8 ## Redox Titrations 1. The most important fact for solving the problems of redox changes is to evaluate equivalent mass of redox correctly using the formula: Eq. mass of reductant or oxidant Molar mass of reductant or oxidant No. of electrons lost or gained by one molecule of reductant or oxidant respectively 2. Valence factor = $\frac{\text{Molar mass}}{\text{Equivalent mass}}$ or No. of electrons lost or gained by one molecule of reductant or oxidant. 3. Calculate the Meq. of desired substance and then calculate its mass by: Meq. = $$N \times V_{\text{in mL}}$$ = $M \times \text{Valence factor} \times V_{\text{in mL}}$ Meq. = $\frac{\text{Mass}}{\text{Eq. mass}} \times 1000$ This equation gives mass of substance whose Eq. mass is substituted. - 4. Be careful in deciding equivalent mass. First write redox change for each and then derive no. of electron lost or gained by one molecule of reductant or oxidant. - 5. In case balanced equation is given, it is always advised to proceed with mole concept to avoid complications in equivalent mass determination. - 6. Method to calculate equivalent mass of an oxidant/reductant in: #### (a) Intermolecular redox: $$HNO_3 \longrightarrow N_2O$$ $$8e + 2N^{5+} \longrightarrow (N^+)_2$$ $$E_{HNO_3} = \frac{M_{HNO_3}}{4}$$ and $$E_{N_2O} = \frac{M_{N_2O}}{8}$$ ### (b) Intramolecular redox: $$\begin{array}{c} \text{Indicetal} & \text{reds} \\ (\text{NH}_4)_2 \text{Cr}_2 \text{O}_7 \longrightarrow \text{N}_2 + \text{Cr}_2 \text{O}_3 + 4\text{H}_2 \text{O} \\ (\text{N}^{3-})_2 \longrightarrow (\text{N}^{0})_2 + 6e \\ 6e + (\text{Cr}^{6+})_2 \longrightarrow (\text{Cr}^{3+})_2 \\ \hline (\text{NH}_4)_2 \text{Cr}_2 \text{O}_7 \longrightarrow \text{N}_2 + \text{Cr}_2 \text{O}_3 + 4\text{H}_2 \text{O} \end{array}$$ $$\therefore 1 \text{ mole } (NH_4)_2 Cr_2 O_7 = 1 \text{ mole } N_2$$ $$= 1 \times 6 \text{ eq. } N_2 \left(E_{N_2} = \frac{M}{6} \right)$$ $$= 1 \times 6 \text{ eq. } (NH_4)_2 Cr_2 O_7$$ $$\therefore \text{ 'n' factor for } (NH_4)_2 Cr_2 O_7 = 6$$ $$\therefore E_{(NH_4)_2Cr_2O_7} = \frac{M}{6}$$ or 1 mole $$(NH_4)_2Cr_2O_7 = 1$$ mole Cr_2O_3 = 1×6 eq. $Cr_2O_3\left(E_{Cr_2O_3} = \frac{M}{6}\right)$ = 6 eq. $(NH_4)_2Cr_2O_7$ $$\therefore$$ 'n' factor for $(NH_4)_2Cr_2O_7 = 6$ $$\therefore E_{(NH_4)_2Cr_2O_7} = \frac{M}{6}$$ ## (c) Disproprionation reaction: (c) Disproprioration reaction: $$H_3PO_2 \longrightarrow PH_3 + H_3PO_3$$ $4e + P^+ \longrightarrow P^{3-}$ $[P^+ \longrightarrow P^{3+} + 2e] \times 2$ $3P^+ \longrightarrow P^{3-} + 2P^{3+}$ or $3H_3PO_2 \longrightarrow PH_3 + 2H_3PO_3$ $\therefore 3 \text{ mole } H_3PO_2 \equiv 1 \text{ mole } PH_3$ $\therefore 1 \text{ mole } H_3PO_2 \equiv \frac{1}{3} \text{ mole } PH_3$ $\equiv \frac{1}{3} \times 4 \text{ eq. } PH_3$ $\left(E_{PH_3} = \frac{M}{4}\right)$ $\equiv \frac{4}{3} \text{ eq. } H_3PO_2$ $$\therefore$$ 'n' factor for H₃PO₂ = $\frac{4}{3}$ $$E_{\text{H}_3\text{PO}_2} = \frac{M}{4/3} = \frac{3M}{4}$$ or $3 \text{ mole } \text{H}_3\text{PO}_2 \equiv 2 \text{ mole } \text{H}_3\text{PO}_3$ or $1 \text{ mole } \text{H}_3\text{PO}_2 \equiv \frac{2}{3} \text{ mole } \text{H}_3\text{PO}_3$ $$= \frac{2}{3} \times 2 \text{ eq. } \text{H}_3\text{PO}_3 \qquad \qquad E_{\text{H}_3\text{PO}_2} = \frac{M}{4/3} = \frac{3M}{4}$$ $$E_{\text{H}_3\text{PO}_2} = \frac{M}{4/3} = \frac{3M}{4}$$ ## NUMERICAL PROBLEMS . - 1. Calculate the equivalent mass of each oxidant and reductant in: - reductant in: (a) $FeSO_4 + KCIO_3 \longrightarrow KCI + Fe_2(SO_4)_3$ (b) $Na_2SO_3 + Na_2CrO_4 \longrightarrow Na_2SO_4 + Cr(OH)_3$ (c) $Fe_3O_4 + KMnO_4 \longrightarrow Fe_2O_3 + MnO_2$ (d) $KI + K_2Cr_2O_7 \longrightarrow Cr^{3+} + 3I_2$ (e) $Mn^{4+} \longrightarrow Mn^{2+}$ - (f) $NO_3^- \longrightarrow N_2$ - (g) - $\begin{array}{c} N_2 \longrightarrow NH_3 \\ Na_2S_2O_3 + I_2 \longrightarrow Na_2S_4O_6 + 2NaI \\ FeC_2O_4 \longrightarrow Fe^{3+} + CO_2 \end{array}$ (h) - (i) - 2. Calculate the equivalent mass of potassium permanganate (KMnO₄) in (i) neutral medium (ii) acidic medium (iii) alkaline medium, by oxidation number method. (MLNR 1997) - 3. What is the mass of sodium bromate and molarity of solution to prepare 85.5 mL of 0.672N solution when half cell reactions are? - (i) $BrO_3^- + 6H^+ + 6e^- \longrightarrow Br^- + 3H_2O$. - (ii) $2BrO_3^- + 12H^+ + 10e^- \longrightarrow Br_2 + 6H_2O$ (IIT 1987) - 4. How many mL of 0.05M KMnO₄ (acidic) are required to oxidize 2.0 g of FeSO4 in dilute solution? - 5. Dichromate ion in acid solution oxidizes stannous ion as $3\text{Sn}^{2+} + 14\text{H}^+ + \text{Cr}_2\text{O}_7^{2-} \longrightarrow 3\text{Sn}^{4+} + 2\text{Cr}^{3+} + 7\text{H}_2\text{O}$ - (a) If SnCl₂ is the source of Sn²⁺, how many gram of SnCl₂ would be contained in 2 litre of 0.1N - (b) If $K_2Cr_2O_7$ is the source of $Cr_2O_7^{2-}$, what is the normality of solution containing 4.9 g K₂Cr₂O₇ in 0.1 litre of solution? (IIT 1987) - 6. 20 mL of 0.2M MnSO₄ are completely oxidized by 16 mL of KMnO4 of unknown normality, each forming Mn4+ oxidation state. Find out the normality and molarity of KMnO₄ solution. - 7. Metallic tin in the presence of HCl is oxidized by K₂Cr₂O₇ to stannic chloride. What volume of decinormal dichromate solution would be reduced by I g (MLNR 1994) of tin? - 8. 5.5g of a mixture of $FeSO_4 \cdot 7H_2O$ Fe₂(SO₄)₃ ·9H₂O required 5.4 mL of 0.1N KMnO₄ solution for complete oxidation. Calculate mole of hydrated ferric sulphate in mixture. - 0.5 g sample containing MnO₂ is treated with HCl, liberating Cl2. The Cl2 is passed into a solution of KI and 30.0 cm³ of 0.1M Na₂S₂O₃ are required to titrate the liberated iodine. Calculate the percentage of MnO2 in sample. (Atomic mass of Mn = 55) (Roorkee 1994) - 10. The equivalent mass of an element is 13.16. It forms an acidic oxide which with KOH forms a salt, isomorphous with K2SO4. Deduce Atomic mass of element. - 11. In an ore, the only oxidizable material is Sn²⁺. This ore is titrated with a dichromate solution containing 2.5 g of K₂Cr₂O₇ in 0.5 litre. A 0.40g sample of the ore required 10.0 cm³ of titrant to reach equivalence point. Calculate the percentage of tin in ore. (Roorkee 1993) - 12. 1g of H₂O₂ solution containing X% H₂O₂ by mass requires X mL of KMnO₄ for complete oxidation in acid medium. Calculate normality of KMnO₄ solution. - 13. An element A in a compound ABD has an oxidation No. A^{n-} . It is oxidized by $Cr_2O_7^{2-}$ in acid medium. In an experiment 1.68×10^{-3} mole of $K_2Cr_2O_7$ was required for 3.26×10^{-3} mole of the compound ABD. Calculate new oxidation state of A. - 14. 20 mL of a solution containing 0.2 g of impure sample of H₂O₂ reacts with 0.316 g of KMnO₄ (acidic). Calculate: - (a) Purity of H₂O₂ - (b) Volume of dry O2 evolved at 27° C and 750 mm P. - 15. Find out the % of oxalate ion in given sample of oxalate salt of which 0.3 g dissolved in 100 mL of water required 90 mL of N/20 KMnO₄ for complete oxidation. - 16. 50 mL of an aqueous solution of H₂O₂ was treated with an excess of KI solution in dil. H₂SO₄, the liberated iodine required 20 mL of 0.1 N Na₂S₂O₃ solution for complete reaction. Calculate concentration of H2O2 in g/litre. 284 Numerical Chemistry 17. 1.2 g of a commercial sample of oxalic acid was dissolved in 200 mL of water. 10 mL of this sample required 8.5 mL of N/10 KMnO₄. Calculate % of purity of sample. - 18. (a) 25 mL of H₂O₂ solution were added to excess of acidified solution of KI. The iodine so liberated required 20 mL of 0.1N Na₂S₂O₃ for titration. Calculate the strength of H₂O₂ in terms of normality, percentage and volume. (MLNR 1996) - (b) To a 25 mL H₂O₂ solution, excess of acidified solution of KI was added. The iodine liberated required 20 mL of 0.3 N sodium thiosulphate solution. Calculate the volume strength of H₂O₂ solution. (IIT July 1997) - 19. Hydrogen peroxide solution (20 mL) reacts quantitatively with a solution of KMnO₄ (20 mL) acidified with dilute H₂SO₄. The same volume of the KMnO₄ solution is just decolourized by 10 mL of MnSO₄ in neutral medium simultaneously forming a dark brown precipitate of hydrated MnO₂. The brown precipitate is dissolved in 10 mL of 0.2 M sodium oxalate under boiling condition in the presence of dilute H₂SO₄. Write the balanced equations involved in the reactions and calculate the molarity of H₂O₂ (IIT 2001) - 20. 0.56 g of limestone was treated with oxalic acid to give CaC₂O₄. The precipitate decolorized 45 mL of 0.2N KMnO₄ in acid medium. Calculate % of CaO in limestone. (IIT 1988) - 21. 25 g of a sample of FeSO₄ was dissolved in water containing dil. H₂SO₄ and the volume made upto 1 litre. 25 mL of this solution required 20 mL of N/10 KMnO₄ for complete oxidation. Calculate % of FeSO₄ · 7H₂O in given sample. - 22. KMnO₄ oxidizes Xⁿ⁺ ion to XO₃, itself changing to Mn²⁺ in acid solution. 2.68×10⁻³ mole of Xⁿ⁺ requires 1.61×10⁻³ mole of MnO₄. What is the value of n? Also calculate the atomic mass of X, if the mass of 1g-equivalent of XCl_n is 56. - 23. 5.7 g of bleaching powder was suspended in 500 mL of water. 25 mL of this suspension on treatment with KI and HCl liberated iodine which reacted with 24.35 mL of N/10 Na₂S₂O₃. Calculate % of available Cl₂ in bleaching powder. (Roorkee 1990) - 24. A solution of $0.1M \text{ KMnO}_4$ is used for the reaction: $S_2O_3^{2-} + 2MnO_4^{-} + H_2O \longrightarrow MnO_2 + SO_4^{2-} + OH^-$ What volume of solution in mL will be required to react with $0.158 \text{ g of Na}_2S_2O_3$? (MLNR 1991) - 25. A sample of Fe₂(SO₄)₃ and FeC₂O₄ was dissolved in dil. H₂SO₄. The complete oxidation of reaction mixture required 40 mL of N/16 KMnO₄. After the oxidation, the reaction mixture was reduced by Zn and dil. H₂SO₄. H_2SO_4 . On again oxidation by same KMnO₄, 60 mL were required. Calculate the ratio of Meq. of Fe₂(SO₄)₃ and FeC₂O₄ in mixture. - 26. A solution of 0.2 g of a compound containing Cu²⁺ and C₂O₄²⁻ ions on titration with 0.02M KMnO₄ in presence of H₂SO₄ consumes 22.6 mL oxidant. The
resulting solution is neutralized by Na₂CO₃, acidified with dilute CH₃COOH and titrated with excess of KI. The liberated I₂ required 11.3 mL of 0.05M Na₂S₂O₃ for complete reduction. Find out mole ratio of Cu²⁺ and C₂O₄²⁻ in compound. (IIT 1991) - 27. 1 g sample of AgNO₃ is dissolved in 50 mL of water. It is titrated with 50 mL of KI solution. The AgI precipitated is filtered off. Excess of KI in filtrate is titrated with M / 10 KIO₃ in presence of 6M HCl till all I⁻ converted into ICl. It requires 50 mL of M / 10 KIO₃ solution. 20 mL of the same stock solution of KI requires 30 mL of M / 10 KIO₃ under similar conditions. Calculate % of AgNO₃ in sample. The reaction is: $$KIO_3 + 2KI + 6HCI \longrightarrow 3ICI + 3KCI + 3H_2O$$ (IIT 1992) - 28. 1.6 g of pyrolusite ore was treated with 50 cm³ of 1.0 N oxalic acid and some sulphuric acid. The oxalic acid left undecomposed was raised to 250 cm³ in a flask. 25 cm³ of this solution when titrated with 0.1 N KMnO₄ required 32 cm³ of the solution. Find out the percentage of pure MnO₂ in the sample and also the percentage of available oxygen. (Roorkee 1996) - 29. An aqueous solution containing 0.10 g KIO₃ (formula mass = 214.0) was treated with an excess of KI solution. The solution was acidified with HCl. The liberated I₂ consumed 45 mL of thiosulphate solution to decolourize the blue starch-iodine complex. Calculate the molarity of the sodium thiosulphate solution. ### (IIT 1998) - 30. 2.6 g sample of pyrolusite was boiled with 65 mL of N oxalic acid and excess of dil. H₂SO₄. The liquid was then filtered and the residue washed. The filtrate and the washing were mixed and made upto 500 mL. 100 mL of this solution required 50 mL of N/10 KMnO₄. Calculate % of MnO₂ in sample. - 31. 25 mL of a solution containing Fe²⁺ and Fe³⁺ sulphate acidified with H₂SO₄ is reduced by 3 g of metallic zinc. The solution required 34.25 mL of N/10 solution of K₂Cr₂O₇ for oxidation. Before reduction with zinc, 25 mL of the same solution required 22.45 mL of same K₂Cr₂O₇ solution. Calculate the strength of FeSO₄ and Fe₂(SO₄)₃ in solution. - 32. A sample of MnSO₄ · 4H₂O is strongly heated in air. The residue (Mn₃O₄) left was dissolved in 100 mL of - 0.1N FeSO₄ containing dil. H₂SO₄. This solution was completely reacted with 50 mL of KMnO₄ solution. 25 mL of this KMnO₄ solution was completely reduced by 30 mL of 0.1 N FeSO₄ solution. Calculate the amount of MnSO₄ · 4H₂O in sample. (Roorkee 2001) - 33. A solution contains mixture of H₂SO₄ and H₂C₂O₄. 25 mL of this solution requires 35.5 mL of N / 10 NaOH for neutralization and 23.45 mL of N / 10 KMnO₄ for oxidation. Calculate: - (a) Normality of H2C2O4 and H2SO4. - (b) Strength of H₂C₂O₄ and H₂SO₄. - Assume molar mass of $H_2C_2O_4 = 126$ - 34. Calculate the mass of MnO₂ and the volume of HCl of specific gravity 1.2 g mL⁻¹ and 4% nature by mass, needed to produce 1.78 litre of Cl₂ at STP by the reaction: $$MnO_2 + 4HCl \longrightarrow MnCl_2 + 2H_2O + Cl_2$$ 35. A sample of hydrazine sulphate (N₂H₆SO₄) was dissolved in 100 mL water. 10 mL of this solution was reacted with excess of FeCl₃ solution and warmed to complete the reaction. Ferrous ions formed were estimated and it required 20 mL of M/50 KMnO₄ solution. Estimate the mass of hydrazine sulphate in one litre of solution: Given, $$4Fe^{3+} + N_2H_4 \longrightarrow N_2 + 4Fe^{2+} + 4H^+$$ $MnO_4^- + 5Fe^{2+} + 8H^+ \longrightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$ (IIT 1988; MLNR 1993, 96) - 36. A 1 g sample of Fe₂O₃ solid of 55.2% purity is dissolved in acid and reduced by heating the solution with zinc dust. The resultant solution is cooled and made upto 100 mL. An aliquot of 25 mL of this solution requires 17 mL of 0.0167M solution of an oxidant for titration. Calculate no. of electrons taken up by oxidant in the above titration. (IIT 1991) - 37. 0.5 g sample of iron containing mineral mainly in the form of CuFeS₂ was reduced suitably to convert all the ferric ions into ferrous ions (Fe³⁺ → Fe²⁺) and was obtained as solution. In the absence of any interferring radical, the solution required 42 mL of 0.01 M K₂Cr₂O₇ for titration. Calculate % of CuFeS₂ in sample. - 38. A mixture of H₂C₂O₄ and NaHC₂O₄ weighing 2.02 g was dissolved in water and the solution made upto one litre. 10 mL of this solution required 3.0 mL of 0.1N NaOH solution for complete neutralization. In another experiment 10 mL of same solution in hot dilute H₂SO₄ medium required 4 mL of 0.1N KMnO₄ for complete neutralization. Calculate the mass of H₂C₂O₄ and NaHC₂O₄ in mixture. (IIT 1990) - 39. An equal volume of reducing agent is titrated separately with 1M KMnO₄ in acid, neutral and alkaline medium. The volumes of KMnO₄ required are 20 mL, 33.3 mL - and 100 mL in acid, neutral and alkaline medium respectively. Find out oxidation state of Mn in each reaction product. Give balance equation. Find the volume of 1 M K₂Cr₂O₇ consumed if same volume of reductant is titrated in acid medium. (IIT 1989) - 40. 