubble has
two, the inner and the outer,
whose curvatures are almost the

same in magnitude but opposite in sign. For this rea­
son the two surfaces of a bubble create excess pres­
sure directed toward the center of the bubble. Thus,
the excess inner pressure in a bubble is approximately
twice as large as in a drop (of the same radius).
2.49. The excess pressure inside a bubble is determined
by the formula

~p == 4a/r,

where r is the radius of the bubble, and a is the surface
tension. Because of this the pressure inside the smaller
bubble is greater and the bubble contracts, while the
larger bubble grows. Equilibrium is attained when the
film of the smaller bubble forms a surface near the outlet
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of the pipe with a curvature radius that coincides with
the one of the larger bubble.
2.50. The vapor pressure above the convex surface of
a liquid is higher than that above the flat surface, with
the corresponding difference being the greater the smaller
the curvature radius of the surface.* Hence, for the
smaller drop (Figure (c.)) the vapor is unsaturated, while
for the greater drop (Figure (a)) the vapor is supersaturat­
ed. Drop (a) evaporates, while drop (c) grows. The equi­
Iibrium of drop (b) is unstable, since if the size somewhat
decreases, the drop begins to evaporate, whi le if the size
increases, the drop grows.

* The excess pressure is determined via the Thomson formula

~ __ p\,apM(T
P - RTpr '

where fJvap is the vapor pressure above the surface, ill the
molecular mass (weight), R tho uni versal gas constant, T the
temperature, a the surface tension of the liquid, r the density
of the liquid, and r tho curvature radius of the surface.

2.51. The curvature of the surface of a liquid creates an
excess pressure (known as Laplace pressure) directed
toward the center of curvature. This pressure is the higher
the smaller the radius of curvature of the surface. In the
case of water, the excess pressure (negative) tends to
stretch the drop, while in the case of mercury it tends to
compress the drop. For this reason, the plates with the
drop of water between them arc under forces that bring
them together C'attractive forces"), while the plates with
mercury between them tend to move apart ("repulsive
forces"). .
2.52. Tho excess Laplace pressure, caused by the curva­
ture of the Ii quid surfnco , is directed toward the center
of curvature of the surface and is inversely proportional
to the radius of curvature. For this reason, the drop of
water is under a negative pressure (that in absol ute value
is greater than the pressure acting on the mercury drop)
in the narrow part of the pipe and this pressure is directed
toward the tapered end, with the result that the drop tends
to move toward the tapered end. In the case of mercury,
the pressure is directed in opposition, that is, toward the
wide end of the pipe, and it is in this direction that the
drop tends to lUOVC.
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2.53. Surface tension (the surface tension coefficient) is
defined as the ratio of the free energy of the surface layer
of the liquid to the area of this surface. The free energy
here is understood to be the energy that can be converted
into work. This energy is determined by the interaction
of the molecules of the surface layer with the other mole­
cules, where the interaction with the molecules of the
vapor above the surface is usually ignored. As the tem­
perature is increased, the interaction of the molecules of
the surface layer with the molecules in the bulk of the
liquid weakens and that of the surface layer molecules
with the vapor molecules grows. At the critical tempera­
ture both interactions become equal, the interface be­

tween liquid and vapor disap­
pears, and so does surface tension.
Thus, it is curve 2 that reflects
the correct temperature dependence
of the surface tension coefficient.
2.54. If we assume that the water
wets the wall of the tube in an
ideal manner, then, if the tube is
sufficiently high (h > ho) , and the

Fig. 2.54 dia~eter of the tU.be is .small, the
radi us of the menISCUS IS equal to
that of the tube. If h < h o' the

water will rise in the tube and reach the upper end. After
this the curvature of the meniscus will decrease until it
reaches a value that satisfies the equation

20h---­-- pgR '

where R is now not the radius of the tube but the radius
of curvature of the meniscus, r < R.
2.55. Although the cross-sectional area of all four pipes
of diameter D/2 each is equal to that of one pipe of ra­
dius D, the volume flow through these pipes is lower.
This follows from Poiseuille' slaw