0.2828 g of iron wire was dissolved in excess dilute H₂SO₄ and the solution was made upto 100 mL. 20 mL of this solution required 30 mL of N/30 K₂Cr₂O₇ solution for exact oxidation. Calculate % purity of Fe in wire. - 41. The reaction $Cl_2(g) + S_2O_3^{2-} \rightarrow SO_4^{2-} + Cl^-$ is to be carried out in basic medium. Starting with 0.15 mole of Cl_2 , 0.010 mole $S_2O_3^{2-}$ and 0.30 mole of OH^- , how many mole of OH^- will be left in solution after the reaction is complete? Assume no other reaction occurs. - 42. Mg can reduce NO₃ to NH₃ in basic solution: $$NO_3^- + Mg(s) + H_2O \longrightarrow Mg(OH)_2(s) +$$ $OH^-(aq.) + NH_3(g)$ A 25.0 mL sample of NO_3^- solution was treated with Mg. The $NH_3(g)$ was passed into 50 mL of 0.15 N HCl. The excess HCl required 32.10 mL of 0.10 M NaOH for its neutralization. What was the molarity of NO_3^- ions in the original sample? - 43. A new developed method for water treatment uses chlorine dioxide, ClO₂ rather than Cl₂ itself. ClO₂ can be obtained by passing Cl₂(g) into concentrated solution of sodium chlorite NaClO₂ · NaCl(aq.) is the other product. If this reaction has a 97% yield, how many mole of ClO₂ are produced per gallon of 2.0 M NaClO₂(aq.)? (1 gallon = 3.78 litre) - 44. A sample of ferrous sulphate and ferrous oxalate was dissolved in dil. H₂SO₄. The complete oxidation of reaction mixture required 40 mL of N/15 KMnO₄. After the oxidation, the reaction mixture was reduced by Zn and H₂SO₄. On again oxidation by same KMnO₄, 25 mL were required. Calculate the ratio of Fe in ferrous sulphate and oxalate. - 45. Calculate the % of Cr in a sample of dichromate ore if 0.5 g of the sample after fusion in regular way is treated with 50 mL of 0.12 N ferrous ammonium sulphate and the excess of Fe²⁺ requires 15.05 mL of $K_2Cr_2O_7$.(1 mL of $K_2Cr_2O_7 = 0.006$ g Fe). Also find % of Cr_2O_3 in sample. - 46. Hydroxylamine reduces iron III according to the equation $4Fe^{3+} + 2NH_2OH \rightarrow N_2O + H_2O + 4Fe^{2+} + 4H^+$. Iron II thus produced is estimated by titration with standard KMnO₄ solution. The reaction is $MnO_4^- + 5Fe^{2+} + 8H^+ \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$. A 10 mL of hydroxylamine solution was diluted to one litre. 50 mL of this diluted solution was boiled with an - excess of Fe $^{3+}$ solution. The resulting solution required 12 mL of 0.02M KMnO₄ solution for complete oxidation of Fe $^{2+}$. Calculate the mass of NH₂OH in one litre of original solution. - 47. Chile salt peter, a source of NaNO₃ also contains NaIO₃. The NaIO₃ can be used as a source of iodine, produced in the following reactions. $$IO_3^- + 3HSO_3^- \longrightarrow I^- + 3H^+ + 3SO_4^{2-}$$...(1) $5I^- + IO_3^- + 6H^+ \longrightarrow 3I_2(s) + 3H_2O$...(2) One litre of chile salt peter solution containing 5.80g NaIO₃ is treated with stoichiometric quantity of NaHSO₃. Now an additional amount of same solution is added to reaction mixture to bring about the second reaction. How many grams of NaHSO₃ are required in step I and what additional volume of chile salt peter must be added in step II to bring in complete conversion of I⁻ to I₂? - 48. 30 mL of a solution containing 9.15 g/litre of an oxalate K_xH_y(C₂O₄)_z·nH₂O are required for titrating 27 mL of 0.12N NaOH and 36 mL of 0.12 N KMnO₄ separately. Calculate X, Y, Z and n. Assume all H-atoms are replaceable and X, Y, Z are in the simple ratio of g-atoms. - 49. A polyvalent metal weighing 0.1 g and having atomic mass 51.0 reacted with dil. H₂SO₄ to give 43.9 mL of H₂ at STP. The solution containing the metal in the lower oxidation state was found to require 58.8 mL of 0.1N KMnO₄ for complete oxidation. What are valencies of metal? - 50. 25 mL of a solution of ferric alum Fe₂(SO₄)₃ · (NH₄)₂SO₄ · 24H₂O containing 1.25 g of the salt was boiled with iron when the reaction Fe + Fe₂(SO₄)₃ → 3FeSO₄ occurred. The unreacted iron was filtered off and solution treated with 0.107N KMnO₄ in acid medium. What is titre value? If Cu had been used in place of Fe, what would have been titre value? - 51. A 3.0 g sample containing Fe₃O₄, Fe₂O₃ and an inert impure substance is treated with excess of KI solution in presence of dilute H₂SO₄. The entire iron is converted to Fe²⁺ along with the liberation of iodine. The resulting solution is diluted to 100 mL. A 20 mL of dilute solution requires 11.0 mL of 0.5 M Na₂S₂O₃ solution to reduce the iodine present. A 50 mL of the diluted solution, after complete extraction of iodine requires 12.80 mL of 0.25 M KMnO₄ solution in dilute H₂SO₄ medium for the oxidation of Fe²⁺. Calculate the percentage of Fe₂O₃ and Fe₃O₄ in the original sample. - 52. The calcium contained in a solution of 1.048 g of a substance being analysed was precipitated with 25 mL H₂C₂O₄. The excess of C₂O₄² in one fourth of filtrate - was back titrated with 5 mL of $0.1025~N~KMnO_4$. T_0 determine the conc. of $H_2C_2O_4$ solution, it was diluted four folds and titration of 25 mL of dilute solution used up 24.1 mL of same $KMnO_4$
solution. Calculate % of C_a in substance. - 53. 0.804 g sample of iron ore was dissolved in acid. Iron was oxidized to +2 state and it required 47.2 mL of 0.112 N KMnO₄ solution for titration. Calculate % of Fe and Fe ₃O₄ in ore. (Roorkee 1988) - 54. A solution is containing 2.52 g litre⁻¹ of a reductant. 25 mL of this solution required 20 mL of 0.01M KMnO₄ in acid medium for oxidation. Find the molar mass of reductant. Given that each of the two atoms which undergo oxidation per molecule of reductant, suffer an increase in oxidation state by one unit. - 55. On ignition, Rochelle salt NaKC₄H₄O₆ · 4H₂O (molar mass 282) is converted into NaKCO₃ (molar mass 122). 0.9546 g sample of the Rochelle salt on ignition gives NaKCO₃ which is titrated with 41.72 mL H₂SO₄. From the following data, find the percentage purity of the Rochelle salt. The solution after neutralization requires 1.91 mL of 0.1297 N NaOH. The H₂SO₄ used for the neutralization requires its 10.27 mL against 10.35 mL of 0.1297 N NaOH. - 56. A mixture of KMnO₄ and K₂Cr₂O₇ weighing 0.24 g on being treated with KI in acid solution liberates just sufficient I₂ to react with 60 mL of 0.1N hypo. Find out % of Cr and Mn in mixture. - 57. 0.5 g mixture of K₂Cr₂O₇ and KMnO₄ was treated with excess of KI in acidic medium. Iodine liberated required 100 cm³ of 0.15N sodium thiosulphate solution for titration. Find the mass per cent of each in the mixture. #### (Roorkee 1995) 58. A 5.0 cm³ solution of H₂O₂ liberates 0.508 g of iodine from an acidified KI solution. Calculate the strength of H₂O₂ solution in terms of volume strength at STP. ### (IIT 1995) 59. A sample weighing 2.198 g containing a mixture of AO and A₂O₃ takes 0.015 mole of K₂Cr₂O₇ to oxidize the sample completely to form AO₄ and Cr³⁺. If 0.0187 mole of AO₄ is formed, what is atomic mass of A? #### (Roorkee 2001) **60.** Calculate the mass of SeO_3^{2-} in solution on the basis of following data. 20 mL of M / 60 solution of KBrO₃ was added to a definite volume of SeO_3^{2-} solution. The bromine evolved was removed by boiling and excess of KBrO₃ was back titrated with 5.1 mL of M / 25 solution of NaAsO₂. The reactions are given below: (a) $$SeO_3^{2-} + BrO_3^{-} + H^+ \longrightarrow SeO_4^{2-} + Br_2 + H_2O_3^{2-}$$ (b) $$BrO_3^- + AsO_2^- + H_2O \longrightarrow Br^- + AsO_4^{3-} + H^+$$ 61. A mixture containing As₂O₃ and As₂O₅ required 20.10 mL of 0.05 N iodine for titration. The resulting solution is then acidified and excess of KI was added. The liberated iodine required 1.1113 g hypo (Na₂S₂O₃·5H₂O) for complete reaction. Calculate mass of mixture. The reactions are: $$As_2O_3 + 2I_2 + 2H_2O \longrightarrow As_2O_5 + 4H^+ + 4I^-$$ $As_2O_5 + 4H^+ + 4I^- \longrightarrow As_2O_3 + 2I_2 + 2H_2O$ 62. 1.5 g of brass containing Cu and Zn reacts with 3M HNO₃ solution, the following reactions take place. $$Cu + HNO_3 \longrightarrow Cu^{2+} + NO_2(g) + H_2O$$ $Zn + H^+ + NO_3^- \longrightarrow NH_4^+ + Zn^{2+} + H_2O$ The liberated NO₂(g) was found to be 1.04 litre at 25°C and one atm. - (a) Calculate the percentage composition of brass. - (b) How many mL of 3M HNO3 will be required for completely reacting 1 g of brass? - 63. In a quality control analysis for sulphur impurity 5.6 g steel sample was burnt in a stream of oxygen and sulphur was converted into SO2 gas. The SO2 was then oxidized to sulphate by using H2O2 solution to which had been added 30 mL of 0.04M NaOH. The equation for reaction is: SO₂(g) + H₂O₂(aq.) + 2OH⁻(aq.) $$\longrightarrow$$ SO₄²⁻(aq.) + 2H₂O(l_2) - 22.48 mL of 0.024M HCl was required to neutralize the base remaining after oxidation reaction. Calculate % of sulphur in given sample. - 64. 0.108 g of finely divided copper was treated with an excess of ferric sulphate solution until copper was completely dissolved. The solution after the addition of excess dilute sulphuric acid required 33.7 mL of 0.1N KMnO₄ for complete oxidation. Find the equation which represents the reaction between metallic copper and ferric sulphate solution. Atomic mass of Cu = 63.6; - 65. For estimating ozone in the air, a certain volume of air is passed through an acidified or neutral KI solution when oxygen is evolved and iodide is oxidized to give iodine. When such a solution is acidified, free iodine is evolved which can be titrated with standard Na₂S₂O₃ solution. In an experiment 10 litre of air at 1 atm and 27°C were passed through an alkaline KI solution, at the end, the iodine entrapped in a solution on titration as above required 1.5 mL of 0.01N Na 2S2O3 solution. Calculate volume % of O3 in sample. - One litre of a mixture of O2 and O3 at NTP was allowed to react with an excess of acidified solution of KI. The iodine liberated required 40 mL of M/10 sodium thiosulphate solution for titration. What is the mass per cent of ozone in the mixture? Ultraviolet radiation of wavelength 300 nm can decompose ozone. Assuming that one photon can decompose one ozone molecule, how many photons would have been required for the complete decomposition of ozone in the original mixture? (IIT May 1997) - 67. A 10 g mixture of Cu_2S and CuS was treated with 200 mL of 0.75M MnO $_4^-$ in acid solution producing $\mathrm{SO}_2,\mathrm{Cu}^{2+}$ and Mn^{2+} . The SO_2 was boiled off and the excess of MnO_4^- was titrated with 175 mL of $1M Fe^{2+}$ solution. Calculate % of CuS in original mixture. - One g sample of NaCN was dissolved in 50 mL of 0.33M alkaline KMnO4 and heated strongly to convert all the CN to OCN. No other species in NaCN sample undergoes oxidation. Now acidifying the resulting mixture with H2SO4, the resulting solution requires 0.5 litre of 0.06 M FeSO₄. Calculate the % purity of NaCN in sample. - 69. 1.249 g of a sample of pure BaCO₃ and impure CaCO₃ containing some CaO was treated with dil. HCl and it evolved 168 mL of CO2 at NTP. From this solution BaCrO₄ was precipitated, filtered and washed. The dry precipitate was dissolved in dilute H2SO4 and diluted to 100 mL. 10 mL of this solution when treated with KI solution liberated iodine which required exactly 20 mL of 0.05 N Na₂S₂O₃. Calculate percentage of CaO in the sample. - 70. Determine which reagent is in excess and by how much if 100.0 g P₄O₆ is treated with 100 g KMnO₄ in HCl solution to form H₃PO₄ and MnCl₂? - 71. 12 g of an impure sample of arsenious oxide was dissolved in water containing 7.5 g of sodium bicarbonate and the resulting solution was diluted to 250 mL. 25 mL of this solution was completely oxidized by 22.4 mL of a solution of iodine. 25 mL of this iodine solution reacted with same volume of a solution containing 24.8g of sodium thiosulphate (Na₂S₂O₃ · 5H₂O) in one litre. Calculate the percentage of arsenious oxide in the sample. (Atomic mass of (Roorkee 1999) - 72. H₂O₂ is reduced rapidly by Sn²⁺, the products being Sn4+ and water. H2O2 decomposes slowly at room temperature to yield O2 and water. Calculate the volume of O2 produced at 20°C and 1.0 atm when 200 g of 10% by mass H₂O₂ in water is treated with 100 millilitre of $2.0 M \text{ Sn}^{2+}$ and then the mixture is allowed to stand until no further reaction occurs. - 73. A 1.7225 g of metal (bivalent) salt $A_x(CO_3)_y(OH)_z$ was dissolved to prepare 100 mL solution. 50 mL of this solution required 10 mL 1.0 N H₂SO₄ solution to reach the equivalence point using phenolphthalein as indicator. Another 50 mL solution using methyl orange as indicator required 15 mL of same acid. Deduce the formula of salt. - 74. A 3.0 g sample of Cu₂O is dissolved in dil. H₂SO₄ where it undergoes disproportionation quantitatively. The solution is filtered off and 8.3 g pure KI crystals are added to clear filtrate in order to precipitate CuI with evolution of I₂. The solution is again filtered and boiled till all the I₂ is expelled. Now excess of an oxidizing agent is added to filtrate which liberates I₂ again. The liberated I₂ this time requires 10 mL of 1.0 N Na₂S₂O₃ solution. Calculate % by mass of Cu₂O in sample. - 75. 10 mL of 1.0 M aqueous solution of Br₂ is added to excess of NaOH in order to disproportionate quantitatively to Br and BrO₃. The resulting solution is made free from Br ion by extraction and excess of OH neutralized by acidifying the solution. This solution requires 1.5 g of an impure CaC₂O₄ sample for complete redox change. Calculate % purity of CaC₂O₄ sample. - 76. 2 g sample of NaOCl and CaOCl₂ are dissolved in water to prepare 100 mL solution. 10 mL of this sample requires 10 mL of 0.15 M acidified Na₂C₂O₄ for end point. The clear solution is now treated with excess of AgNO₃ solution which precipitates 0.287 g AgCl. Calculate mass percentage of NaOCl and CaOCl₂ in mixture. - 77. 6.32 g of KMnO₄ are allowed to react with a mixture of 4 g of KCl and mg of KBr in presence of concentrated - H_2SO_4 . If the oxidizing agent is just sufficient to react with both halides completely to liberate halogen, what is the value of m? (Atomic mass: K = 39, Br = 80) - 78. 1 g of moist sample of KCl and KClO₃ was dissolved in water to make 250 mL solution, 25 mL of this solution was treated with SO₂ to reduce chlorate to chloride and excess of SO₂ was removed by boiling. The total chloride was precipitated as silver chloride. The mass of precipitate was 0.1435 g. In another experiment, 25 mL of original solution was heated with 30 mL of 0.2 N ferrous sulphate solution and unreacted ferrous sulphate required 37.5 mL of 0.08 N solution of an oxidant for complete oxidation. Calculate the molar ratio of chlorate to chloride in the given mixture. Fe²⁺ reacts with ClO₃ according to equation. $$ClO_3^- + 6Fe^{2+} + 6H^+ \longrightarrow Cl^- + 6Fe^{3+} + 3H_2O$$ 79. An acid solution of KReO₄ sample containing 26.83 mg of combined rhenium was reduced by passage through a column of granulated zinc. The effluent solution including the washings from the column, was then titrated with 0.05 N KMnO₄. 11.45 mL of the standard KMnO₄ was required for the reoxidation of
all the rhenium to the perrhenate ion ReO₄. Assuming that rhenium was the only element reduced, what is the oxidation state to which rhenium was reduced by the zinc column? ## **SOLUTIONS (Numerical Problems)** Eq. mass of oxidant or reductant = Molar mass of oxidant or reductant No. of 'e' lost or gained by one molecule of oxidant or reductant $2\text{Fe}^{2+} \longrightarrow (\text{Fe}^{3+})_2 + 2e$ (a) :: a) $$\therefore$$ $2\text{Fe}^{3} \longrightarrow (\text{Fe}^{3})_{2} + 2e$ \therefore Eq. mass of $\text{FeSO}_{4} = \frac{\text{Molar mass of FeSO}_{4}}{1} = \frac{152}{1}$ $$= 152$$ $$\therefore \qquad 6e + Cl^{5+} \longrightarrow Cl^{-3}$$ $$\therefore \text{ Eq. mass of KClO}_3 = \frac{\text{Molar mass of KClO}_3}{6}$$ $$= \frac{122.5}{20.42}$$ (b) :: $$S^{4+} \longrightarrow S^{6+} + 2e$$.. Eq. mass of Na₂SO₃ = $$\frac{M}{2} = \frac{126}{2} = 63$$ $$: 3e + Cr^{6+} \longrightarrow Cr^{3+}$$:. Eq. mass of Na 2CrO₄ = $$\frac{M}{3} = \frac{162}{3} = 54$$ (c) : $$2(Fe^{(8/3)+})_3 \longrightarrow 3Fe_2^{3+} + 2e$$ $$\therefore$$ Eq. mass of Fe₃O₄ = $\frac{M}{1} = \frac{232}{1} = 232$ $$\therefore 3e + Mn^{7+} \longrightarrow Mn^{4-}$$ ∴ Eq. mass of KMnO₄ = $$\frac{M}{3} = \frac{158}{3} = 52.67$$ ∴ $2I^{-} \longrightarrow I_{2}^{0} + 2e$ ∴ Eq. mass of KI = $\frac{M}{1} = \frac{166}{1} = 166$ (d) : $$2I^- \longrightarrow I_2^0 + 2e^{-\frac{1}{2}}$$:. Eq. mass of KI = $$\frac{M}{1} = \frac{166}{1} = 166$$ $$\therefore 6e + (Cr^{6+})_2 \longrightarrow 2Cr^{3+}$$:. Eq. mass of $$K_2 Cr_2 O_7 = \frac{M}{6} = \frac{294}{6} = 49$$ (e) : $$2e + Mn^{4+} \longrightarrow Mn^{2}$$ $$\therefore 2e + Mn^{4+} \longrightarrow Mn^{2+}$$ $$\therefore \text{ Eq. mass of Mn}^{4+} = \frac{\text{Atomic mass of Mn}}{2} = \frac{55}{2}$$ (f) : $$10e + 2N^{5+} \longrightarrow N_2^0$$ $$\therefore \text{ Eq. mass of NO}_3^- = \frac{\text{Ionic Molar mass}}{5} = \frac{62}{5} = 12.4$$ (g) : $$6e + N_2^0 \longrightarrow 2N^{3-}$$ ∴ $$6e + N_2^0 \longrightarrow 2N^{3-}$$ ∴ Eq. mass of $N_2 = \frac{\text{Molar mass of } N_2}{6} = \frac{28}{6} = 4.67$ ∴ $2S_2^{2+} \longrightarrow S_4^{(5/2)^+} + 2e$ (h) : $$2S_{-}^{2+} \longrightarrow S_{-}^{(5/2)+} + 2\epsilon$$ $$\therefore$$ Eq. mass of Na₂S₂O₃ = $\frac{M}{1} = \frac{158}{1} = 158$ $$\therefore \qquad 2e + I_2^0 \longrightarrow 2I^-$$ $$\therefore$$ Eq. mass of $I_2 = \frac{M}{2} = \frac{254}{2} = 127$ (i) $$\therefore$$ $\operatorname{FeC_2O_4} \longrightarrow \operatorname{Fe}^{3+} + \operatorname{CO_2}$ $\operatorname{Fe}^{2+} \longrightarrow \operatorname{Fe}^{3+} + e$ $\operatorname{C}_2^{3+} \longrightarrow 2\operatorname{C}^{4+} + 2e$ $\overline{\operatorname{FeC_2O_4}} \longrightarrow \operatorname{Fe}^{3+} + 2\operatorname{C}^{4+} + 3e$:. Eq. mass of $$FeC_2O_4 = \frac{M}{3} = \frac{144}{3} = 48$$ 2. (i) $$Mn^{7+} + 3e \longrightarrow Mn^{4+}$$; Eq. mass = $M/3$ (ii) $$Mn^{7+} + 5e \longrightarrow Mn^{2+}$$; Eq. mass = $M/5$ (iii) $$\operatorname{Mn}^{7+} + \operatorname{le} \longrightarrow \operatorname{Mn}^{6+}$$; Eq. mass = $M/1$ 3. Meq. of sodium bromate = $$85.5 \times 0.672 = 57.456$$ (i) : Meq. of NaBrO₃ = $$57.456$$ $$\therefore \frac{\frac{w}{E} \times 1000 = 57.456}{\frac{w}{151/6} \times 1000 = 57.456} \quad \left(\because E_{\text{NaBrO}_3} = \frac{M}{6}\right)$$.. $$w = 1.446 \text{ g}$$ Also, Molarity = $\frac{\text{Normality}}{\text{Valency factor}} = \frac{0.672}{6} = 0.112 \text{M}$ (ii) Similarly use valency factor 5 in place of 6 in this problem and get $$w = 1.735 \text{ g}$$ $M = 0.1344 M$ and $$M = 0.1344M$$ The term valency factor = No. of electrons lost or gained by one molecule of reductant or oxidant 4. The reactions for redox change are $$5e + Mn^{7+} \longrightarrow Mn^{2+}$$ $Fe^{2+} \longrightarrow Fe^{3+} + le$ Now Meq. of $$KMnO_4 = Meq.$$ of $FeSO_4$ $$0.05 \times 5 \times v = \frac{2}{152/1} \times 1000$$ $$\therefore \text{ Meq.} = N \times V \text{ in mL}$$ $$\therefore v = 52.63 \text{ mL} \text{ and Meq.} = \frac{\text{Mass}}{\text{Eq. mass}} \times 1000$$ 5. For Sn, $$\operatorname{Sn}^{2+} \longrightarrow \operatorname{Sn}^{4+} + 2e$$ For $\operatorname{Cr}_2\operatorname{O}_7^{2-} \quad 6e + \operatorname{Cr}_2^{6+} \longrightarrow 2\operatorname{Cr}^{3+}$ (a) Meq. of $$SnCl_2 = 2000 \times 0.1$$ $$\therefore \frac{w}{E} \times 1000 = 200$$ $$\therefore \frac{w}{189.7/2} \times 1000 = 200 \qquad \left[\because E_{SnCl_2} = \frac{M_{SnCl_2}}{2}\right]$$ $$\therefore \qquad w_{\text{SnCl}_2} = 18.97 \text{ g}$$ 6. For redox change: $$Mn^{2+} \longrightarrow Mn^{4+} + 2e$$ $$3e + Mn^{7+} \longrightarrow Mn^{4+}$$: Meq. of KMnO₄ = Meq. of MnSO₄ $$[\because N = M \times \text{valency factor}]$$ $$N \times 16 = 20 \times 0.2 \times 2$$ $$N = 0.5$$ $$M = \frac{0.5}{3} = 0.167$$ [∵ valency factor for KMnO₄ = 3] 7. The redox changes are: $$Sn \longrightarrow Sn^{4+} + 4e$$ $$6e + Cr_2^{6+} \longrightarrow 2Cr^{3+}$$ $$\therefore \text{ Meq. of Sn} = \text{Meq. of } K_2 \text{Cr}_2 \text{O}_7$$ or $$\frac{1}{E_{\text{Sn}}} \times 1000 = \frac{1}{10} \times V$$ or $$\frac{1}{118.7} \times 1000 = \frac{1}{10} \times V$$ (: Eq. mass of $Sn = \frac{At. \text{ mass}}{4}$) or $$V = 336.98 \text{ mL}$$ 8. Reactions for redox change are: $$5e + Mn^{7+} \longrightarrow Mn^{2+}$$ $Fe^{2+} \longrightarrow Fe^{3+} + le$ It is to be noted here that only FeSO₄ · 7H₂O will react with KMnO₄ to bring in redox change. : Meq. of FeSO₄ · 7H₂O = Meq. of KMnO₄ $$\frac{w}{E} \times 1000 = 5.4 \times 0.1$$: $\frac{w}{278} \times 1000 = 0.54$ $$\therefore w = 0.150g$$: Mass of Fe₂(SO₄)₃ · 9H₂O = $$5.5 - 0.150$$ g = 5.350 g .. Mass of Fe₂(SO₄)₃ · 9H₂O = 5.5 - 0.150 g = 5.350 g .. Mole of Fe₂(SO₄)₃ · 9H₂O = $$\frac{5.350}{562}$$ = 9.5 × 10⁻³ mol (: Molar mass of $$Fe_2(SO_4)_3 \cdot 9H_2O = 562$$) 9. $$MnO_2 \xrightarrow{HCl} Cl_2 \xrightarrow{KI} I_2 \xrightarrow{Na_2S_2O_3} NaI + Na_2S_4O_6$$ $2e + I_2^0 \longrightarrow 2I^-$ Redox changes are: $$2(S^{2+})_2 \longrightarrow (S^{5/2+})_4 + 2e$$ $$2e + Mn^{4+} \longrightarrow Mn^{2+}$$ The reactions suggest that, = Meq. of $$I_2$$ liberated $$\therefore \frac{w}{M/2} \times 1000 = 0.1 \times 1 \times 30$$ [: $$N_{\text{Na}_2\text{S}_2\text{O}_3} = M_{\text{Na}_2\text{S}_2\text{O}_3}$$ since valency factor = 1, see redox changes for Na₂S₂O₃] or $$w = \frac{0.1 \times 1 \times 30 \times M}{2000} = \frac{0.1 \times 1 \times 30 \times 87}{2000}$$ (: $M_{MnO_2} = 87$) $w_{MnO_2} = 0.1305$ Purity of MnO₂ = $$\frac{0.1305}{0.5} \times 100 = 26.1\%$$ 10. The element forming acidic oxide is non-metal say A. It forms isomorphous of K2SO4 with KOH, i.e., K2AO4. $$A^0 \longrightarrow A^{6+} + 6e$$:. Atomic mass of A = Eq. mass of $$A \times No.$$ of 'e' lost = $13.16 \times 6 = 78.96$ $$\operatorname{Sn}^{2+} \longrightarrow \operatorname{Sn}^{4+} + 2e$$ $$6e + (Cr^{6+})_2 \longrightarrow 2Cr^{3+}$$ Since, Sn2+ is oxidized by K2Cr2O7 $$\therefore$$ Meq. of Sn²⁺ = Meq. of K₂Cr₂O₇ used for tin $$= N \times V_{\text{in mL}}$$ $$= \frac{2.5}{\frac{294.2}{6} \times 0.50} \times 10 = 1.0197$$ $$\left(:: N = \frac{2.5}{\frac{294.2}{6} \times 0.5} \right)$$ $$\therefore \frac{w_{\text{Sn}^{2+}}}{118/2} \times 1000 = 1.0197$$ $$w_{\rm Sn^{2+}} = 0.06 \, \rm g$$ $$w_{\text{Sn}^{2+}} = 0.06 \text{ g}$$ $Sn = \frac{0.06}{0.4} \times 100 = 15\%$ 12. Redox changes are: $$Mn^{7+} + 5e \longrightarrow Mn^{2+}$$ $$O_2^{1-} \longrightarrow O_2^0 + 2e$$ $$\therefore$$ Eq.mass of $H_2O_2 = \frac{34}{2}$ Now, Meq. of KMnO₄ = Meq. of H₂O₂ $$N.(X) = \frac{X}{100 \times 34/2} \times 1000$$ $$N = 0.588$$ 13. $$A^{n-} \longrightarrow A^{a+} + (a+n)e$$ $$6e + (\operatorname{Cr}^{6+})_2 \longrightarrow 2\operatorname{Cr}^{3+}$$ $$\therefore \qquad \text{Meq. of } A^{n-} = \text{Meq. of } \operatorname{Cr}_2 \operatorname{O}_7^{2-}$$ or $$3.26 \times 10^{-3} \times (a+n) = 1.68 \times 10^{-3} \times 6$$ $$\therefore a+n=3 \text{ or } a=3-n$$ 14. Redox changes are: $$5e + Mn^{7+} \longrightarrow Mn^{2+}$$ $$(O^-)_2 \longrightarrow O_2^0 + 2e$$ (a) $$\therefore$$ Meq. of $H_2O_2 = \text{Meq. of } KMnO_4$ $$\frac{w \times 1000}{34/2} = \frac{0.316}{M/5} \times 1000$$ $$\frac{w \times 1000}{34/2} = \frac{0.316}{M/5} \times 1000$$ $$\therefore \frac{w \times 2 \times 1000}{34} = \frac{0.316 \times 5 \times 1000}{158}$$ $$w_{\rm H_2O_2} = 0.17\,\rm g$$ $$\therefore$$ % of H₂O₂ = $\frac{0.17 \times 100}{0.2}$ = 85% (b) Now, Eq. of $$O_2 = \text{Eq. of KMnO}_4$$ $$\frac{w}{32/2} = \frac{0.316 \times 5}{158}$$ $$\therefore \qquad w_{O_2} = 0.16 \text{ g}$$ $$\therefore \qquad \frac{750}{760} \times V = \frac{0.16}{32} \times 0.0821 \times 300$$ $$\therefore \qquad V_{O_2} = 124.79 \text{ mL}$$ 15. Redox changes are: $5e + Mn^{7+} \longrightarrow Mn^{2+}$ $(C^{3+})_2 \longrightarrow 2C^{4+} + 2e$.. Meq. of oxalate ion = Meq. of KMnO₄ $$\frac{w}{E} \times 1000 = 90 \times \frac{1}{20}$$ $$\left[E_{\text{CoO}_4^{2-}} = \frac{\text{Ionic mass}}{2} \right]$$ $$\frac{w}{\frac{88}{2}} \times 1000 = \frac{9}{2}$$ $$w_{C_2O_4^{2-}} = 0.198 g$$ \therefore 0.3 g C₂O₄²⁻ sample has oxalate ion = 0.198 g $$\therefore$$ % of $C_2 O_4^{2-}$ in sample = $\frac{0.198 \times 100}{0.3}$ = 66% 16. Redox changes are: $2e + (O^-)_2 \longrightarrow 2O^{2-}$ $$2I^{-} \longrightarrow I_{2} + 2e$$ $$2(S^{2+})_{2} \longrightarrow (S^{5/2+})_{4} + 2e$$ $$2e + I_{2}^{0} \longrightarrow 2I^{1-}$$ and $$H_2O_2 \xrightarrow{KI} I_2 + H_2O \xrightarrow{Na_2S_2O_3} d Na_2S_4O_6 + 2I^-$$ \therefore Meq. of H₂O₂ = Meq. of KI used = Meq. of I₂ liberated = Meq. of Na 2 S2 O3 used Meq. of $$H_2O_2 = Meq.$$ of $Na_2S_2O_3$ used $N \times 50 = 20 \times 0.1$ \therefore $N_{H_2O_2} = 0.04$:. Strength of $H_2O_2 = N \times E = 0.04 \times \frac{34}{2} = 0.68 \text{ g litre}^{-1}$ 17. Redox changes are: For $$H_2C_2O_4$$ $(C^{3+})_2 \longrightarrow 2C^{4+} + 2e$ For KMnO₄ $5e + Mn^{7+} \longrightarrow Mn^{2+}$ Meq. of oxalic acid in 10 mL solution = Meq. of KMnO₄ used for it = $8.5 \times \frac{1}{10}$ \therefore Meq. of oxalic acid in 200 mL solution = $8.5 \times \frac{1}{10}
\times \frac{200}{10}$ $$\therefore \quad \frac{w}{E} \times 1000 = 17$$ Formula of oxalic acid is $$H_2C_2O_4 \cdot 2H_2O$$ $$\therefore Molar mass = 126$$ $$\therefore \frac{w}{126/2} \times 1000 = 17$$ $$w_{H_2C_2O_4} = 1.071g$$: % purity of oxalic acid = $\frac{1.071}{1.2} \times 100 = 89.25\%$ 18. (a) The redox changes are $$2e + (O^{-})_{2} \longrightarrow 2O^{2-}$$ $$2I^{-} \longrightarrow I_{2} + 2e$$ $$2(S^{2+})_2 \longrightarrow (S^{5/2+})_4 + 2e$$ $I_2 + 2e \longrightarrow 2I^-$ Meq. of H_2O_2 = Meq. of I_2 = Meq. of $Na_2S_2O_3$ $$N \times 25 = 0.1 \times 20$$.: $N_{\text{H}_2O_2} = 0.08$ Mass of H_2O_2 in one litre = $0.08 \times \frac{34}{2} = 1.36 \,\text{g}$ % by mass = 0.136% Also concentration of H2O2 in terms of volume = 0.448 volume (b) Follow problem 18 (a) [Ans. 1.344] 19. The given reactions are: $$\begin{array}{c} MnO_2 \ ^{\downarrow} \ Na_2C_2O_4 + 2H_2SO_4 \longrightarrow MnSO_4 \ + \\ 2CO_2 + Na_2SO_4 + 2H_2O \end{array}$$ $\therefore \text{ Meq. of MnO}_2 = \text{Meq. of Na}_2 C_2 O_4 = 10 \times 0.2 \times 2 = 4$ $\therefore \text{ Mn}^{4+} + 2e \longrightarrow \text{Mn}^{2+}$ $$Mn^{4+} + 2e \longrightarrow Mn^{2+}$$:. Valence factor of MnO₂ = 2 :: mM of MnO₂ = $\frac{4}{2}$ = 2 Now, $$2KMnO_4 + 3MnSO_4 + 2H_2O \longrightarrow 5MnO_2 + (ppt.)$$ $K_2SO_4 + 2H_2O$ Since, Eq. mass of MnO2 is derived from KMnO4 and MnSO₄ both, thus it is better to proceed by mole concept. mM of KMnO₄ = mM of MnO₂ $$\times \frac{2}{5} = \frac{4}{5}$$ Also, $$5H_2O_2 + 2KMnO_4 + 3H_2SO_4 \longrightarrow 2MnSO_4 + K_2SO_4 + 8H_2O + 5O_2$$ ∴ mM of H₂O₂ = mM of KMnO₄ × $$\frac{5}{2} = \frac{4}{5} \times \frac{5}{2} = 2$$ $$M \times 20 = 2$$ $$M_{\text{H}_2\text{O}_2} = 0.1$$ 20. Limestone $\xrightarrow{\text{oxalic acid}}$ CaC₂O₄ $\xrightarrow{\text{KMnO}_4}$ decolorizes :. Redox changes are: For $$CaC_2O_4$$ $(C^{3+})_2 \longrightarrow 2C^{4+} + 2e$ For $KMnO_4$ $5e + Mn^{7+} \longrightarrow Mn^{2+}$ \therefore Meq. of CaCO₃ = Meq. of CaC₂O₄ = Meq. of KMmO₄ (since CaO is present in CaCO₃) :. Meq. of CaO = Meq. of KMnO₄ $$\frac{w}{56/2} \times 1000 = 45 \times 0.2$$ Mass of $$CaO = 0.252 c$$ Mass of CaO = 0.252 g ∴ % of CaO in limestone = $$\frac{0.252}{0.56} \times 100 = 45\%$$ 21. The redox changes are: For FeSO₄ Fe²⁺ $$\longrightarrow$$ Fe³⁺ + le For KMnO₄ $5e + Mn^{7+} \longrightarrow Mn^{2+}$ $$\therefore \text{ Meq. of FeSO}_4 \cdot 7H_2 \text{ O in 25 mL solution}$$ $$= \text{Meq. of KMnO}_4 = 20 \times \frac{1}{10}$$ $$\therefore \quad \text{Meq. of FeSO}_4 \cdot 7H_2O \text{ in 1 litre solution} \\ = 20 \times \frac{1}{10} \times \frac{1000}{25} = 80$$ $$\therefore \frac{w}{E} \times 1000 = 80$$ (Molar mass of FeSO₄ · 7H₂O = 278) $\therefore \frac{w}{278} \times 1000 = 80$ $$\therefore \qquad w = 22.24 \,\mathrm{g}$$ $25 \text{ g sample has FeSO}_4 \cdot 7\text{H}_2\text{O} = 22.24 \text{ g}$.. % of FeSO₄ · 7H₂O in sample = $22.24 \times \frac{100}{25} = 88.96\%$ 22. Redox changes are: For KMnO₄ $$5e + \text{Mn}^{7+} \longrightarrow \text{Mn}^{2+}$$ For X^{n+} $X^{n+} \longrightarrow X^{5+} + (5-n)e$ Now, ٠. Meq. of $$X^{n+}$$ = Meq. of KMnO₄ \therefore Meq. = mole \times 2.68 \times 10⁻³ \times (5 - n) \times 1000 valency factor \times 1000 $$=1.61\times10^{-3}\times5\times1000$$ $$n = 1.99$$ $$n=2$$ Now, $$X^{2+} \longrightarrow X^{5+} + 3e$$ If a is atomic mass of X, $$\therefore$$ Eq. mass of $XCl_2 = 56$ \therefore Molar mass of $XCl_2 = 56 \times \text{valency factor} = 56 \times 3$ or $$a+71=56\times 3$$ 23. Bleaching powder $$\xrightarrow{KI + HCI}$$ $I_2 \xrightarrow{Na_2S_2O_3} I^- + Na_2S_4O_6$ The redox changes are: $2e + I_2 \longrightarrow 2I^-$ $$2(S^{2+})_2 \longrightarrow (S^{5/2+})_4 + 2e$$ Meq. of bleaching powder = Meq. of available Cl₂ = Meq. of I2 liberated :. Meq. of available Cl2 in 25 mL bleaching powder solution = Meq. of Na₂S₂O₃ used = $$24.35 \times \frac{1}{10}$$:. Meq. of available Cl2 in 500 mL bleaching powder $$=24.35\times\frac{1}{10}\times\frac{500}{25}=48.7$$ $$\therefore \frac{w}{71/2} \times 1000 = 48.7 \therefore w_{\text{Cl}_2} = 1.729 \text{ g}$$ ∴ % of available Cl₂ in bleaching powder $= \frac{1.729}{5.7} \times 100 = 30.33\%$ 24. Redox changes are: $$(S^{2+})_2 \longrightarrow 2S^{6+} + 8e$$ $3e + Mn^{7+} \longrightarrow Mn^{4+}$ $$3e + Mn^{7+} \longrightarrow Mn^{4-}$$ ∴ Meq. of KMnO₄ = Meq. of S₂O₃² $$0.1 \times 3 \times V = \frac{0.158}{158/8} \times 1000$$ (: Molar mass of Na₂S₂O₃ = 158) $V = 26.67 \text{ mL}$ 25. Let Meq. of Fe₂(SO₄)₃ and FeC₂O₄ are a and b respectively. KMnO₄ will oxidize only FeC₂O₄ as: $$2Fe^{2+} \longrightarrow Fe_2^{3+} + 2e$$ $$(C^{3+})_2 \longrightarrow 2C^{4+} + 2e$$ Note that valence factor for Fe2(SO4)3 is 2 and for FeC₂O₄ is 3. Meq. of FeC2O4 of valence factor 3 + Meq. of $$Ca_2O_4^{2-}$$ (v. f. = 2) $$b = \frac{b}{3} + \frac{2b}{3}$$ $$b = \text{Meq. of KMnO}_4$$ $$b = 40 \times \frac{1}{16} = \frac{40}{16}$$...