1t~pD4

Q==- 128'Tl l •

Thus, the volume flow through each of the four pipes of
D/2 diameter is lower than that through the big pipe not



by a factor of four but by a factor of 16 (at the same pres­
sure head), with the result that the total volume flow
through the four pipes will be one-fourth of the flow
through the big pipe.
2.56. The transverse distribution of velocities in the
flow of a viscous liquid in a horizontal pipe is determined

y/R

0.8

0.4 0.8 12

(b)

0,4

(0)

Fig. 2.56

via the formula (Figure (a))

Ux = Ux m [ 1 - ( ~ rJ.
The radial coordinate y is reckoned from the pipe's axis.
The time it takes the particle to fall from the wall to
a point whose ordinate is y is

t = (R - y)/vY •

In the course of this fall tho particle will be shifted in the
horizontal direction ovor a distance

At the lowest possible point (y = -R) we have

x=! Vxm R =.! Vx m D.
3 Vy 3 Vy
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Tho shu pc of the particle's trajectory ill Figure (b) is
represented in dimensionless coordinates, ylR and (xlR) X
(vylv x m) .

2.57. Each figure accompanying the problem contains
the initial segments of the graphs representing the cooling
of water or the heating of ice. Continuing these graphs, we
arrive at the intersection point in each figure. If the point

t~C t~C
t~c

80
80 80 I

/
/

40 /
/

/
/

--0 --{- - -- -
\
\

-40 -40 \
\

-80 -30 ·80
Q Q

(0 ) (b) (C)

Fig. 2.57

of intersection lies above the horizontal line corresponding
to a temperature of 0 °C, the final temperature is positive,
when the point lies below this line, the final temperature
is negative. If the graphs meet on the line t == 0 °C,
the final temperature is 0 °C and the amount of the phase
that has a horizontal section on the graph prior to inter­
section will decrease. The ratio of the length of this sec­
tion to the total length of the horizontal section corre­
sponding to this phase determines the fraction of the
i ni tial mass of this phase that has transformed into the
other phase. When analyzing the graphs, we must bear
in mind that the slopes of tho straight lines are determined
by the mass of water or ice and their speci lic heat capacity
hy tho Iormula

/~t

~Q em

Here one must bear in mind that the specific heat capacity
of water is twice as high as that of ice. The length of the
horizontal sections corresponding to the water freezing
or the ice melting is determined by the fact that the
amount of heat required for melting a certain amount of
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ice is equal to the amount of heat required for heating
the same mass of water to 80°C. For the sake of illus­
tration, Figure (a) accompanying the answer shows the
diagram for the cooling off of a mass of water from 80
to 0 °C, then the freezing of this water, and finally the
cooling off of the ice down to t == _40°C. Figure (b)
accompanying the answer shows the reverse process in
which the same amount of ice is heated from -80 to 0 °C,
then melted, and finally heated in the form of water to
60°C. The scales along the horizontal axes are arbitrary
but equal, with the amount of heat expressed in arbitrary
units. (It is easy to see that all this has no effect on the
answer.) The two diagrams are combined in Figure (c)
accompanying the answer. In the present case we see
that the final temperature is 0 °C and half of the ice has
melted. Applying this procedure to the case illustrated
by Figure (a) accompanying the problem, we see that
the ice has completely melted and the final temperature is
10°C; for Figure (b) accompanying the problem, half of
the ice has melted and the final temperature is 0 °C; for
Figure (c) accompanying the problem, the case is similar
to (b) but half of the water has frozen; finally, for Pig­
ure (d), all the water has frozen and the final temperature
is _20°C.
2.58. At the lowest possible pressures and the highest
possible temperatures a substance may exist only in the
vapor state (region 1). Compressing the vapor at relatively
high temperatures, we can transform it into the liquid
state provided that the temperature is below the cri tical ,
The curve separating region 1 from region 2 corresponds
to pressures and temperatures at which the liquid is in
equilibrium with the saturated vapor of this liquid, with
the region 2 corresponding to the liquid. T cr on the tem­
perature axis st.ands for the critical t omperature. By
cooling the liquid, we arrive at temperatures at which
there is equi libr! UIn between the liquid and the solid
phase-this corresponds to region 3. At 10'" pressures
there can be equi lihrium between the vapor and the solid,
but there is only one value of temperuture and pressure
at which equilibrium can exist between all three phases.
This is the so-called triple point, and it is at this point
that all three curves meet.
2.59. As distinct from the majority of substances, the
ice-water system has an equi libriurn curve with a negative
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slope. In view of this, higher pressures correspond to a
lower temperature at which ice and water are in equi­
librium. If ice was under an external pressure PI at a cer­
tain temperature and then this pressure was increased to
P3' then at a certain pressure P2' whose value lies on the
phase equilibrium curve, the ice will melt. The anomalous
dependence of the melting point of ice on pressure is
linked with the anomalous relation between the densities
of water and ice. As a rule, the density of the solid phase
is higher than that of the liquid, but for water the situ­
ation is the opposite: the density of ice is lower than that
of water. This property is extremely important for the
preservation of life in ponds, lakes, and rivers. If the den­
sity of water were lower than that of ice, all ponds, lakes
and rivers would freeze solid.
2.60. Cornprcssibility is defined thus:

1 dV
~== -VdP'

whence dV/V == -~ dp. Hence,

V2 ])2

.~ ~ =-J~dp.
VI J'l

I ntegration yields

Jl2

In (V/V:J = J~ dp.
r1

The integral on the right-hand side gives the area bounded
by the curve, the horizontal axis, and the vertical straight
lines at PI and P2. After evaluating this integral, we turn
to the volume ratio. If the compressibility were pressure
independent, the volume ratio would be

2.61. At a maximum point the derivative dp/dt is zero.
For this reason near a maximum the deviations in the
density from the maximum value for small deviations in
the precision with which the temperature is measured are
at a minimum, with the result that in the neighborhood of
the maximum the precision with which density is deter­
mined is the highest.
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2.62. As is known, the heat flux is determined by the
equation

dQ . dT
(ft= -)" dx S.

Assuming that the heat flux is steady-state and, hence,
dQldt is the same at all points of the wall, we find that
where the absolute value of the gradient dT/dx is greater,
the respective thermal conductivity coefficient is smaller.
Hence, the inner layer of the wall has a higher thermal
conductivity.
2.63. To elongate the rod by ~Z, we must apply, accord­
ing to Hooke's law, the force

F= RS st.
1

(2.63.1)

The work of elongation performed from x to x + I1x is

ES
dJl == J/ dx == -z- x dx,

and the work performed from 0 to liZ is

A = ;~ (lil)2.

Multiplying the numerator and denominator by land
introducing the notation

I1l/l = e

(the strain, or extension per unit length), we get

A RSl 2
==-2- 8 .

The performod 'York goes to increasing the in ternal energy
of the rod, that is, the energy of elastic deformation.
Dividing this energy by the volume of the rod, we get
the bulk energy density

w == Ee}/2.

From (2.63.1) it follows that

Ee = F/S = 0',

where a is the internal mechanic.al stress. For this reason,
the bulk energy density can be represented as

W == oE/2.
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2.64. For each bar the thermal linear strai n is

~lll == a~T,

while the mechanical linear strain is

Slll == -alE,
where a is the internal mechanical normal stress (Young's
modulus), which is the same for both hars. The sum of the
two strai ns is zero:

a~T - alE == O.

Hence, aE' == 01 ;).T. Since the right-hand side is the same
for both bars, we can write aIEl =--= a Z·E2 , or

a1/a2 ::-:::: E 21E1 •

If the walls possess the sarne mechanical properties, the
deformabilit.y of the walls has no effect on the result.
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