(1) Fe₂³⁺ from Fe₂(SO₄)₃ and Fe₂³⁺ obtained by oxidation of FeC2O4 will be converted to Fe2+ as, $$2e + (Fe^{3+})_2 \longrightarrow 2Fe^{2+}$$ The CO₂ formed during oxidation of FeC₂O₄ with KMnO₄ Now, Meq. of Fe2+ so obtained are again oxidized by $KMnO_4$. .. Meq. of Fe2+ of Fe2 (SO4)3 reduction + Meq. of Fe²⁺ of FeC₂O₄ = Meq. of KMnO₄ $$a + \frac{b}{3} = 60 \times \frac{1}{16} = \frac{60}{16}$$...(2) By Eqs. (1) and (2), $$a = \frac{140}{48}$$, $b = \frac{40}{16}$ By Eqs. (1) and (2), $$a = \frac{140}{48}$$, $b = \frac{40}{16}$ $$\therefore \frac{\text{Meq. of Fe}_2(\text{SO}_4)_3 \text{ of valence factor } 2}{\text{Meq. of Fe}_2(\text{O}_4)_3 \text{ of valence factor } 3} = \frac{140}{48} \times \frac{16}{40} = \frac{7}{6}$$:. Ratio of Meq. of $Fe_2(SO_4)_3$: Meq. of $FeC_2O_4 = 7:6$ 26. Let a mole of Cu^{2+} and b mole of $C_2O_4^{2-}$ be present in Case I: The solution is oxidized by KMnO₄ which reacts with only $C_2O_4^{2-}$. $$5e + \text{Mn}^{7+} \longrightarrow \text{Mn}^{2+}$$ $$(C^{3+})_2 \longrightarrow 2C^{4+} + 2e$$ Meq. of $C_2O_4^{2-} = \text{Meq. of KMnO}_4$ $$b \times 2 \times 1000 = 0.02 \times 5 \times 22.6$$ $$b = 1.13 \times 10^{-3} \qquad ...(1)$$ Case II: After oxidation of C₂O₄²⁻, the resulting solution is neutralized by Na 2 CO3, acidified with dilute CH3 COOH and then treated with excess of KI. The liberated I_2 required Na 2S2O3 for its neutralization, i.e., $$Cu^{2+} \xrightarrow{KI} I_2 \xrightarrow{Na_2S_2O_3} Na_2S_4O_6 + I^-$$ ∴ Meq. of Cu²⁺ = Meq. of I₂ liberated = Meq. of Na₂S₂O₃ used ∴ Meq. of Cu²⁺ = Meq. of Na₂S₂O₃ used $$a \times 1 \times 1000 = 11.3 \times 0.05 \times 1$$ ∴ $a = 5.65 \times 10^{-4}$ ∴ Molar ratio of $\frac{Cu^{2+}}{C_2O_4^{2-}} = \frac{a}{b} = \frac{5.65 \times 10^{-4}}{1.13 \times 10^{-3}} = \frac{1}{2}$ $$2(S^{2+})_2 \longrightarrow (S^{5/2+})_4 + 2e$$ ### 27. For KI + KIO3 reaction: $$I^{5+} + 4e \longrightarrow I^{+}$$ $I^{-} \longrightarrow I^{+} + 2e$:. valence factor of KI = 2 and valence factor of KIO₃ = 4 Meq. of KI in 20 mL = $30 \times \frac{1}{10} \times 4 = 12$ Now, .. Meq. of KI in 50 mL = $$12 \times \frac{50}{20} = 30$$ Now, Meq. of KI left after treatment with AgNO3 $$=50 \times \frac{1}{10} \times 4 = 20$$:. Meq. of KI (v.f. = 2) used by AgNO₃ = 30 - 20 = 10But in its reaction with AgNO₃ valence factor of KI = 1 $AgNO_3 + KI \longrightarrow AgI + KNO_3$ $$AgNO_3 + KI \longrightarrow AgI + KIO_3$$ $$\therefore \text{ Meq. of KI used by AgNO}_3 (v. f. = 1) = \frac{10 \times 1}{2} = 5$$ $$\therefore \text{ Meq. of AgNO}_3 = 5$$ $$\frac{w}{170} \times 1000 = 5$$ $$w = 0.85$$ ∴ $$w = 0.85 \text{ g}$$ ∴ % purity of AgNO₃ in sample = $\frac{0.85 \times 100}{1} = 85\%$ ## Alternative method: milli mole of KIO₃ used by 20 mL of KI stock solution $= 30 \times \frac{1}{10} = 3$:. milli mole of KIO₃ used by 50 mL of KI stock solution = $3 \times \frac{50}{20} = 7.5$ milli mole of KIO₃ used by KI left in 50 mL solution after $$AgNO_3 = \frac{1}{10} \times 50 = 5$$: Mole ratio of KIO3 and KI is 1:2 in reaction :. milli mole of KI in 50 mL stock solution = 7.5 × 2 = 15 :. milli mole of KI left in 50 mL solution after reaction with AgNO₃ = $5 \times 2 = 10$:. milli mole of KI used for AgNO₃ = 15 - 10 = 5 m mole of AgNO₃ = 5 (: mole ratio of KI and AgNO₃ reaction is 1: I) Now for AgNO₃: ∴ $$w_{AgNO_3} = 0.85$$ ∴ % of AgNO₃ = 0.85 × $\frac{100}{1}$ = 85% 28. Meq. of MnO₂ = Meq. of oxalic acid added - Meq. of oxalic acid left $= 1 \times 50 - 0.1 \times 32 \times 10$ % of MnO₂ = $$\frac{0.7821}{1.6} \times 100 = 48.88\%$$ Also Meq. of $MnO_2 = Meq.$ of $O_2 = 18$ $$\frac{w}{8} \times 1000 = 18$$ $$w_{\rm O_2} = 0.144 \, \rm g$$ $$w_{O_2} = 0.144 \text{ g}$$ $$\therefore \text{ % of available } O_2 = \frac{0.144}{1.6} \times 100 = 9$$ 29. $$KIO_3 + 5KI \longrightarrow 3K_2O + 3I_2$$ $$i.e. \qquad 2I^{5+} + 10e \longrightarrow I_2^0$$ $$2I^{-} \longrightarrow I_2^0 + 2e$$ Now the liberated $$I_2$$ reacts with Na₂S₂O₃ to give $$I_2 + 2e \longrightarrow 2I^-$$ $$2S_2O_3^2^- \longrightarrow S_4O_6^{2-} + 2e$$: millimole ratio is I2 : S2O3 :: 1: 2, Thus, m. mole of I_2 liberated = m. mole of $Na_2S_2O_3$ used $\times \frac{1}{2} = 45 \times M \times \frac{1}{2}$ (M is molarity of thiosulphate) Also m. mole of KIO₃ = $$\frac{0.1}{214} \times 1000$$ Now, m. mole ratio is KIO3: 12::1:3 Thus, $$\frac{\frac{0.1}{214} \times 1000}{\frac{45 M}{2}} = \frac{1}{3}$$ $$M = \frac{0.1 \times 1000 \times 3 \times 2}{214 \times 45}$$ $$M = 0.062$$ 30. 1. Pyrolusite contains MnO2. 2. Meq. of oxalic acid added to pyrolusite = $65 \times 1 = 65$ 3. MnO2 reacts with oxalic acid as, $$2e + Mn^{4+} \longrightarrow Mn^{2+}$$ $$(C^{3+})_2 \longrightarrow 2C^{4+} + 2e$$ Excess of oxalic acid is oxidized by KMnO₄ Meq. of oxalic acid left in 100 mL = $50 \times \frac{1}{10} = 5$ $$\therefore$$ Meq. of oxalic acid left in 500 mL = $5 \times \frac{500}{100} = 25$ \therefore Meq. of oxalic acid used for MnO₂ = 65 - 25 = 40 $$\therefore \qquad \text{Meq. of MnO}_2 = 40$$: Molar mass of MnO₂ = 87, Eq. mass = $\frac{87}{2}$
$$\frac{w}{87/2} \times 1000 = 40 \quad \therefore \quad w_{\text{MnO}_2} = 1.74 \,\text{g}$$.. % of MnO₂ in pyrolusite = $$\frac{1.74}{2.6} \times 100 = 66.92\%$$ 31. Case I: $$Fe^{2+} \xrightarrow{Zn \text{ dust } + H_2SO_4} Fe^{2+}$$ (i.e., no change) $2e + (Fe^{3+})_2 \xrightarrow{Zn \text{ dust } + H_2SO_4} 2Fe^{2+}$: Zn dust is used as reducing agent and thus, $$Zn \longrightarrow Zn^{2+} + 2e$$ Let a Meq. of Fe²⁺ and b Meq. of Fe³⁺ be present in 25 mL solution. In case I, after reduction with Zn, Meq. of Fe^{2+} + Meq. of Fe^{2+} from $Fe^{3+} = a + b$ Now these are oxidized by K2Cr2O7 \therefore Total Meq. of Fe²⁺ = Meq. of K₂Cr₂O₇ $$a+b=34.25\times\frac{1}{10}$$ $$a+b=3.425$$...(Case II: If reduction is not made, the solution contains Fe2+ and Fe3+ of which only Fe2+ are oxidized by K2Cr2O7. Meq. of $$Fe^{2+} = Meq.$$ of $K_2Cr_2O_7$ $$a = 22.45 \times \frac{1}{10}$$ $$a = 2.245$$...(2) $b = 3.425 - 2.245 = 1.18$:. By Eq. (1), $$b = 3.425 - 2.245 = 1.18$$ ∴ Meq. of FeSO₄ (in 25 mL) Meq. of Fe₂(SO₄)₃ = $$a = 2.245$$ (in 25 mL) = $b = 1.18$ $$\therefore \frac{w}{M/1} \times 1000 = 2.245$$ $$\therefore \frac{w}{M/2} \times 1000 = 1.18$$ $$\therefore \text{ Molar mass of}$$ $$\therefore \text{ Molar mass of}$$ FeSO₄ = 152 Fe₂(SO₄)₃ = 400 $$\therefore$$ Mass of FeSO₄ in 25 mL \therefore Mass of Fe₂(SO₄) in $$\begin{array}{c|c} & = 0.341g \\ & = 0.236g \\ \therefore \text{ Strength of Fe}_2(SO_4)_3 \\ \end{array}$$ The residue Mn $_3O_4$ is dissolved in FeSO $_4$ which is reduced from Mn $^{8/3+}$ to Mn $^{2+}$ (Mn $^{8/3+}$) $_3+2e \longrightarrow 3$ Mn $^{2+}$. The excess of FeSO₄ is titrated by KMnO₄. The normality of KMnO₄ is determined by another FeSO₄. For normality of KMnO4: Meq. of KMnO4 $$25 \times N = 30 \times 0.1 \quad \therefore \quad N = \frac{3}{25}$$ Now Meq. of $:eSO_4$ added to $Mn_3O_4 = 100 \times 0.1 = 10$ Meq. of FeSO₄ left after reaction with Mn 3O₄ = Meq. of KMnO₄ used = $$50 \times \frac{3}{25} = 6$$ $$\therefore \text{ Meq. of FeSO}_4 \text{ used for Mn}_3 O_4 = 10 - 6 = 4$$ $$Meq. of Mn3O4 = 4$$ $$\therefore \qquad \text{Meq. of MnSO}_4 \cdot 4H_2O = 4$$ $$\therefore \qquad \qquad \text{Meq. of MnSO}_4 \cdot 4H_2O = 4$$ $$\frac{w}{3M/2} \times 1000 = 4$$ $$\therefore E = \frac{M}{2/3} \text{ for MnSO}_4 \text{ as valence factor is } \frac{2}{3}$$ $$\frac{w \times 2}{3 \times 223} \times 1000 = 4 : w = 1.338 g$$ 33. For acid-base reaction in 25 mL solution: Meq. of H₂SO₄ + Meq. of H₂C₂O₄ = Meq. of NaOH $$a+b=35.5 \times \frac{1}{10} = 3.55$$...(1) For redox change: Meq. of oxalic acid = Meq. of KMnO₄ $b = 23.45 \times \frac{1}{10} = 2.345$ $$b = 23.45 \times \frac{1}{10} = 2.345$$:. Meq. of $$H_2SO_4 = a$$ and Meq. of oxalic acid (in 25 mL) and $meq. of oxalic acid (in 25 mL) = b = 2.345$ $$= 3.55 - 2.345 = 1.205 N_{\text{H}_2\text{C}_2\text{O}_4} = \frac{2.345}{25} = 0.0938$$ $$\therefore N_{\text{H}_2\text{SO}_4} = \frac{1.205}{25} = 0.0482$$ and Strength $$= N \times E = 0.0482 \times 49$$ $$= 2.362 \text{ g litre}^{-1}$$ Strength = $N \times E$ $$= 0.0938 \times 63$$ $$= 5.909 \text{ g litre}^{-1}$$ 34. $$N_{\text{HCI}} = \frac{4}{\frac{36.5 \times 100}{1.2 \times 1000}} = 1.315$$ (: 4% by mass solution means that 100 g solution has 4 g solute) Now Meq. of $MnO_2 = Meq.$ of HCl = Meq. of Cl₂ formed = $$\frac{1.78}{11.2} \times 1000 = 158.93$$ (: Eq. mass of $$Cl_2 = M/2$$; $2Cl^- \longrightarrow Cl_2 + 2e$) Meq. of HCl = 158.93 $$N \times V = 158.93$$ $$V = \frac{158.93}{1.315} = 120.85 \text{ mL}$$ HCl is also used to give MnCl₂ and thus, volume used is double than required for reduction of MnO2; $$= 2 \times 120.85 = 241.7 \text{ mL}$$ Also Meq. of MnO₂ = 158.93 $$\frac{w}{87/2} \times 1000 = 158.93$$ 35. The redox changes are: For FeCl₃ $$e + Fe^{3+} \longrightarrow Fe^{2+}$$ For N₂H₆SO₄ $(N^{2-})_2 \longrightarrow N_2^0 + 4e$ For KMnO₄ $5e + Mn^{7+} \longrightarrow Mn^{2+}$ Meq. of N2H6SO4 in 10 mL solution = Meq. of FeCl₃ reacting with N₂H₆SO₄ = Meq. of Fe²⁺ formed = Meq. of KMnO₄ $$\therefore \text{ Meq. of N}_2\text{H}_6\text{SO}_4 \text{ in 10 mL solution} = 20 \times \frac{1}{50} \times 5 = 2$$ $$\frac{w}{M/4} \times 1000 = 2$$ (: Molar mass of $$N_2H_6SO_4 = 130$$) $$w = \frac{2 \times 130}{4000} = 0.065$$ Mass of $N_2H_6SO_4$ in 10 mL = 0.065 g :. Mass of N2H6SO4 in 1000 mL = 6.5 g litre-1 36. The redox changes are: For reduction of Fe₂O₃ by zinc dust $$2e + (Fe^{3+})_2 \longrightarrow 2Fe^{2+}$$ $Fe^{2+} \longrightarrow Fe^{3+} + e$ Oxidant + $ne \longrightarrow Reductant$ Meq. of Fe₂O₃ in 25 mL = Meq. of Fe³⁺ in Fe₂O₃ = Meq. of Fe²⁺ formed = Meq. of oxidant used to oxidize Fe2+ again :. Meq. of Fe₂O₃ in 25 mL = Meq. of oxidant = $$17 \times 0.0167 \times n$$ where n is no. of electrons gained by 1 molecule of oxidant. :. Meq. of Fe₂O₃ in 100 mL = $$17 \times 0.0167 \times n \times \frac{100}{25}$$ $$\therefore \frac{1 \times 55.2 \times 1000}{100 \times M/2} = 17 \times 0.0167 \times n \times 4$$ Molar mass of $$Fe_2O_3 = 160$$ $$\frac{\text{Molar mass of Fe}_2O_3 = 160}{1 \times 55.2 \times 2 \times 1000} = 6$$ $$\frac{1 \times 55.2 \times 2 \times 1000}{100 \times 16 \times 17 \times 0.0167 \times 4} = 6$$.. No. of electrons gained by one molecule of oxidant = 6 37. Redox changes are: For CuFeS₂ $$e+Fe^{3+} \longrightarrow Fe^{2+}$$ $$6e + (Cr^{6+})_2 \longrightarrow 2Cr^{3+}$$ $$Fe^{2+} \longrightarrow Fe^{3+} + e$$: Meq. of CuFeS₂ = Meq. of Fe²⁺ = Meq. of $K_2Cr_2O_7$ $=42\times0.01\times6=2.52$ $$\therefore \frac{w}{183.5/1} \times 1000 = 2.52$$ (: Molar mass of CuFeS₂ = 183.5) Mass of $CuFeS_2 = 0.4624 g$.. Mass of CuFeS₂ = $$0.4624 \text{ g}$$.. % of CuFeS₂ = $\frac{0.4624 \times 100}{0.5}$ = 92.48% 38. Let mass of $$H_2C_2O_4 = ag$$ in 1 litre mass of $NaHC_2O_4 = bg$ in 1 litre For acid-base reaction: Now (Meq. of $H_2C_2O_4$ + Meq. of $NaHC_2O_4$) in 10 mL $=3\times0.1$:. Meq. of H₂C₂O₄ + Meq. of NaHC₂O₄ in one litre $= 3 \times 0.1 \times 100 = 30$ $$\therefore \frac{a}{45} \times 1000 + \frac{b}{112/1} \times 1000 = 30$$ $$\therefore \frac{1000a}{45} + \frac{1000b}{112} = 30 \dots (1)$$ E of $H_2C_2O_4 = \frac{M}{2}$ $$= \frac{90}{2} = 45$$ E of $NaHC_2O_4 = \frac{M}{1}$ (as acid salt) $$= \frac{112}{1} = 112$$ For redox change : $C_2^{3+} \longrightarrow 2C^{4+} + 2e$ $5e + Mn^{7+} \longrightarrow Mn^{2+}$ Meq. of $H_2C_2O_4$ + Meq. of $NaHC_2O_4$ in 10 mL = 4×0.1 :. Meq. of H₂C₂O₄ + Meq. of NaHC₂O₄ in 1 litre $= 4 \times 0.1 \times 100 = 40$ $$\therefore \frac{a}{45} \times 1000 + \frac{b}{112/2} \times \\ 1000 = 40$$ $$\therefore \frac{1000a}{45} + \frac{2000b}{112} = 40 ...(2)$$ and Eq. mass of NaHC₂O₄ (as reductant) = $\frac{M}{2}$ Solving Eqs. (1) and (2), we get $$a = 0.90 \text{ g}$$ $$b = 1.12 g$$ Note: Also given a+b=2.02 and thus Eq. (1) or (2) can be used to find a and b by using a + b = 2.02. 39. Let V mL of reducing agent be used for KMnO₄ in different medium which act as oxidant. Acid medium $n_1e + Mn^{7+} \longrightarrow Mn^{a+}$: $n_1 = 7-a$ Neutral medium $n_2e + Mn^{7+} \longrightarrow Mn^{b+}$: $n_2 = 7-b$ Alkaline medium $n_3e + Mn^{7+} \longrightarrow Mn^{c+}$: $n_3 = 7 - c$.. Meq. of reducing agent = Meq. of KMnO₄ in acid = Meq. of KMnO₄ in neutral = Meq. of KMnO₄ in alkali = $$1 \times n_1 \times 20$$ = $1 \times n_2 \times 33.3$ = $1 \times n_3 \times 100$ $n_1 = 1.665 \ n_2 = 5n_3$ n_1, n_2, n_3 are integers and $n_1 > 7$, $n_3 = 1$ $$n_2$$, n_3 are integers and $n_1 \ne 1$, ... $n_1 = 5$, $n_2 = 3$ and $n_3 = 1$ Therefore, different oxidation states of Mn are: Acid medium $5e + Mn^{7+} \longrightarrow Mn^{a+}$ $\therefore a = +2$ Neutral medium $3e + Mn^{7+} \longrightarrow Mn^{b+}$ b=+4 Alkaline medium le+Mn 7+ ---- Mn c+ Now same volume of reducing agent is treated with K₂Cr₂O₇ and therefore, Meq. of reducing agent = Meq. of K2Cr2O7 $$20 \times 5 = 1 \times 6 \times V$$ $$\therefore V = \frac{100}{6} = 16.67 \text{ mL}$$ $$\therefore N = M \times \text{Valence factor}$$ Note: The conditions are valid only when Mn in each medium exist as monomeric atom, i.e., not as Mn .. 40. Redox changes are: Fe²⁺ $$\longrightarrow$$ Fe²⁺ + 2e (in H₂SO₄) Fe²⁺ \longrightarrow Fe³⁺ + e (with K₂Cr₂O₇) $6e + Cr_2^{6+} \longrightarrow 2Cr_3^{3+}$ Meq. of Fe²⁺ in 20 mL = Meq. of $K_2Cr_2O_7$ $=30\times\frac{1}{30}=1$ - ∴ Meq. of Fe²⁺ of valence factor one in 100 mL = $\frac{1 \times 100}{20}$ = 5 20 - Meq. of Fe2+ of valence factor two in 100 mL $=5\times2=10$ $$\therefore$$ Meq. of Fe = Meq. of Fe²⁺ $$\frac{w}{M/2} \times 1000 = 10$$ $$\therefore \frac{w}{\frac{56}{2}} \times 1000 = 10$$ $$w = \frac{56 \times 10}{2 \times 1000} = 0.281$$ - $w = \frac{56 \times 10}{2 \times 1000} = 0.28 g$ $w = \frac{56 \times 10}{2 \times 1000} = 0.28 g$ $0.2828 \times 100 = 99.0\%$ - When medium is reported and conc. of medium is desired, then first balance the equation using ion electron method. $$4Cl_2 + S_2O_3^{2-} + 10OH^- \longrightarrow 2SO_4^{2-} + 8Cl^- + 5H_2O$$ 0.15 0.01 0.30 0 0 0 before reaction Mole Mole $(0.15 - 4 \times 0.01)$ 0 $(0.3 - 0.01 \times 10)$ 0.02 0.08 0.05 0.2 after reaction = 0.11 0 0.02 0.05 Since, mole ratio for combination is $$Cl_2 : S_2O_3^{2-} : OH^- :: 4 : 1 : 10$$ - :. [OH] left after reaction is 0.2 mole. - 42. Meq. of NH₃ formed = Meq. of HCl used for NH₃ $= 50 \times 0.15 - 32.10 \times 0.10 = 4.29$ Note: These Meq. of NH3 are derived using valence factor of NH₃ = 1. (an acid-base reaction) In redox change valence factor of NH3 is 8; $$8e + N^{5+} \longrightarrow N^{3-}$$ Thus, Meq. of NH₃ for valence factor $8 = 8 \times 4.29$ Also, Meq. of $NO_3^- = Meq.$ of $NH_3 = 8 \times 4.29 = 34.32$:. $$N_{NO_3^-} = \frac{34.32}{25} = 1.37$$ $(N \times V \text{ in mL} = \text{Meq.})$ Also, $$M_{NO_3} = \frac{1.37}{8} = 0.1716$$ $(N = M \times V \text{ factor})$ 43. $$2NaClO_2 + Cl_2 \longrightarrow 2NaCl + 2ClO_2$$ 3. $$2\text{NaClO}_2 + \text{Cl}_2 \longrightarrow 2\text{NaCl} + 2\text{ClO}_2$$ Thus, mole ratio of $\frac{\text{NaClO}_2}{\text{ClO}_2} = \frac{2}{2}$ Also mole
of $NaClO_2 = 2 \times 3.78$ $(Mole = M \times V_{in l})$ Mole of $ClO_2 = 2 \times 3.78$ Further % yield of the reaction = 97% - .. Mole of ClO₂ actually formed = $\frac{2 \times 3.78 \times 97}{100}$ - **44.** For FeSO₄ Fe²⁺ $\xrightarrow{\text{Oxidation}}$ Fe³⁺ $\xrightarrow{\text{Reduction}}$ Fe²⁺ For FeC_2O_4 $\begin{cases} Fe^{2+} \xrightarrow{Oxidation} Fe^{3+} \xrightarrow{Reduction} Fe^{2+} \\ C_2O_4^{2-} \xrightarrow{Oxidation} CO_2 \uparrow \end{cases}$ Let mM or Meq. of FeSO₄ and FeC₂O₄ be a and b ∴ Meq. of Fe²⁺ + Meq. of Fe²⁺ + Meq. of $$C_2O_4^{2-}$$ = Meq. of in FeSO₄ in FeC₂O₄ in FeC₂O₄ KMnO₄ used $a \times 1 + b \times 1 + b \times 2 = 40 \times \frac{1}{15} = \frac{8}{3}$ ∴ $a + 3b = \frac{8}{3}$...(1 After reduction of mixture only Fe2+ ions are formed from Fe3+ since CO2 escapes out in air. :. Meq. of $$Fe^{2+}$$ of $FeSO_4$ + Meq. of Fe^{2+} of FeC_2O_4 = Meq. of KMnO₄ used $$a \times 1 + b \times 1 = 25 \times \frac{1}{15} = \frac{5}{3}$$ ∴ $a + b = 5/3$...(2) By Eqs. (1) and (2), $a = 7/6, b = 1/2$ \therefore Ratio of Fe in FeSO₄ and FeC₂O₄ = $\frac{a}{b} = \frac{7}{3}$ 45. Redox changes are: $$6e + (Cr^{6+})_2 \longrightarrow 2Cr^{3+}$$ $$Fe^{2+} \longrightarrow Fe^{3+} + e$$ Meq. of $$K_2Cr_2O_7$$ in 1 mL = Meq. of Fe = $\frac{0.006}{56} \times 1000 = \frac{6}{56}$ ∴ Meq. of K₂Cr₂O₇ in 15.05 mL $=\frac{6}{56}\times15.05=1.612$:. Meq. of Fe²⁺ left unused = Meq. of $$K_2Cr_2O_7$$ used = 1.612 Now Meq. of ferrous ammonium sulphate added $=50\times0.12=6$ Meq. of ferrous ammonium sulphate left unused = 1.612 :. Meq. of ferrous ammonium sulphate used for sample =6-1.612=4.388 .. Meq. of Cr = 4.388 or $$\frac{w}{E} \times 1000 = 4.388$$ $$w_{Cr} = \frac{4.388 \times 52}{1000 \times 3} = 0.0761 \qquad (\because E_{Cr} = 52/3)$$ $$Cr = \frac{0.0761}{0.5} \times 100 = 15.20\%$$ $$\therefore \qquad \% \text{ Cr} = \frac{0.0761}{0.5} \times 100 = 15.20\%$$ Also Meq. of $$Cr_2O_3 = 4.388$$ or $\frac{w}{E} \times 1000 = 4.388$ $w_{Cr_2O_3} = \frac{4.388 \times 152}{6 \times 1000} = 0.1112 \text{ g} \left(\because E_{Cr_2O_3} = \frac{152}{6} \right)$ $\therefore \text{ % } Cr_2O_3 = \frac{0.1112}{0.5} \times 100 = 22.23\%$ $$\therefore \qquad \% \operatorname{Cr}_2 \operatorname{O}_3 = \frac{0.1112}{0.5} \times 100 = 22.23\%$$...(3) 46. Redox changes are: $$e + Fe^{3+} \longrightarrow Fe^{2+}$$ $$2N^{-} \longrightarrow (N^{+})_{2} + 4e$$ $$5e + Mn^{7+} \longrightarrow Mn^{2+}$$ Meq. of Fe2+ formed by NH2OH in 50 mL dilute solution = Meq. of KMnO₄ used = $12 \times 0.02 \times 5 = 1.2$ - :. Meq. of NH₂OH in 50 mL dilute solution = 1.2 - :. Meq. of NH2OH in 1000 mL dilute solution $$=1.2 \times \frac{1000}{50} = 24$$:. Meq. of NH2OH in 10 mL of original solution = Meq. of NH₂OH in 1000 mL dilute solution = 24 (: Meq. of solute does not change on dilution) $$\frac{w}{33/2} \times 1000 = 24$$ - $w_{\rm NH_2OH} = 0.396 \, {\rm g}$: Mass of NH₂OH in 10 mL original solution = 0.396 g - :. Mass of NH2OH in 1 litre original solution $=\frac{0.396\times1000}{1000}$ = 39.6 g/litre 47. ∴ Meq. of NaHSO₃ = Meq. of NaIO₃ = $$N \times V = \frac{5.8}{198/6} \times 1000$$ [Eq. mass of NaIO₃ = M/6; because $I^{5+} + 6e \longrightarrow I^{-}$] Meq. of NaHSO₃ = 175.76 $$\frac{w}{M/2} \times 1000 = 175.76$$ $$w_{\text{NaHSO}_3} = \frac{175.76 \times 104}{2000} = 9.14 \text{ g}$$ Also Meq. of I formed in I step using valence factor 6 = 175.76 In II step valence factor of I^- is 1 and valence factor of $IO_3^$ is 5. Thus, Meq. of I⁻ formed using valence factor $1 = \frac{175.76}{6}$ Also Meq. of NaIO₃ used in step II = $$\frac{175.76}{6}$$.: $$N \times V = \frac{175.76}{6}$$ or $\frac{5.8}{198/5} \times V = \frac{175.76}{6}$.: $V_{\text{NalO}_3} = 200 \text{ mL}$ 48. Meq. of oxalate salt as acid in 30 mL = Meq. of NaOHused $= 27 \times 0.12$ Meq. of oxalate salt as acid in one litre = $\frac{27 \times 0.12 \times 1000}{20}$ or $$\frac{9.15}{\text{Molar mass of salt }/Y} \times 1000 = \frac{27 \times 0.12 \times 1000}{30}$$...(1 (: Y is replaceable H-atom: $E_{\text{salt}} = M/Y$) Also Meq. of oxalate salt as reductant in 30 mL = Meq. of KMnO₄ used = 36×0.12 :. Meq. of oxalate salt as reductant in 1 litre $$= \frac{36 \times 0.12 \times 1000}{30}$$ or $$\frac{9.15}{\text{Molar mass of salt}} \times 1000 = \frac{36 \times 0.12 \times 1000}{30}$$...(2) $$[:(C_2^{3+})_z \longrightarrow (2C^{4+})_z + 2Ze \qquad \therefore E_{\text{salt}} = M/2Z]$$.. By Eqs. (1) and (2), $$\frac{Y}{2Z} = \frac{27}{36}$$.. $4Y = 6Z$ $$\therefore \qquad 4Y = 6Z \qquad \dots$$ Also, Total cationic charge = total anionic charge Also, Total cationic charge = total anionic charge $$\therefore X + Y = 2Z \qquad ...(4)$$ By Eqs. (3) and (4), X:Y:Z::1:3:2 These are in simplest ratio. ∴ Molecular formula is KH₃ (C₂O₄)₂ · nH₂O. Now Molar mass of salt = 39 + 3 + 176 + 18n = 218 + 18n...(5) By Eq. (1) and putting, $$Y = 3$$ $M = 254.16$...(6) - n = 2:. By Eqs. (5) and (6), - .. Oxalate salt is KH3 (C2O4)2 · 2H2O - **49.** Metal is *M* $$M \longrightarrow M^{n+} + ne$$ $$2e + 2H^{+} \longrightarrow H_{2}$$ $$\therefore \text{ Meq. of metal or Meq. of } M^{n+} = \text{Meq. of H}_2$$ $$= \frac{43.9}{11200} \times 1000$$ (: 11200 mL H₂ = 1 equivalent) $$\frac{0.1}{51/n} \times 1000 = 3.92$$:. Meq. of $$M^{2+} = \text{Meq. of KMnO}_4$$ $$\frac{0.1}{51/(a-2)} \times 1000 = 58.8 \times 0.1 : a = 5$$ - .. Different oxidation states of metal are 2 and 5. - 50. For the reaction: $Fe + Fe_2(SO_4)_3 \longrightarrow 3FeSO_4$ $$1.25 \text{ g Fe}_2(\text{SO}_4)_3 \cdot (\text{NH}_4)_2 \text{ SO}_4 \cdot 24\text{H}_2 \text{ O gives}$$ $$= \frac{3 \times 152 \times 1.25}{964} \text{ g}$$ $$= 0.5913 \text{ g FeSO}_4$$ FeSO₄ formed is now oxidized by KMnO₄ $$Meq. of FeSO_4 = Meq. of KMnO_4$$ $$0.5913$$ $$\frac{0.5913}{152/1} \times 1000 = 0.107 \times V$$: $V = 36.36 \text{ mL}$ Similarly, if Cu is used $$Cu + Fe_2(SO_4)_3 \longrightarrow 2FeSO_4 + CuSO_4$$:. 1.25 g salt gives = $$\frac{2 \times 152 \times 1.25}{964}$$ g = 0.3942 g FeSO₄ Meq. of FeSO₄ = Meq. of KMnO₄ ``` \frac{0.3942}{152/1} \times 1000 = 0.107 \times V .: V = 24.24 \text{ mL} 51. For, Fe_3O_4 \longrightarrow 3FeO; 2e + Fe_1^{8/3+} \longrightarrow 3Fe^{2+} :. Thus, valence factor for Fe_3O_4 is 2 and for FeO is 2/3 For, Fe_2O_3 \longrightarrow 2FeO; 2e+Fe_2^{3+} \longrightarrow 2Fe^{2+} . 53. Thus, valence factor for Fe₂O₃ is 2 and for FeO is 1. Let Meq. of Fe₃O₄ and Fe₂O₃ be a, b respectively. :. Meq. of Fe₃O₄ + Meq. of Fe₂O₃ = Meq. of I2 liberated = Meq. of hypo used a+b=\frac{11\times0.5\times100}{20}=27.5 Now, the Fe2+ ions are again oxidized to Fe3+ by KMnO4. Note that in the change Fe^{2+} \rightarrow Fe^{3+} + e; valence factor of Fe²⁺ is 1. Thus, Meq. of Fe2+ (from Fe3O4) + Meq. of Fe2+ (from Fe2O3) ٠. = Meq. of KMnO₄ used Now If valence factor for Fe²⁺ is 2/3 from Eq. (1), then Meq. of Fe^{2+} (from Fe_3O_4) = a If valence factor for Fe2+ is 1 then Meq. of Fe2+ (\text{from Fe}_3O_4) = 3a/2 Similarly, from Eq. (ii), Meq. of Fe^{2+} from Fe_2O_3 = b \frac{3a}{2} + b = 0.25 \times 5 \times 12.8 \times \frac{100}{50} = 32 or ...(iv) From Eqs. (iii) and (iv), Meq. of Fe_3O_4 = a = 9 Fe_2O_3 = b = 18.5 \therefore w_{\text{FegO}_4} = \frac{9 \times 232}{2 \times 1000} = 1.044 \text{ g} \quad \left| w_{\text{FegO}_3} = \frac{18.5 \times 160}{2 \times 1000} = 1.48 \text{ g} \right| % of Fe₃O₄ = \frac{1.044 \times 100}{3} = 34.8 55. % of Fe_2O_3 = \frac{1.48 \times 100}{3} = 49.33 and Ca + H_2C_2O_4 \longrightarrow CaC_2O_4 52. The Meq. of H2C2O4 solution added to precipitate Ca as CaC2O4 is derived as: 25 mL of H₂C₂O₄ is diluted 4 folds, i.e., to 100 mL Now Meq. of dil. H₂C₂O₄ in 25 mL = Meq. of KMnO₄ used = 24.1 \times 0.1025 = 2.47025 :. Meq. of H2C2O4 in 100 mL dilute solution =\frac{2.47025\times100}{2.47025\times100}=9.881 :. Meq. of H₂C₂O₄ in 25 mL conc. solution = 9.881 ``` Meq. of H2C2O4 left after precipitation of Ca2C2O4 in one = Meq. of KMnO₄ used = 5×0.1025 \therefore Total Meq. of H₂C₂O₄ left = $5 \times 0.1025 \times 4 = 2.05$:. Meq. of $H_2C_2O_4$ used for Ca = 9.881 - 2.05 = 7.831 Meq. of Ca = 7.831 fourth filtrate $\frac{w}{40/2} \times 1000 = 7.831$: $w_{\text{Ca}} = 0.1566 \text{ g}$ % of Ca in substance = $\frac{0.1566}{1.048} \times 100 = 14.94\%$ Meq. of Fe^{2+} = Meq. of KMnO₄ Meq. of Fe²⁺ = $47.2 \times 0.112 = 5.2864$ $Fe^{2+} \longrightarrow Fe^{3+} + e$ Meq. of $Fe^{2+} = 5.2864$ (valence factor = 1) Fe ore on dissolution in H2SO4 show valence factor 2 $Fe + H_2SO_4 \longrightarrow FeSO_4 + H_2$ \therefore Meq. of Fe²⁺ of valence factor 2 = 5.2864×2 Meq. of Fe = 5.2864×2 $\frac{w}{56} \times 1000 = 5.2864 \times 2$: $w_{\text{Fe}} = 0.296 \text{ g}$ % purity of Fe = $\frac{0.296 \times 100}{0.004}$ = 36.82% $Fe_3O_4 \longrightarrow 3Fe$ 3×56g Fe is obtained from 232 g Fe₃O₄ $\therefore 0.296$ g Fe is obtained = $\frac{232 \times 0.296}{56 \times 2} = 0.409$ g Fe₃O₄ % of Fe₃O₄ = $\frac{0.409}{0.804}$ × 100 = **50.87%** 54. Meq. of reductant in 25 mL = Meq. of KMnO₄ $= 20 \times 0.01 \times 5$:. Meq. of reductant in 1 litre = $20 \times 0.01 \times 5 \times 40 = 40$ Reductant shows the change $A_2^{+a} \longrightarrow 2A^{+b} + 2e$ Eq. mass of reductant = $\frac{\text{Molar mass}}{2}$ Meq. of reductant = 40 $\frac{w}{M/2} \times 1000 = 40$ $\therefore \frac{2.52 \times 2 \times 1000}{M} = 40$ M = 126Meq. of $H_2SO_4 = Meq.$ of NaOH $N \times 10.27 = 10.35 \times 0.1297 \therefore N_{\text{H}_2\text{SO}_4} = 0.1307$ $V_{\rm H_2SO_4}$ used for KNaCO₃ = 41.72 - 1.91 mL Meq. of H_2SO_4 used for $NaKCO_3 = Meq.$ of H_2SO_4 added - Meq. of H2SO4 used by NaOH $= (0.1307 \times 41.72) - 1.91 \times 0.1297 = 5.2050$ Also for the change $NaKC_4H_4O_6 \cdot 4H_2O \longrightarrow NaKCO_3 + CO_2 \uparrow + H_2O \uparrow$ Now Meq. of NaKCO3 using valency factor 2 during its neutralization with $H_2SO_4 = 5.2050$ Mass of NaKCO₃ = $\frac{5.2050 \times 122}{2.0000}$ = 0.3175 g 2×1000 .. For 1:1 mole ratio of conversion, mass of
Rochelle salt $= \frac{282}{122} \times 0.3175 = 0.7339 g$ $\therefore \text{ % purity of Rochelle salt} = \frac{0.7339}{0.9546} \times 100 = 76.87\%$ $5e + Mn^{7+} \longrightarrow Mn^{2+}$ and $2I^- \longrightarrow I_2 + 2e$ 56. The reactions are: $6e + (Cr^{6+})_2 \longrightarrow 2Cr^{3+}$ Let mass of KMnO₄ and K₂Cr₂O₇ be a and b g ∴ Meq. of KMnO₄ + Meq. of K₂Cr₂O₇ = Meq. of I₂ = Meq. of hypo = $$60 \times 0.1$$ ∴ $\frac{a}{158/5} \times 1000 + \frac{b}{294/6} \times 1000 = 6$...(i Also given $$a+b=0.24$$...(ii) $\therefore a=0.098 \text{ g}$ i.e., mass of KMnO₄ $$b = 0.142 \, \text{g}$$ i.e., mass of K $_2\text{Cr}_2\text{O}_7$ Also, mass of Mn in 0.098 g KMnO₄ = $\frac{55 \times 0.098}{158}$ $$= 0.034 g$$ Mass of Cr in 0.142 g K₂Cr₂O₇ = $$\frac{52 \times 2 \times 0.142}{294} = 0.050 g$$ $$\therefore \text{ % of Mn in sample} = \frac{0.034 \times 100}{0.24} = 14.17\%$$ $$\therefore \text{ % of Cr in sample} = \frac{0.050 \times 100}{0.24} = 20.83\%$$ 57. The redox changes are: 58. $$5e + Mn^{7+} \longrightarrow Mn^{2+}$$ $$6e + (Cr^{6+})_2 \longrightarrow 2Cr^{3+}$$ $$2I^- \longrightarrow I_2^0 + 2e$$ $$2S_2O_3^{2-} \longrightarrow S_4O_6^{2-} + 2e$$ Let $K_2Cr_2O_7$ and $KMnO_4$ be a and b g respectively ...(1) a + b = 0.5 Meq. of KMnO₄ + Meq. of K₂Cr₂O₇ Further = Meq. of KI = Meq. of I_2 liberated = Meq. of $Na_2S_2O_3$ $\frac{a}{294/6} \times 1000 + \frac{b}{158/5} \times 1000 = 100 \times 0.15...(2)$ By Eqs. (1) and (2) a = 0.073, b = 0.427:. % of $K_2Cr_2O_7 = 14.6\%$ and % of KMnO₄ = 85.4% Meq. of $H_2O_2 = Meq.$ of I_2 $(w/17) \times 1000 = [0.508/(254/2)] \times 1000$: w = 0.068 g $H_2O_2 \longrightarrow H_2O + (1/2)O_2$.. 34 g H₂O₂ gives 11.2 litre O₂, \therefore 0.068 g gives $(11.2 \times 0.068)/34 = 22.4 \text{ mL O}_2$ Volume strength of $H_2O_2 = 22.4 / 5 = 4.48\%$ **59.** Let Molar mass of AO and A_2O_3 be m and n respectively. $$\therefore m = a + 16 \qquad \dots (1)$$ and $$n = 2a + 48$$ where a is Atomic mass of A. Now suppose X and Y g of AO and A_2O_3 are present in mixture Then $$X + Y = 2.198$$...(3 Also Meq. of $AO + \text{Meq. of } A_2O_3 = \text{Meq. of } K_2Cr_2O_7$ $\frac{X}{(a+16)/5} \times 1000 + \frac{Y}{(2a+48)/8} \times 1000 = 0.015 \times 6 \times 1000$ $$A^{2+} \longrightarrow A^{7+} + 5e$$ $$A_2^{3+} \longrightarrow 2.1^{7+} + 8e$$ $$6e + Cr_2^{6+} \longrightarrow 2Cr^{3+}$$ ∴ By Eq. (4), $$\frac{5X}{a+16} + \frac{8Y}{2a+48} = 0.09$$...(5) Also, mole AO_4^- by AO + mole of AO_4^- by $A_2O_3 = 0.0187$ $\frac{X}{a+16} + \frac{2Y}{2a+48} = 0.0187$...(6) : Mole ratio of $AO: AO_4^- :: 1:1, A_2O_3: AO_4^{-1}:: 1:2$ Solving Eqs. (3), (5) and (6) a = 100 In (a): $Se^{4+} \longrightarrow Se^{6+} + 2e$ $\therefore \text{ Eq. mass KBrO}_3 = M / 5;$ $10e + 2Br^{5+} \longrightarrow Br_2^0$ (valency factor = 5) In (b): $6e + Br^{5+} \longrightarrow Br^{1-}$: Eq. mass KBrO₃ = M / 6; (valency factor = 6) $As^{3+} \longrightarrow As^{5+} + 2e$ Let Meq. of BrO_3^- of valency factor 6 = Meq. of AsO_2^- $$= 5.1 \times \frac{1}{25} \times 2 = 0.408$$ Meq. of BrO₃ of valency factor 5 added = $20 \times \frac{1}{60} \times 5 = \frac{5}{3} = 1.67$ $$= 20 \times \frac{1}{60} \times 5 = \frac{5}{3} = 1.67$$ Left Meq. of BrO₃ of valency factor $5 = \frac{0.408 \times 5}{6} = 0.34$ \therefore Meq. of BrO₃ used for SeO₃²⁻ = 1.67 - 0.34 = 1.33 :. Meq. of SeO₃²⁻ = 1.33 or $$\frac{w}{127/2} \times 1000 = 1.33$$: $$W_{\text{SeO}_3^{2-}} = 0.084 \text{ g}$$ **61.** Meq. of I_2 used = $20.10 \times 0.05 = 1.005$ Let Meq. of As 2O3 and Meq. of As 2O5 in mixture be a and b respectively. On addition of I2 to mixture, As2+ is converted to As 25+. $$\therefore \text{ Meq. of As }_2O_3 = \text{Meq. of } l_2 \text{ used } = 1.005$$ $$= \text{Meq. of As}^{5+} \text{ formed}$$ or $$a = 1.005$$...(1) After reaction with I2, mixture contains all the arsenic in +5 oxidation state which is then titrated using KI + hypo. Thus, Meq. of As_2O_3 as As^{5+} + Meq. of As_2O_5 as As^{5+} or $$a+b = \frac{1.1113}{248} \times 1000$$ or $a+b = 4.481$...(2) By Eqs. (1) and (2), b = 4.481 - 1.005 = 3.476 ∴ Mass of As $${}_{2}O_{3} = \frac{\text{Meq.} \times \text{Eq. mass}}{1000} = \frac{1.005 \times 198}{4 \times 1000}$$ = 0.0497 g and Mass of As $$_2O_5 = \frac{3.476 \times 230}{4 \times 1000} = 0.1999 g$$ Mass of mixture = 0.0497 + 0.1999 = 0.2496 g 62. (a) $$Cu^0 \longrightarrow Cu^{2+} + 2e$$ $N^{5+} + e \longrightarrow N^{4+}$ ∴ Eq. of Cu = Eq. of NO₂ $$\frac{w}{63.6/2} = \frac{1 \times 1.04}{0.0821 \times 298}$$ $$\left(\because \text{ mole of NO}_2 = \text{Eq. of NO}_2 = \frac{PV}{RT}\right)$$ ∴ $w_{\text{Cu}} = 1.35 \text{ g}$ ∴ $w_{\text{Zn}} = 1.50 - 1.35 = 0.15 \text{ g}$ % of Cu = $\frac{1.35}{1.5} \times 100 = 90\%$ ∴ % of Zn = $\frac{0.15}{1.5} \times 100 = 10\%$ (b) Thus, 1 g brass contains 0.9 g Cu and 0.1 g Zn .. Meq. of HNO₃ = Meq. of Zn and Meq. of HNO₃ = Meq. of Cu or $$3 \times 8 \times V_1 = \frac{0.1}{65/2} \times 1000$$ or $3 \times V_2 = \frac{0.9}{63.6/2} \times 1000$... $V_1 = 0.128 \text{ mL}$... $V_2 = 9.43 \text{ mL}$:. Total volume of HNO₃ used = 0.128+9.43 = 9.558 mL **63.** Meq. of alkali added = $30 \times 0.04 = 1.2$ Meq. of alkali left = $22.48 \times 0.024 = 0.54$:. Meq. of alkali used for SO2 and H2O2 $$=1.2-0.54=0.66$$:. Mass of alkali used = $$\frac{0.66 \times 40}{1000}$$ = 0.0264 g : 80 g NaOH reacts with 64 g SO2 $$\therefore$$ 0.0264 g NaOH reacts = $\frac{64 \times 0.0264}{80}$ = 0.021g SO₂ $$0.021 \text{ g SO}_2 \text{ required} = \frac{32 \times 0.021}{64} = 0.0105 \text{ g}$$ $$\therefore \text{ % of S} = \frac{0.0105}{5.6} \times 100 = 0.1875\%$$ 64. Since, Cu will react with ferric sulphate to reduce Fe3+ to Fe2+. The reduced state of iron is further oxidized by KMnO₄. Thus, Meq. of KMnO₄ used = Meq. of iron sulphate oxidized = Meq. of ferric sulphate used by Cu = Meq. of Cu Meq. of Cu = Meq. of $KMnO_4$ used $\frac{0.108}{62.64} \times 1000 = 33.7 \times 0.1$ 63.6/ n $n \approx 2$ (integer) It is thus, clear that during reduction of Fe3+, Cu is oxidized to Cu2+. Thus reaction is: $$Cu + Fe_2(SO_4)_3 \longrightarrow CuSO_4 + 2FeSO_4$$ 65. The reactions are Also $$2e+I_2 \longrightarrow 2KOH+I_2+O_2$$ $2e+I_2 \longrightarrow 2I^-$ and $2(S^{2^+})_2 \longrightarrow (S^{5/2^+})_4+2e$:. Meq. of $I_2 = \text{Meq. of Na}_2 S_2 O_3 = 1.5 \times 0.01 = 1.5 \times 10^{-2}$ or mM of $$I_2 = \frac{1.5 \times 10^{-2}}{2} = 7.5 \times 10^{-3}$$ mM of $$O_3 = \text{mM of } I_2 = 7.5 \times 10^{-3}$$ $$P'_{O_3} = \frac{nRT}{V} = \frac{7.5 \times 10^{-6} \times 0.0821 \times 300}{10}$$ $$= 184.725 \times 10^{-7} \text{ atm}$$ $$\therefore$$ Vol. % of O₃ = 184.725 × 10⁻⁷ × 100 = 1.847 × 10⁻³% 66. $$O_3 + 2KI + H_2O \longrightarrow 2KOH + I_2 + O_2$$ $$I_2 + 2Na_2S_2O_3 \longrightarrow Na_2S_4O_6 + 2NaI_4$$ $$\therefore \text{ Millimole of } O_3 = \text{Millimole of } I_2$$ $$= \frac{1}{2} \times \text{mM of Na}_2 S_2 O_3$$ $$(\mathbf{mM} = \mathbf{M} \times \mathbf{V}_{\mathbf{in} \ \mathbf{mL}})$$ $$=\frac{1}{2} \times 40 \times \frac{1}{10} = 2 \text{ mM} = 0.002 \text{ mole}$$ Total millimole of O2 and O3 in mixture are calculated from PV = nRT $$1 \times 1 = n \times 0.0821 \times 273$$: $n = 0.044$ mole Mole of $$O_2 = 0.044 - 0.002 = 0.042$$ Now mass of $$O_2 = 0.042 \times 32 g = 1.344 g$$ mass of $O_3 = 0.002 \times 48 g = 0.096 g$ % of $$O_3 = \frac{0.096}{1.44} \times 100 = 6.7\%$$ No. of photon or molecules of ozone $$= \frac{0.096 \times 6.023 \times 10^{23}}{48} = 1.2 \times 10^{21}$$ 67. Meq. of MnO_4^- added = $200 \times 0.75 \times 5 = 750$ $$\therefore \qquad Mn^{7+} + 5e \longrightarrow Mn^{2+} \qquad \therefore \qquad N = M \times 5$$ Meq. of MnO_4^- left unused = Meq. of Fe^{2+} used $$= 175 \times 1 \times 1 = 175$$ $$Fe^{2+} \longrightarrow Fe^{3+} + e \qquad \therefore N = M \times 1$$ Now Meq. of MnO_4^- used = 750-175 = 575 $$MnO_4^-$$ is used for Cu_2S and CuS to give. For Cu_2S : $Cu_2^+ \longrightarrow 2Cu_2^{2+} + 2e$ $$Cu_{2}^{+} \longrightarrow 2Cu^{2^{+}} + 2e$$ $$S^{2^{-}} \longrightarrow S^{4^{+}} + 6e$$ $$Cu_2S \longrightarrow 2Cu^{2+} + S^{4+} + 8e$$ For CuS: $$S^{2-} \longrightarrow S^{4+} + 6e$$ Let Cu 2S and CuS be a and b g respectively $$a+b=10$$ $$\therefore \text{ Meq. of MnO}_{4}^{-} \text{ used = Meq. of Cu}_{2}S + \text{Meq. of CuS}$$ $$575 = \frac{a}{159.2/8} \times 1000 + \frac{b}{95.6/6} \times 1000 \quad ...(2)$$.. Solving Eqs. (1) and (2), $$a = 4.206$$ g $$b = 5.794 \text{ g}$$ % of CuS in mixture = $\frac{5.794}{10} \times 100 = 57.94\%$ 68. NaCN vs. KMnO₄: $$C^{2+} \longrightarrow C^{4+} + 2e$$ $3e + Mn^{7+} \longrightarrow Mn^{4+}$ Meq. of KMnO₄ added = $50 \times 0.33 \times 3 = 49.5$ $(v.f. of KMnO_4 = 3)$ Meq. of KMnO₄ (v.f. = 5) left after reaction with NaCN = Meq. of FeSO₄ used = $500 \times 0.06 \times 1 = 30$ $$Fe^{2+} \longrightarrow Fe^{3+} + e$$ $$Mn^{7+} + 5e \longrightarrow Mn^{2+}$$.. Meq. of KMnO₄ (v.f. = 3) left = $$\frac{30 \times 3}{5}$$ = 18 .. Meq. of NaCN in sample = $$49.5 - 18 = 31.5$$ $\frac{w}{49/2} \times 1000 = 31.5$ $$w = 0.7718g$$:. % of NaCN = 77.18 69. Suppose mass of BaCO3, CaCO3 and CaO are a, b, c be respectively. $$a+b+c=1.249 \qquad ...(1)$$ For the reactions BaCO₃ \longrightarrow BaCrO₄ and $3e+Cr^{6+} \longrightarrow Cr^{3+}$ $2I^- \longrightarrow I_2 + 2e$ Meq. of BaCO₃ = Meq. of BaCrO₄ = Meq. of $$l_2$$ or $\frac{a}{197/3} \times 1000 = 20 \times 0.05 \times \frac{100}{10}$ a = 0.657g The Eq. mass of BaCrO₄ is M/3 and thus for BaCO₃ it should be M/3 Also for acid-base reaction 70. Meq. of BaCO₃ + Meq. of CaCO₃ = Meq. of CO₂ $$\frac{a}{197/2} \times 1000 + \frac{b}{100/2} \times 1000 = \frac{168 \times 44}{22400 \times 22} \times 1000$$ $$200a + 394b = 295.5$$...(3) By Eqs. (2) and (3) :. By Eq. (1) 0.657 + 0.416 + c = 1.249 $$c = 0.176$$ $$c = 0.176 \times 100 = 14.009$$ or % of CaO = $$\frac{0.176 \times 100}{1.249}$$ = 14.09% $5e + Mn^{7+} \longrightarrow Mn^{2+}$ $(P^{3+})_4 \longrightarrow 4P^{5+} + \&e$ Meq. of KMnO₄ = $\frac{100
\times 5 \times 1000}{150}$ = 3164.56 Thus, 158 Meq. of $P_4O_6 = \frac{100 \times 8 \times 1000}{210.0} = 3638.02$ Meq. of P_4O_6 in excess = 473.46 $\frac{w \times 8 \times 1000}{210.0} = 473.46$: w_{P,Q_0} in excess = 13.01 g 71. As 2O3 sample = 12.0g. It reacts with NaHCO3 to give Na 3 AsO3. Its reaction with I2 shows the changes: $$(As^{3+})_2 \longrightarrow (As^{5+})_2 + 4e;$$ $$l_2 + 2e \longrightarrow 2l^-$$...(1) Meq. of As $_2O_3$ in 25 mL = Meq. of $I_2 = 22.4 \times N$ Also N of I2 can be evaluated as: Meq. of $I_2 = \text{Meq. of hypo} = N \times V$ The reaction are: $I_2 + 2e \longrightarrow 2I^-$ $$1_{2} + 2e \longrightarrow 21$$ $$2S_{2}O_{3}^{2-} \longrightarrow S_{4}O_{6}^{2-} + 2e$$ $$N \times 25 = \frac{24.8}{248 \times 1} \times 25$$ $$N_{1_2} = \frac{N}{10}$$.. Meq. of As₂O₃ in 25 mL = 22.4 × $$\frac{1}{10}$$ = 2.24 or Meq. of As₂O₃ in 250 mL = $$2.24 \times \frac{250}{25} = 22.4$$ or $$\frac{w}{E} \times 1000 = 22.4$$ $\frac{w}{198} \times 1000 = 22.4$ $$w_{As_2O_3} = \frac{22.4 \times 198}{4 \times 1000} = 1.1088$$.. % of $$As_2O_3 = \frac{1.1088}{12} \times 100 = 9.24\%$$ $Sn^{2+} \longrightarrow Sn^{4+} + 2e$ 72. $$\operatorname{Sn}^{2^{+}} \longrightarrow \operatorname{Sn}^{4^{+}} + 2$$ $$2e + (O^{-})_{2} \longrightarrow 2O^{2^{-}}$$ Meq. of H_2O_2 used = Meq. of $Sn^{2+} = 100 \times 2 \times 2 = 400$ $$\therefore \text{ Meq. of H}_2O_2 \text{ taken} = \frac{200 \times 10 \times 2 \times 1000}{100 \times 34} = 1176.47$$.. Meq. of H₂O₂ left = $$1176.47 - 400 = 776.47$$ m mole of H₂O₂ left = $\frac{776.47}{2}$ Now $$H_2O_2 \longrightarrow H_2O + \frac{1}{2}O_2$$ or $$m \text{ mole of } O_2 \text{ formed} = \frac{776.47}{2 \times 2} = 194.12$$ $$\therefore V = \frac{nRT}{P} = \frac{194.12 \times 10^{-3} \times 0.0821 \times 293}{1} = 4.67 \text{ litre}$$ 73. For $$A_x(CO_3)_y(OH)_z$$: $2x = 2y + z$...(1) The reaction of salt with H2SO4 uses carbonate ions as well as hydroxide ions. In case of phenolphthalein: Half of the salt is neutralized as carbonate is converted to bicarbonate and OH ions are completely neutralized. Meq. of $H_2SO_4 = \frac{1}{2}$ Meq. of salt for carbonate + Meq. of salt for OH $$\frac{10 \times 1 \times 100}{50} = \frac{1}{2} \times \frac{1.7225 \times 1000}{\frac{M}{2y}} + \frac{1.7225 \times 1000}{\frac{M}{z}}$$ or $$20 = \frac{1722.5y}{M} + \frac{1722.5z}{M} \qquad ...(2)$$ In case of methyl orange: Salt is completely neutralized. $\frac{15 \times 1 \times 100}{50} = \frac{1.7225 \times 1000}{1.7225 \times 1000} + \frac{1.7225 \times 1000}{1.7225 \times 1000}$ $\frac{M}{2y}$ or $$30 = \frac{3445y}{M} + \frac{1722.5z}{M} \qquad ...(3)$$ By subtracting Eq. (2) from Eq. (3). $$10 = \frac{1722.5y}{M} \qquad ...(4)$$ By Eqs. (2) and (4), $$10 = \frac{1722.5z}{M}$$...(5) ... By Eqs. (4) and (5), $$y = z$$...(6) Also from Eqs. (1) and (6), x = 1.5y Thus for simplest ratio x: y: z::1.5:1:1 or 3:2:2 Therefore formula of salt is $$A_3(CO_3)_2(OH)_2$$ 74. $$(Cu^+)_2 \longrightarrow Cu^{2+} + Cu$$ The solution after dissolution of ${\rm Cu}_2{\rm O}$ in dil. ${\rm H}_2{\rm SO}_4$ contains ${\rm Cu}^{2+}$ and ${\rm Cu}$ ions. ${\rm Cu}^{2+}$ ions react with KI to give Cul2 which is converted to Cul and I2. $$Cu^{2+} + 2I \longrightarrow CuI_2 \longrightarrow CuI + \frac{1}{2}I_2$$ Millimole of KI taken = $$\frac{8.3}{166} \times 1000 = 50$$ Now, KI left unused reacts with oxidizing agent to liberate I2 again. $$2I^- \xrightarrow{Oxidant} I_2 \xrightarrow{2Na_2S_2O_3} Na_2S_4O_6 + 2NaI$$:. Millimole of KI left = Millimole of Na 2 S2 O3 used (mole ratio of I to Na 2 S2 O3 is 1:1) $=10 \times 1.0 = 10$ Therefore, millimole of KI used for $Cu^{2+} = 50 - 10 = 40$ $$\begin{array}{ccc} \therefore & \text{Millimole of Cu}_2O = 20 \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$ or $$\frac{w \times 1000 = 20}{M} \times 1000 = 20$$ $\frac{w \times 1000}{142} = 20$ $\therefore w_{\text{Cu}_2\text{O}} = 2.84$ \therefore % of Cu₂O = $\frac{2.84 \times 100}{3} = 94.67$ $$\therefore \text{ % of Cu}_2O = \frac{2.84 \times 100}{3} = 94.67$$ 75. $$3Br_2 + 6OH^- \longrightarrow 5Br^- + BrO_3^- + 3H_2O$$ (mole ratio $Br_2 : BrO_3^- :: 3:1$) BrO₃ and C₂O₄² reacts to give redox change as: $$6e + Br^{5+} \longrightarrow Br^{-}$$ (valence factor of $BrO_3^- = 6$) $(C^{3+})_2 \longrightarrow 2C^{4+} + 2e$ Millimole of Br₂ taken = $10 \times 1.0 = 10$:. Millimole of BrO₃ formed = $$\frac{10}{3}$$ Also, Meq. of $$CaC_2O_4 = Meq.$$ of $BrO_3^- = \frac{10}{3} \times 6 = 20$ or $$\frac{w \times 1000}{128/2} = 20$$: $w_{CaC_2O_4} = 1.28 g$ $$\therefore$$ % of CaC₂O₄ = $\frac{1.28}{1.5} \times 100 = 85.33$ 76. $$2e + Cl^+ \longrightarrow Cl^-$$ (OCl⁻ changes to Cl⁻) $(C^{3+})_2 \longrightarrow 2C^{4+} + 2e$ (C₂O₄² change to CO₂) Let a and b millimole of NaOCl and CaOCl2 be present in Meq. of NaOCl + Meq. of CaOCl₂ = Meq. of Na₂C₂O₄ $$2a + 2b = 10 \times 0.15 \times 2 \times \frac{100}{10} = 30$$ $$\therefore$$ 2a+2b=30 ...(1) Also millimole of Cl- from NaOCl + millimole of Cl from CaOCl2 = millimole of AgCl or $$a+2b = \frac{0.287}{143.5} \times 1000 \times \frac{100}{10} = 20$$ $a+2b=20$...(2) By Eqs. (1) and (2), $$a = 10, b = 5$$ $$\% \text{ of NaOCl} = 10 \times 74.5 \times 10^{-3} \times \frac{100}{2} = 37.25$$ $$\% \text{ of CaOCl}_2 = 5 \times 127 \times 10^{-3} \times \frac{100}{2} = 31.75$$ 77. Equivalent of KMnO₄ = $$\frac{6.32}{31.6}$$ = 0.2 Equivalent of KCl = $\left[\frac{4}{74.5}\right]$ = 0.0537 Equivalent of KBr = $\left[\frac{m}{119}\right]$ $$0.2 = 0.0537 + \frac{m}{119} \qquad \therefore \quad m = 17.41 \text{ g}$$ 78. Let mM of Cl⁻ and ClO₃ be a and b respectively $$a+b = \text{mM of AgCl} = \frac{0.1435}{143.5} \times 1000 = 1$$ Also, Meq. of KClO₃ = $$6a : 6e + Cl^{5+} \longrightarrow Cl^{-1}$$ $$= 30 \times 0.2 - 37.5 \times 0.08 = 6 - 3 = 3$$ ∴ $$6a = 3$$ ∴ $$a = \frac{1}{2} \text{ and } b = \frac{1}{2}$$ i.e., $$5 \times 10^{-3}$$ mole each, (1:1) 79. Meq. of KMnO₄ = Meq. of ReO₄¹ = Meq. of Re $$1145 \times 0.05 = \text{Meq. of ReO}_4^{1-} = \text{Meq. of Re}$$ $$\therefore$$ Meq. of Re from Reⁿ⁺ to ReO₄ = 0.5725 or $$\frac{26.83 \times 10^{-3}}{186.2/(7-n)} \times 1000 = 0.5725$$ $$\therefore \qquad 7 - n = \frac{0.5725 \times 186.2}{26.83 \times 10^{-3} \times 1000} = 4 \quad \therefore \ n = 3$$ Oxidation state is Re3+ ## SINGLE INTEGER ANSWER PROBLEMS - 'n' factor of FeC₂O₄ during its oxidation by acidified KMnO₄ is - 2. An element A in a compound has oxidation state Aⁿ⁻. If 1.68×10⁻³ mole of K₂Cr₂O₇ are required for complete oxidation of 3.26×10⁻³ mole of ABD for oxidation to Aⁿ⁻ to elemental state. The value of n is - 3. 1.6 g pyrolusite ore was titrated with 50 cm³ of 1.0 N oxalic acid and some sulphuric acid. The oxalic acid left was raised to 250 mL in a flask 25 mL of this solution when treated with 0.1 N KMnO₄ required 32 mL of the solution. The percentage of available oxygen in pyrolusite is: - 4. 1 g sample of Fe₂O₃ solid of 55.2% purity is dissolved in acid and reduced by heating the solution with Zn dust. The resultant solution is cooled and made upto 100 mL. An aliquot of 25 mL of this solution requires 17 mL of 0.0167M solution of an oxidant for titration. The number of electrons taken up by oxidant in the above titration is - 0.31 g of an alloy of Fe + Cu was dissolved in excess dilute H₂SO₄ and the solution was made upto 100 mL. mL of this solution required 3 mL of N/30 K₂Cr₂O₇ solution for exact oxidation. The % purity (in closest value) of Fe in wire is: - 7. Equivalent mass of O_3 in the reaction : $2O_3 \longrightarrow 3O_2$ is - 8. 'n' factor for H₂S during its oxidation to SO₂ is - 9. 'n' factor for Cu_2S in the reaction $Cu_2S + KMnO_4 \longrightarrow
Cu^{2+} + SO_2 + Mn^{2+} \text{ is:}$ - 10. A 5.6 g sample of limestone is dissolved in acid and calcium is precipitated as calcium oxalate. The precipitate is filtered, washed with water and dissolved in dil. H₂SO₄. The solution required 40 mL of 0.25 N KMnO₄ solution for titration. The % of CaO in limestone is - 80 mL of M/24 K₂Cr₂O₇ solution oxidises 22.4 mL H₂O₂ solution. The volume strength of H₂O₂ solution is - 10 mL of 0.2 M solution of K_xH(C₂O₄)_y requires 8 mL of 0.2 M acidified KMnO₄ solution. The value of x is - 13. 'n' factor for SO_2 in $FeS_2 + O_2 \longrightarrow Fe_2O_3 + SO_2$ is - 14. 30 mL of 0.3 M MnSO₄ is completely oxidised by 3 mL of KMnO₄ of unknown normality, each forming Mn⁴⁺ oxidation state. The normality of KMnO₄ is - 15. 2 M solution of HNO₃ is reduced to NO by suitable reductant. The normality of HNO₃, if HNO₃ is used like this is - 16. 'n' factor for S in SO₂ is 4 and in SO₃ is 6. The 'n' factor of S in SO₂ $+\frac{1}{2}$ O₂ \longrightarrow SO₃ is - 17. 'n' factor of C_2H_5OH in the reactions is.... $C_2H_5OH \longrightarrow CH_3CHO$ - 4 mole each of Hg²⁺ and ☐ will form how much mole of [HgI₄]²⁻ - 19. 2.5 mole of Fe₂(C₂O₄)₃ requires how much mole of KMnO₄ for its complete oxidation in acidic medium? - 20. C₃H₈ is completely oxidised to CO₂ and H₂O, the ratio of equivalent mass of CO₂ formed and C₃H₈ taken is..... - 21. The number of mole of KHC₂O₄·H₂C₂O₄·2H₂O oxidised by 4 mole of acidified KMnO₄ is..... - 22. CrO₅ reacts with H₂SO₄ to give Cr₂(SO₄)₃, H₂O and O₂. The mole of O₂ released during the reaction of 4 mole of CrO₅ with excess of H₂SO₄. - 23. 2 mole of FeC₂O₄ are oxidised by 'X' mole of KMnO₄ whereas 2 mole of FeSO₄ are oxidised by 'Y' mole of KMnO₄. The ratio of X: Y is..... - Number of H₂O₂ mole needed to convert two mole of Cr(OH)₃ in alkaline medium to sodium chromate is..... - 25. 6×10^{-3} mole K₂Cr₂O₇ reacts completely with 9×10^{-3} mole X^{n+} to give XO_3^- and Cr³⁺. The value of n is - Mole of KMnO₄ required to oxidise a mixture of 2 mole each of FeSO₄, FeC₂O₄ and Fe₂(C₂O₄)₃ in acid medium. - 27. Mole of $K_2Cr_2O_7$ required to oxidise one mole of $Fe_2(C_2O_4)_3$ in acid medium. - 28. Equivalent mass of nitrogen in the reaction: $(NH_4)_2Cr_2O_7 \longrightarrow N_2 + Cr_2O_3 + 4H_2O$ is $\frac{M}{X}$. The value of X is - 29. A 1.10 g sample of copper ore is dissolved and Cu²⁺ formed are titrated with excess of KI. The liberated iodine requires 12.12 mL of 0.10 N Na₂S₂O₃ solution for titration. The % of copper by mass in sample is - 30. 9.824 g of FeSO₄. (NH₄)₂SO₄. X H₂O were dissolved in 250 mL of solution. 20 mL of this solution required 20 mL of KMnO₄ containing 3.52 g of 90% by mass KMnO₄ dissolved per litre. The value of 'X' is - 31. A 0.56 g sample of limestone is dissolved in acid and calcium is precipitated as calcium oxalate. The precipitate is filtered, washed and dried and then dissolved in H₂SO₄. The solution required 4mL of 0.25 N KMnO₄ for oxidation of oxalate. The % of CaO in limestone is - Hydrogen peroxide in aqueous solution decomposes on warming to give oxygen according to the equation. $2H_2O_2(aq) \longrightarrow 2H_2O(l) + O_2(g)$ under conditions where 1 mole of gas occupies 50 dm^3 , 100 cm^3 , of XM solution of H_2O_2 produces 5 dm^3 of O_2 . Thus X is 33. 15g sample of an alloy containing Cu (at mass 63.6) and Zn reacts completely with 3M HNO₃ as: $$Cu + HNO_3 \longrightarrow Cu^{2+} + NO_2(g) + H_2O$$ $Zn + HNO_3 \longrightarrow Zn^{2+} + NH_4^+ + H_2O$ - The liberated $NO_2(g)$ was found to occupy 4.647 litre at 1 atm and 300 K. The mass of Zn (to the closest value) in alloy is - 34. *n*-factor of Mn₂O₇ in the change : $2Mn_2O_7 \longrightarrow 4MnO_2 + 3O_2$ is - 35. *n*-factor for Fe₃O₄ in its reaction during its oxidation to Fe₂O₃ is - 36. Number of mole of As₂S₃ required to reduce 56 mole of HNO₃ according to equation: As₂S₃ + HNO₃ H₃AsO₄ + H₂SO₄ + NO - 37. Reaction of Br₂ with Na₂CO₃ in aqueous solution gives sodium bromide and sodium bromate with evolution of CO₂ gas. The number of sodium bromide molecules involved in the balanced chemical equation is: [IIT 2011] ## **ANSWERS** ## **OBJECTIVE PROBLEMS** (One Answer Correct) | | Four | mole | of | Cl_2 | under | rgoes | dis | proportiona | ition | |--|--------------------------|---------|---------------|--------|---------|--------|-----|--------------------------|-------| | | invol
Cl ₂ | ving in | all si
ele | x mol | es elec | ctrons | The | e No. of mo
electrons | 10.06 | (a) 1, 3 (b) 3, 1 (c) 2, 2 (d) none of these 2. Number of mole of K₂Cr₂O₇ in acidic medium required to oxidise one mole of Cu₃P to CuSO₄ and H₃PO₄ is: (c) 3/5 (b) 6/11 (d) 5/3 3. Equivalent mass of As₂S₅ in As₂S₅ + HNO₃ ---- $H_2SO_4 + NO_2 + H_3AsO_4 + H_2O$ is: (a) M/20 (b) M/40 (c) M/10 (d) M/5 4. 4 mole of FeC₂O₄ are oxidised separately by acidified KMnO₄ and K₂Cr₂O₇. The mole ratio of KMnO₄ and K2Cr2O7 is: (a) 6/5 (b) 5/6 (c) 24/5 (d) 5/2n 5. Which of the following is not disproportionation reaction? CHO (a) COOH COO COOH (b) $KO_2 + H_2O + CO_2 \longrightarrow KHCO_3 + O_2$ (c) $KClO_3 \longrightarrow KClO_4 + KCl$ (d) $PbO_2 + H_2O \longrightarrow PbO + H_2O_2$ Which of the following is intermolecular redox change? (a) $NH_4NO_2 \longrightarrow N_2 + 2H_2O$ (b) $(NH_4)_2Cr_2O_7 \longrightarrow N_2 + Cr_2O_3 + 4H_2O$ (c) $2KClO_3 \longrightarrow 2KCl + 3O_2$ (d) $PbO_2 + H_2O \longrightarrow PbO + H_2O_2$ 7. For the reaction: $4\text{CrO}_5 + 6\text{H}_2\text{SO}_4 \longrightarrow 2\text{Cr}_2(\text{SO}_4)_3$ +6H₂O + 7O₂, which statement is wrong: (a) It is disproportionation reaction (b) It is intramolecular redox (c) CrO₅ acts as oxidant and reductant both (d) Cr acts as oxidant whereas O acts as reductant 8. In which of the reaction oxygen is not an oxidant : (a) $$N_2 + \frac{1}{2}O_2 \longrightarrow N_2O$$ (b) $C + O_2 \longrightarrow CO_2$ (c) $F_2 + \frac{1}{2}O_2 \longrightarrow F_2O$ (d) $C + \frac{1}{2}O_2 \longrightarrow CO$ 9. The equilibrium : $Cr_2O_7^{2-} + H_2O \Longrightarrow 2CrO_4^{2-} + 2H^+$ exist at pH = 4. The concentration of $[CrO_4^{2-}]$ at equilibrium is: (a) $4 \times K_c \times [Cr_2O_7^{2-}]$ (b) $2 \times \sqrt{K_c \cdot [Cr_2O_7^{2-}]}$ (c) $10^4 \times \sqrt{K_c \times [Cr_2O_7^{2-}]}$ (d) $10^{-8} \times K_c \times [Cr_2O_7^{2-}]$ 10. 1 mole each of FeC2O4 and FeSO4 is oxidised separately by I M KMnO₄ in acid medium. The volume ratio of KMnO₄ used for FeC₂O₄ and FeSO₄ is: (a) 1 (b) 2 (d) 4 (c) 3 11. What is wrong about 6.07% strength H₂O₂? (a) Its normality is 3.57 N - (b) Its molarity is 1.785 M - (c) Its volume strength is 20 volume - (d) Volume strength = 5.6 × molarity - 12. A 100 mL sample of blackish water was made ammoniacal and the sulphide ion in solution were titrated with 16.50 mL of 0.02000 M AgNO₃. The concentration of H2S in the water in ppm is: (a) 5.60 (b) 560 (c) 56 (d) 0.560 13. Titration of I₂ produced from 0.1045 g of primary standard KIO3 required 30.72 mL of sodium thiosulphate as shown below: $$IO_3^- + 5I^- + 6H^+ \longrightarrow 3I_2 + 3H_2O$$ $$I_2 + 2S_2O_3^{2-} \longrightarrow 2I^- + S_4O_6^{2-}$$ The molarity of sodium thiosulphate ion is: (a) 0.095 (b) 0.079 (c) 0.084 (d) 0.064 14. The mass of 1 g-equivalent of V₂O₅ used in the reaction $Zn + V_2O_5 \longrightarrow ZnO + V$ is : (atomic mass of V = A) (b) $\frac{A+80}{}$ (d) $\frac{2A+80}{}$ 15. An element A forms an acidic oxide which with KOH forms a salt isomorphous to K₂SO₄. If eq. mass of A is 13, the atomic mass of A is: (a) 78 (b) 80 (c) 26 (d) 52 16. Equivalent mass of Fe₃O₄ and Fe₂O₃ in the change $Fe_3O_4 \longrightarrow Fe_2O_3$ is respectively. M_1 and M_2 are molar mass of Fe₃O₄ and Fe₂O₂ respectively: 17. A definite amount of reducing agent is oxidised by 20 mL of 1 M KMnO₄ in acid medium, then the same amount of reducing agent is oxidised to same state by how many mL of 1 M KMnO4 in neutral medium it self changing to Mn4+ state: (a) 3 mL (b) 33.3 mL (c) 12 mL (d) 24 mL 18. 5 g mixture $FeSO_4 \cdot 7H_2O$ and $Fe_2(SO_4)_3 \cdot 9H_2O$ is 28. 1 litre solution of KIO3 of unknown molarity is given to | | • | 2- 1120 13 | 40, | I mue solution of the | , , or minere | " | |-----|--|---|-----|--|---|----| | | completely oxidised by | y 5.5 mL of 0.1 M KMnO ₄ in | | titrate with KI in stror | ng acid medium. 50 mL solution | of | | | acid medium. The % of | FeSO ₄ · 7H ₂ O in mixture is: | | KIO, requires 10 r | mL of 0.1 M KI for comple | te | | | (a) 15.29 | (b) 3.058 | | reduction to L. The n | nolarity of KIO3 solution is: | • | | | (c) 20.24 | (d) 25.29 | | | (b) $4 \times 10^{-4} M$ | | | 19. | | f KMnO ₄ that will be needed to | | (a) $4 \times 10^{-3} M$ | (b) 4×10 M | | | | react with one male of | t Rivino 4 that will be needed to | | (c) $4 \times 10^{-5} M$ | (d) $4 \times 10^{-2} M$ | | | | (a) 2/5 | ulphite ions in acidic solution is: | 29. | 10g of Fe ₃ O ₄ is oxidis | sed completely by 50 mL of 0.1 / | И | | | (a) 2/5 | (b) 3/5 | | KMnO ₄ solution. The | mass in g of Fe 2O3 in Fe 3O4 is: | : | | •• | (c) 4/5 | (d) 1 | | (a) 1.8 | (b) 8.2 | | | 20. | Mole of H ₂ O ₂ requir | ed for decolorising 1 mole of | | (c) 4.1 | (d) 5.9 | | | | acidified KMnO ₄ are: | | 30 | | KMnO ₄ are needed to oxidise | • | | | (a) 1/2 | (b) 3/2 | 30. | | | | | | (c) 5/2 | (d) 7/2 | | | each of FeSO ₄ , FeC ₂ O ₄ and | ıd | | 21. | 2 mole, equimolar mix | cture of Na ₂ C ₂ O ₄ and H ₂ C ₂ O ₄ | | Fe ₂ (C ₂ O ₄) ₃ complete | ely in acid medium : | | | | required V I as 0 1 1 | title of Na ₂ C ₂ O ₄ and H ₂ C ₂ O ₄ |
| (a) 5 | (b) 2 | | | | complete suideties T | KMnO ₄ in acidic medium for | | (c) 4 | (d) 6 | | | | complete oxidation. I | he same amount of the mixture | 31. | The anion nitrate is | converted into NH4 ion. Th | ie | | | required v ₂ L of 0.1 M | NaOH. The ratio of V_1 to V_2 is: | | equivalent mass of NO | | | | | (a) 2:1 | (b) 4:5 | | | ** 12101 CONTROL | | | | (c) 5:4 | (d) 2:5 | ~ | (a) 6.20 | (b) 7.75 | | | 22. | If a g of NaHC ₂ O ₄ is c | ompletely reduced by 100 mL of | | (c) 10.5 | (d) 21.0 | | | | 0.02 M KMnO ₄ in acid | d medium and $b g$ of NaHC ₂ O. | 32. | | hot NaOH solution, oxidatio | n | | | required to neutralise | completely 100 mL of 0.2 M | | number of chlorine ch | anges from: | | | | NaOH, then: | 1 , =================================== | | (a) $0 \text{ to } + 5$ | (b) 0 to −2 | | | | (a) $a=b$ | (b) $2a = b$ | | (c) $0 \text{ to } +1$ | (d) $0 \text{ to } + 7$ | | | | (c) $a = 2b$ | (d) $b = 4a$ | 33. | M is the molar mass of | KMnO ₄ . The equivalent mass of | ıf | | 23. | | 04 oxidised by equal volume of | | KMnO, when it is con | nverted into K ₂ MnO ₄ is: | 1 | | | equimolar K-Cr-O- a | and KMnO ₄ solution in acidic | | (a) M | (b) $M/3$ | | | | medium is: | and Kivino ₄ solution in acidic | | (c) M/5 | | | | | (a) 6:5 | (h) 5.6 | 34. | | (d) M/7 | | | | | (b) 5:6 | | who it is seen to the | of MnSO ₄ is half its molar mas | S | | 24 | (c) 5:3 | (d) 3:5 | | when it is converted to | | | | 24. | | with Br ion in acid medium, | | (a) Mn_2O_3 | (b) MnO ₂ | | | | | equivalent mass of Br2 in the | | (c) MnO_4^- | (d) MnO_4^{2-} | | | | reaction is: | | 35. | The number of mole of | of KMnO ₄ that will be needed to | _ | | | (a) $\frac{5M}{3}$ | (b) $\frac{3 M}{5}$ | | react completely with | one mole of ferrous oxalate i | J | | | 3 | (6) 5 | | acidic medium is: | one more of ferrous oxalate is | n | | | (c) $\frac{4M}{6}$ | (d) $\frac{5 M}{8}$ | | • | 2 | | | | (c) <u>6</u> | (a) <u>8</u> | | (a) $\frac{3}{5}$ | (b) $\frac{2}{5}$ | | | 25. | In Fe ²⁺ vs MnO ₄ titratio | on, HNO ₃ is not used because it: | | (-) 4 | 3 | | | | SCHOOL SECTION SECTION SECTION | | | (c) $\frac{4}{5}$ | (d) 1 | | | | • • | (b) reduces MnO ₄ | 36. | 9 x 10 ⁻³ mole of V"+ | | | | | (c) oxidises Fe ²⁺ | (d) reduces Fe ³⁺ formed | | male of K C C | are oxidised to XO_3^- by $6 \times 10^-$ | 3 | | 26. | l mole of equimolar | mixture of Fe ₂ (C ₂ O ₄) ₃ and | | more of K ₂ C ₁₂ O ₇ . If | atomic mass of V in A the | n | | | FeC,O4 requires X mol | le of KMnO ₄ in acid medium for | | equivalent mass of X' | will be: | | | | complete oxidation. Th | e value of X is . | | (a) A | αA | | | | (a) 0.9 | (b) 0.6 | | • | (b) $\frac{A}{2}$ | | | | (c) 1.2 | (d) 0.8 | | (c) $\frac{A}{3}$ | (d) A | | | 27 | | | | ` ' 3 | (d) $\frac{A}{4}$ | | | -/- | | present in 1 litre of 5 N KMnO ₄ | 37. | If molar mass of AsCl: | is 228.5. It is ovidised to AcCl | | | | is: | | | The equivalent mass o | f AsCl. is | • | | | (a) N _A | (b) 5N _A | | (a) 228.5 | | | | | (c) $\frac{2N_{A}}{10}$ | (d) $\frac{5N_{A}}{10}$ | | (c) 76.16 | (b) 114.25 | | | | 10 | 10 | | . , | (d) 57.12 | 38. | In the disproportionation: $H_3PO_2 \longrightarrow PH_3 + H_3PO_3$; | | | | | |-----|--|---|--|--|--| | | the <i>n</i> factor of H_3PO_2 is: | | | | | | | (a) $\frac{3}{4}$ (b) $\frac{4}{3}$ | 4 | | | | | | (c) $\frac{2}{3}$ (d) $\frac{3}{2}$ | | | | | | 39. | Number of mole of KMnO ₄ required for 1 mole of Hg ₂ S | | | | | | | in the reaction: | | | | | | | $Hg_2S + MnO_4^- + H^+ \longrightarrow Hg^{2+} + SO_4^{2-} + Mn^{2+} + H_2O$ | | | | | | | are same as required for the change 5 mole of: (a) N ₂ to NO ₂ (b) C ₂ H ₅ OH to CH ₃ CHO | | | | | | | (c) NO to HNO ₃ (d) NH ₃ to NO | 4 | | | | | 40. | Photosynthesis is a redox reaction i.e., | | | | | | 20 | $XCO_2 + XH_2O \xrightarrow{hv} (CH_2O)_n + XO_2$; which one | | | | | | | is not correct about it: | | | | | | | (a) carbon is reduced and oxygen is oxidised | 4 | | | | | | (b) it may be classified as intermolecular redox reaction | | | | | | | | comes from H ₂ O | | | | | |-----|---|--|--|--|--|--| | | (d) equivalent r | mass of CO2 is 11 and of H | I ₂ O is 4.5 | | | | | 41. | In standardisati | ion of Na ₂ S ₂ O ₃ using | K ₂ Cr ₂ O ₇ by | | | | | | iodometry, the e | equivalent mass of K2Cr2C | 7 is: | | | | | | , | | (IIT 2001) | | | | | | (a) $M/2$ | (b) M/6 | | | | | | | (c) M/6 | (d) M | | | | | | 42. | In alkaline medi | um, MnO4 oxidises I to: | (IIT 2004) | | | | | | (a) IO_3^- | (b) I ₂ | | | | | | | (c) IO ₄ | (d) IO ⁻ | | | | | | 43. | Consider a titration of potassium dichromate solution with acidified Mohr's salt. The number of mole of | | | | | | | | Mohr's salt requ | ired per mole of dichroma | te is: | | | | | | | | (IIT 2007) | | | | | | (a) 3 | (b) 4 | | | | | | | (c) 5 | (d) 6 | | | | | | 44. | The oxidation n | umber of Mn in the produc | ct of alkaline | | | | | | oxidative fusion | of MnO ₂ is: | (IIT 2009) | | | | | | (a) 2 | (b) 4 | | | | | | | (c) 6 | (d) 8 | | | | | | | | | | | | | ## **SOLUTIONS (One Answer Correct)** - 1. (a) $2e+Cl_2 \longrightarrow 2Cl^- \times 3$ (The lowest oxidation state of Cl is -1) $Cl_2 \longrightarrow 2Cl^{3+} + 6e$ $4Cl_2 \longrightarrow 6Cl^- + 2Cl^{3+}$ - 2. (a) $6Cu_3P + 124H^+ + 11Cr_2O_7^{2-} \longrightarrow 18Cu^{2+} +$ 6H₃PO₄ + 22Cr³⁺ + 53H₂O - 3. (b) $(As^{5+})_2 \longrightarrow 2As^{5+}$, No redox $(S^{2-})_5 \longrightarrow 5S^{6+} + 40e$, $E_{\rm As_2S_5} = M/40$ - 4. (a) $Fe^{2+} \longrightarrow Fe^{3+} + \epsilon$ $Mn^{7+} + 5\epsilon \longrightarrow Mn^{2+}$ $(C^{3+})_2 \longrightarrow 2C^{4+} + 2e \quad (Cr^{6+})_2 + 6e \longrightarrow 2Cr^{3+}$ $FeC_2O_4 \longrightarrow Fe^{3+} + 2C^{4+} + 3e$ - \therefore 4 mole $FeC_2O_4 = \frac{12}{5}$ mole KMnO₄ $\equiv 2 \text{ mole } K_2 Cr_2 O_7$ - 5. (d) It is intermolecular redox change. - 6. (d) -do- - $3e+Cr^{6+}\longrightarrow Cr^{3+}$ 7. (a) $0^{-1} \longrightarrow 0^0_2 + 2e$ - 8. (c) F_2 is oxidant and O_2 is reductant (0 to +2) - 9. (c) $K_c = \frac{[\text{CrO}_4^{2-}]^2[\text{H}^+]^2}{[\text{Cr}_2\text{O}_7^{2-}]}$ $: [CrO_4^{2-}] = \sqrt{10^8 \times [Cr_2O_7^{2-}]} \times K_c$ - 10. (c) $Fe^{2+} + C_2O_4^{2-} \longrightarrow Fe^{3+} + 2CO_7^{4+} + 3e$ $Mn^{7+} + 5e \longrightarrow Mn^{2+}$ $Fe^{2+} + SO_4^{2-} \longrightarrow Fe^{3+} + SO_4^{2-} + e$ Meq. of $FeC_2O_4 = Meq.$ of $KMnO_4$, $1\times3\times1000=1\times5\times V_1$ Meq. of $FeSO_4 = Meq.$ of $KMnO_4$ $1 \times 1 \times 1000 = 1 \times 5 \times V_2$ - 11. (d) 6.07% strength of H₂O₂ means 6.07 g H₂O₂ in 100 mL solution 20 volume H2O2 means of 1 mL H2O2 solution gives - Also, % strength = $\frac{17}{56}$ × vol. strength; - volume strength = $5.6 \times N = 11.2 \times M$ - 12. (c) Meq. of $H_2S = Meq. of S^{2-} = Meq. of AgNO_3$ $=16.50 \times 0.02 = 0.33$ - $\frac{w}{17} \times 1000 = 0.33$ $\therefore w_{\text{H}_2\text{S}} = 5.6 \times 10^{-3}$ - $\therefore \text{ ppm of H}_2S = \frac{5.6 \times 10^{-3} \times 10^6}{10^2} = 56$ - 13. (a) $IO_3^- + 5I^- + 6H^+ \longrightarrow 3I_2 + 3H_2O$ $3I_2 + 6S_2O_3^{2-} \longrightarrow 6I^- + 3S_4O_6^{-2}$ $IO_3^- + 6S_2O_3^{2-} + 6H^+ \longrightarrow I^- + 3S_4O_6^{2-}$ Mole of KIO₃ = 6 mole of $S_2O_3^{2-}$ - Mole of KIO₃ = $\frac{0.1045}{214}$ = 4.88×10⁻⁴ :. Mole of $S_2O_3^{2-}$ used = $4.88 \times 10^{-4} \times 6$ - Mole of $S_2O_3^{2-} = 2.93 \times 10^{-3}$ $\frac{M \times 30.72}{1000} = 2.93 \times 10^{-3}$ - .. M = 0.09514. (d) $10e + (V^{5+})_2 \longrightarrow 2V^0$ $\therefore E = \frac{M}{10} = \frac{2A + 80}{10}$ - 15. (a) $A \longrightarrow \text{oxide of } A \xrightarrow{\text{KOH}} \text{Isomorph of } \mathbb{K}_2 \text{SO}_4, i.e.,$ K_2AO_4 - $A^{\circ} \longrightarrow A^{6+} + 6e$ - $\therefore \text{ atomic mass} = \text{eq. mass} \times \text{v. f.} = 13 \times 6 = 78$ $2(\text{Fe}^{8/3+})_3 \longrightarrow 3(\text{Fe}^{3+})_2 + 2e$ - $\therefore E_{\text{FejO}_4} = \frac{M}{1} \text{ and } E_{\text{FejO}_3} = \frac{M}{2/3}$ - 17. (b) $\operatorname{Mn}^{7+} + 5e \longrightarrow \operatorname{Mn}^{2+}$ (Acid med.) $\operatorname{Mn}^{7+} + 3e \longrightarrow \operatorname{Mn}^{4+}$ (Neutral med.) : Meq. of KMnO₄ in acid medium = Meq. of KMnO₄ in neutral medium. $1 \times 5 \times 20 = 1 \times 3 \times V$ $V = 33.3 \, \text{mL}$ - 18. (a) Meq. of $KMnO_4 = Meq.$ of $FeSO_4 \cdot 7H_2O$ $5.5 \times 0.1 \times 5 = \frac{w}{278} \times 1000 \quad (Mn^{7+} + 5e \longrightarrow Mn^{2+})$ w = 0.7645 $(Fe^{2+} \longrightarrow Fe^{3+} + le)$:. % of FeSO₄ · 7H₂O = $\frac{0.7645}{5}$ × 100 = 15.29 - $S^{4+} \longrightarrow S^{6+} + 2e$ 19. (a) $Mn^{7+} + 5e \longrightarrow Mn^{2+}$ - $Mn^{7+} + 5e \longrightarrow Mn^{2+}$ 20. (c) x 2 $(O^{-1})_2 \longrightarrow O_2^0 + 2e$ - 21. (d) Let mole of Na₂C₂O₄ and H₂C₂O₄ be a,b respectively, then a + b = 2 and a = b (equimolar) Eq. of Na₂C₂O₄ + H₂C₂O₄ = $V_1 \times 0.1 \times 5$ $(Mn^{7+} + Se \longrightarrow Mn^{2+})$ - $2a + 2b = 0.5V_1$ $(\because a = b)$ $V_1 = 8L$ Eq. of $H_2C_2O_4 = V_2 \times 0.1 \times 1$ $2b = 0.1V_2$ $$V_2 = 20 L$$ $$\frac{V_1}{V_2} = \frac{8}{20} = \frac{2}{5}$$ 22. (d) Meq. of NaHC₂O₄ = Meq. of KMnO₄ $\frac{a \times 2}{14} \times 1000 = 100 \times 0.02 \times 5 = 10$ Also Meq. of NaHC₂O₄ = Meq. of NaOH $b \times 1 \times 1000 = 100 \times 0.2 = 20$ $$\therefore \quad \frac{2a}{b} = \frac{10}{20}$$ or b = 4a 23. (a) $$6e + (Cr^{6+})_2 \longrightarrow 2Cr^{3+}$$ $5e + Mn^{3+} \longrightarrow Mn^{2+}$ $Fe^{2+} \longrightarrow Fe^{3+} + e$ One mole of K2Cr2O7 will oxidise 6 mole Fe2+ One mole of KMnO₄ will oxidise 5 mole Fe²⁺ 24. (b)
$$10e + 2Br^{5+} \longrightarrow (Br^{0})_{2}$$ $2Br^{-} \longrightarrow (Br^{0})_{2} + 2a$ $2Br^{5+} + 10Br^{-} \longrightarrow 6Br_{2}$ 6 mole of $Br_{2} = 2$ mole Br^{5+} = 10 eq. Br 5+ = 10 eq. Br₂ :. 1 mole $Br_2 = \frac{10}{6} eq$. $Br_2 = \frac{5}{3} eq$. Br_2 $$E_{\text{Br}_2} = \frac{M}{5/3} = \frac{3\Lambda}{5}$$ - 25. (c) HNO₃ will also oxidise Fe²⁺ - 26. (a) KMnO₄ will oxidise Fe²⁺ to Fe³⁺ and $C_2O_4^{2-}$ to CO_2 $$(C_2^{3+})_3 \longrightarrow 6C^{4+} + 6e$$ $$(C_2^{3+}) \longrightarrow 2C^{4+} + 2e$$ and $$Fe^{2+} \longrightarrow Fe^{3+} + e$$ Meq. of $C_2O_4^{2-}$ in $Fe_2(C_2O_4)_3$ + Meq. of FeC_2O_4 = Meq. of KMnO₄ (Total mole of $FeC_2O_4 = 0.5$ and mole of $Fe_2(C_2O_4)_3 = 0.5$ $$0.5 \times 6 + 0.5 \times 3 = X \cdot 5$$ $X = 0.9$ Eq. of KMnO₄ = $5 \times 1 = 5$ 27. (a) $(mole \times V. f. = Eq.)$.. mole of KMnO₄ = 1 **28.** (a) $$10e + 21^{5+} \longrightarrow (1^{0})_{2}$$ $21^{-} \longrightarrow (1^{0})_{2} + 2e$ Meq. of $KIO_3 = Meq. of I^-$ $$50 \times M \times 5 = 10 \times 0.1 \times 1$$ ∴ Molarity = $\frac{1}{250} = 4 \times 10^{-3} \text{ M}$ 29. (b) Meq.of Fe²⁺ in Fe₃O₄ = $$50 \times 0.1 \times 5 = 25$$ = Meq. of FeO mm of Fe²⁺ in Fe₃O₄ = 25 = mm of FeO $\therefore w_{\text{FeO}} = \frac{25 \times 72}{1000} = 1.8 \text{ g}$ Eq. of $$Fe_2(C_2O_4)_3$$ = $1 \times 1 + 1 \times 3 + 1 \times 6$ $$M \times 5 = 10$$ $$M = 2$$ 31. (b) $$8e + N^{+5} \longrightarrow N^{-3}$$ $$\therefore E_{NO_3^-} = \frac{62}{8} = 7.75$$ 32. (a) $$Cl_2 + OH^- \longrightarrow ClO_3^- + Cl^-$$ 33. (a) $$\operatorname{Mn}^{7+} + e \longrightarrow \operatorname{Mn}^{6+}$$ $$\therefore E = \frac{M}{1}$$ 34. (b) $$Mn^{2+} \longrightarrow Mn^{4+} + 2e$$ $\therefore E = \frac{M}{2}$ 35. (a) $$Fe^{2+} \longrightarrow Fe^{3+} + e$$ $$(C^{3+})_2 \longrightarrow 2C^{4+} + 2e$$ $$FeC_2O_4 \longrightarrow Fe^{3+} + 2C^{4+} + 3e^{3} \times 5$$ $$Mn^{7+} + 5e \longrightarrow Mn^{2+}] \times 3$$ or 5 mole $$FeC_2O_4 = 3$$ mole $KMnO_4$ 36. (d) $6e + (Cr^{6+})_2 \longrightarrow 2Cr^{3+}$ $$X^{n+} \longrightarrow X^{5+} + (5-n)e$$ $$\therefore \text{ Meq of } K_2Cr_2O_7 = \text{Meq of } X^{+n}$$ $$6 \times 6 \times 10^{-3} = 9 \times 10^{-3} \times (5-n)$$ $$\therefore n = 1$$ $$\therefore X^{1+} \longrightarrow X^{5+} + 4e$$ $$\therefore E \text{ of } X^{n+} = \frac{A}{4}$$ 37. (b) As³⁺ $$\longrightarrow$$ As⁵⁺ + 2e \therefore Eq. mass = $\frac{\text{molar mass}}{2} = \frac{228.5}{2} = 114.25$ 38. (b) $$4e+P^{+1} \longrightarrow P^{-3}$$ $P^{+1} \longrightarrow P^{+3} + 2e$ $3P^{+} \longrightarrow P^{-3} + 2P^{+3}$ $3H_3PO_2 \longrightarrow PH_3 + 2H_3PO_3$ $3 \text{ mole } H_3PO_2 = 1 \text{ mole } PH_3$ $= 4 \text{ eq. } PH_3 = 4 \text{ eq. } H_3PO_2$ $$\therefore 1 \text{ mole } H_3 PO_2 = \frac{4}{3} \text{ eq. } H_3 PO_2$$ or *n* factor = $\frac{4}{3}$ 39. (b) $$(Hg^{+1})_2 \longrightarrow 2Hg^{2+} + 2e$$ $$S^{-2} \longrightarrow S^{6+} + 8e$$ $$Hg_2S \longrightarrow 2Hg^{2+} + S^{6+} + 10e$$ for (b) $(C^{-2})_2 \longrightarrow (2C^{-1}) + 2e$ $$\therefore 5C_2H_5OH \longrightarrow 10CH_3CHO$$ $$5e + Mn^{7+} \longrightarrow Mn^{2+}$$ 40. (d) $4e + C^{4+} \longrightarrow C^0$ $$2(O^{-2}) \longrightarrow O_2^0 + 4e$$ 40. (d) $$4e + C^{4+} \longrightarrow C^0$$ $2(O^{-2}) \longrightarrow O_2^0 + 4e^{-1}$ \therefore Equi /alent mass of $CO_2 = \frac{44}{4} = 11$ and Equivalent mass of $H_2O = \frac{18}{2} = 9$ 41. (b) $$6e + (Cr^{6+})_2 \longrightarrow 2Cr^{3+}$$ $\therefore E = M/6$ 42. (a) $$2MnO_4^- + I^- + H_2O \longrightarrow IO_3^- + 2MnO_2 + 2OH^-$$ 43. (d) $$\operatorname{Fe}^{2+} \longrightarrow \operatorname{Fe}^{3+} + e] \times 6$$ $6e + (\operatorname{Cr}^{6+})_2 \longrightarrow 2\operatorname{Cr}^{3+}$ 44. (c) $$2MnO_2 + 4KOH + O_2 \longrightarrow K_2MnO_4 + 2H_2O$$ #### Redox Titrations ## 311 ## **OBJECTIVE PROBLEMS** (More Than One Answer Correct) - 1. 100 mL of 0.1 M NaHC₂O₄ is neutralised by V_1 mL of 0.1 M NaOH and V_2 mL of a M KMnO₄ separately, then for complete neutralisation: - (a) volume of NaOH required = 200 mL - (b) if M of KMnO₄ is 0.1 M then $\frac{V_1}{V_2} = 5:1$ - (c) if M of KMnO₄ is 0.1 M then $V_2 = 20$ mL - (d) if M of KMnO₄ is 0.2 M then $V_2 = 2$ mL - 2. A mixture of Na₂C₂O₄ and H₂C₂O₄ requires 100 mL of 0.1 M KMnO₄ for complete neutralisation. The same mixture on neutralisation by a base requires 50 mL of 0.2 M NaOH solution. Which one are correct? - (a) Mole ratio of $Na_2C_2O_4$ and $H_2C_2O_4 = 4:1$ - (b) Equivalent ratio of $Na_2C_2O_4$ and $H_2C_2O_4 = 4:1$ - (c) Mole of $C_2O_4^{2-}$ in mixture = 25×10^{-3} - (d) Mole ratio of $Na_2C_2O_4$ and $H_2C_2O_4 = 1:4$ - 3. Quantitative estimation of Fe²⁺ can be made by KMnO₄ in acidified medium. In which medium it can be estimated by KMnO₄? - (a) In H₂SO₄ - (b) In HNO₃ - (c) In HCl - (d) all of these - 4. Which are correct about the reaction? $$FeS_2 + O_2 \longrightarrow Fe_2O_3 + SO_2$$ (a) Eq. mass of FeS₂ is M/11 - (b) Eq. mass of $SO_2 = M / 5$ - (c) 1 mole of FeS2 requires 7/4 mole of O2 - (d) S has 2 oxidation state in FeS₂ - 5. Which of the following are primary standards? - (a) As_2O_3 - (b) $H_2C_2O_4$ - (c) NaOH (d) Na₂CO₃ - 6. Which of the followings are not valid reactions for iodometric titrations? (a) $$O_3 + 2I^- + 2H^+ \longrightarrow O_2 + I_2 + H_2O$$ (b) $$8HNO_3 + 6I^- \longrightarrow 6NO_3^- + 2NO + 2I_2 + 4H_2O$$ - $\begin{array}{l} \text{(c)} \ \ CuSO_4 + 2KI \longrightarrow Cu_2I_2 + I_2 + K_2SO_4 \\ \text{(d)} \ \ Na_2S_2O_3 + I_2 \longrightarrow Na_2S_4O_6 + 2NaI \end{array}$ - 7. In which of the following reactions O2 is oxident? (a) $$F_2 + \frac{1}{2}O_2 \longrightarrow F_2O$$ (b) $3O_3 \longrightarrow 2O_2$ (c) $$CO + \frac{1}{2}O_2 \longrightarrow CO_2$$ (d) $N_2 + O_2 \longrightarrow 2NO$ 8. Reduction of the metal centre in aqueous permanganate ion involves: (IIT 2011) 0 - (a) 3 electrons in neutral medium - (b) 5 electrons in neutral medium - (c) 3 electrons in alkaline medium - (d) 5 electrons in acidic medium ## **SOLUTIONS (More Than One Answer Correct)** 1. (b, c) Meq. of NaHC₂O₄ = $100 \times 0.1 = 10$ Meq. of NaOH required = $10 = V_1 \times 0.1 \times 1$ (v.f. of NaOH = 1) $V_1 = 100 \text{ mL}$ Meq. of KMnO₄ required = $10 = V_2 \times a \times 5$ (v.f. of KMnO₄ = 5) $$V_2 = \frac{10}{5a} \quad \therefore \quad \frac{V_1}{V_2} = \frac{100 \times 5a}{10}$$ if $M_{\text{KMnO}_4} = 0.1M$, then $10 = V_2 \times 0.1 \times 5$ $\therefore V_2 = 20 \text{ mL}$ 2. (a,b,c) Meq. of $KMnO_4 = 100 \times 0.1 \times 5 = 50$ $$a + b$$ ∴ $a+b=50$ Meq. of NaOH = $50 \times 0.2 = 10 = \text{Meq. of H}_2\text{C}_2\text{O}_4$ ∴ $b=10$ $\therefore a = 40$ milli mole of Na₂C₂O₄ = $\frac{a}{2}$.. milli mole of $$C_2O_4 = \frac{a}{2} + \frac{b}{2} = \frac{a+b}{2} = \frac{40+10}{2} = 25$$ milli mole of $H_2C_2O_4 = \frac{b}{2}$ 3. (a) HNO₃ also oxidises Fe²⁺ whereas KMnO₄ oxidises 4. (a,b,c) $$2Fe^{2+} \longrightarrow (Fe^{3+})_2 + 2e$$ Eq. mass of $FeS_2 = \frac{M}{22/2} = \frac{M}{11}$ $2(S^{-1})_2 \longrightarrow 4(S^{4+}) + 20e$ Eq. mass of $SO_2 = \frac{M}{20/4} = \frac{M}{5}$ $\therefore 4e + O_2^0 \longrightarrow 2(O^{-2})$ $\therefore 4FeS_2 + 7O_2 \longrightarrow 2Fe_2O_3$ - S has -1 oxidation state. 5. (a,b) Primary standard solutions are those whose solution of exact normality can be prepared by weighing - desired amount of its pure sample. 6. (b) In strong acidic medium either I produced in reaction tend to be oxidised to I⁻ or starch used to detect end point is decomposed and hydrolysed. - 7. (c,d) In the reaction of F2 and O2, F2 is oxidant. - 8. (a,c,d) In acidic medium: $Mn^{7+} + 5e \longrightarrow Mn^{2+}$ In neutral medium: $Mn^{7+} + 3e \longrightarrow Mn^{4+}$ In alkaline solution: $Mn^{7+} + e \longrightarrow Mn^{6+}$ Note that in alkaline medium, Mn 6+ is further reduced to Mn 4+ $$Mn^{6+} + 2e \longrightarrow Mn^{4+}$$ Thus over all reaction may give $$Mn^{7+} + 3e \longrightarrow Mn^{4+}$$ ## COMPREHENSION BASED PROBLEMS Comprehension 1: Estimation of CuSO₄ is made by iodometric titrations. In a given titration CuSO₄ reacts with KI in acidic medium to liberate I2. $$2CuSO_4 + 4KI \longrightarrow Cu_2I_2 + 2K_2SO_4 + I_2$$ Mercuric per iodate Hg 5 (IO6)2 reacts with a mixture of KI and HCl following the equation: $$Hg_5(IO_6)_2 + 34KI + 24HCI \longrightarrow$$ The liberated iodine is titrated against Na 2S2O3 solution. One mL of which is equivalent to 0.0499 g of CuSO₄ ·5H₂O. Molar mass of $Hg_5(IO_6)_2 = 1448.5$ and molar mass of $CuSO_4 \cdot 5H_2O = 249.5$. - [1] Equivalent mass of CuSO₄ · 5H₂O is : - [2] The reaction of Na₂S₂O₃ and I₂ gives oxidation product as: - (a) I (b) $S_2O_3^{2-}$ (c) $S_4O_6^{2-}$ (d) SO_4^{2-} [3] Volume in mL of Na₂S₂O₃ solution will be required to react with I2 liberated from 0.76245 g of Hg5 (IO6)2: (a) 40 mL (b) 10 mL (c) 20 mL (d) 30 mL Comprehension 2: 2.5 g sample of copper is dissolved in excess of H2SO4 to prepare 100 mL of 0.02 M CuSO4 (aq.). 10 mL of 0.02 M solution of CuSO₄ (aq.) is mixed with excess of KI to show the following changes. $$CuSO_4 + 2KI \longrightarrow K_2SO_4 + CuI_2$$ $$2CuI_2 \longrightarrow Cu_2I_2 + I_2$$ The liberated iodine is titrated with hypo (Na₂S₂O₃) and requires V mL of 0.1 M hypo solution for its complete reduction. [1] The volume (V) of hypo required is: (a) 2 mL (b) 20 mL (c) 1 mL (d) 10 mL - [2] Percentage of purity of sample is: - (a) 10.16 (b) 5.08 - (c) 2.54 - (d) 1.27 - [3] The mass of I2 liberated in the reaction of 10 mL of 0.02 M solution with KI excess is: (a) 0.051 g (b) 0.0254 g - (c) 0.102 g - (d) 0.204 g - [4] The colour of solution developed during addition of KI CuSO4 is: - (a) violet due to dissolution of liberated I2 - (b) brownish yellow due to dissolution of liberated I2 - (c) red due to the formation of Cul 2 - (d) brown due to the formation of Cu₂I₂ - [5] Select the correct statement : - 1. The reaction belongs to iodometric titration - The reaction belongs to iodimetric titration - Cu₂l₂ formed during the reaction is white - Starch is used as indicator in this
titration (a) 1, 3, 4 (b) 2, 3, 4 (c) 1, 3 (d) 2, 3 Comprehension 3: K2Cr2O7 acts as a good oxidizing agent in acidic medium. $$Cr_2O_7^2 + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O$$ In alkaline solution, orange colour of Cr₂O₇²⁻⁻ changes to yellow colour due to formation of CrO₄²⁻ and again yellow colour changes to orange colour on changing the solution to acidic medium. $$Cr_2O_7^{2-} + 2OH^- \longrightarrow 2CrO_4^{2-} + H_2O$$ Orange Yellow $$2CrO_4^{2-} + 2H^+ \longrightarrow 2Cr_2O_7^{2-} + H_2O$$ Yellow Orange CrO_4^{2-} and $Cr_2O_7^{2-}$ exist in equilibrium at pH = 4 and are interconvertible by altering the pH of the solution. When heated with H_2SO_4 and metal chloride, $K_2Cr_2O_7$ gives vapours of chromyl chloride (CrO2Cl2). Chromyl chloride (CrO2Cl2) when passed into aqueous NaOH solution, yellow colour solution of CrO₄²⁻ is obtained. This on reaction with lead acetate gives yellow ppt. of PbCrO₄. When H2O2 is added to an acidified solution of dichromate ion, a complicated reaction occurs. The products obtained depend on the pH and concentration of Cr. $$Cr_2O_7^{2-} + 2H^+ + 4H_2O_2 \longrightarrow 2CrO(O_2)_2 + 5H_2O$$ A deep blue-violet coloured peroxo compound, CrO(O2)2, called chromic peroxide is formed. This decomposes rapidly in aqueous solution into Cr 3+ and oxygen. - [1] What happens when a solution of potassium chromate is treated with an excess of dilute nitric acid? - (a) Cr 3+ and Cr₂O₇²⁻ are formed - (b) Cr₂O₇²⁻ and H₂O are formed - (c) CrO₄²⁻ is reduced to +3 state of Cr - (d) CrO₄²⁻ is reduced to 0 state of Cr - [2] Which of the following statement is wrong when a mixture of NaCl and K2Cr2O7 is gently warmed with conc. H2SO4? - (a) A deep red vapour is evolved - (b) The vapour when passed through NaOH solution gives a yellow solution of Na₂CrO₄ - (c) Chlorine gas is formed - (d) Chromyl chloride is formed - [3] The CrO₃ on reaction with HCl and NaOH(aq.) gives respectively: - (a) CrO₂Cl₂, CrO₄²⁻ - (b) $Cr(OH)_2$, CrO_4^{2-} - (c) Cl_2 , $Cr_2O_7^{2-}$ - (d) Cl₂, Cr(OH)₃ - [4] Number of mole of K₂Cr₂O₇ reduced by one mole of Sn2+ ions in acidic medium is: - (a) $\frac{1}{3}$ - (c) $\frac{1}{6}$ - (d) 6 - [5] The equivalent mass of barium in BaCrO₄ used as an oxidizing agent in acidic medium is (atomic mass of Ba = 137.34 and Cr = 52) - (a) 137.34 - (b) 85.78 - (c) 114.45 - (d) 68.67 - [6] The equivalent mass of KIO₃ in the reaction $2Cr(OH)_3 + OH^- + KIO_3 \longrightarrow 2CrO_4^{2-} + KI + 5H_2O$ - (a) Molar mass - [7] When H₂O₂ is added to an acidified solution of K₂Cr₂O₇, then: - (a) solution turns green due to formation of Cr2O3 and reduction of Cr takes place - solution turns blue due to formation of CrO(O2)2 and no redox change - (c) a deep blue-violet coloured compound CrO(O2)2 due to reduction of Cr - (d) solution gives green ppt. CrO(O2)2 due to oxidation of Cr - [8] The colour of Cu₂Cr₂O₇ solution in water is: - (a) green - (b) blue - (c) orange - (d) black - [9] Which statement about CrO₅ is wrong? - (a) Oxidation number of Cr in CrO₅ is +6 - (b) CrO₅ has butterfly structure - (c) It has one oxygen atom attached with double bond with Cr and four oxygen atoms attached with single bond with chromium - (d) It has four peroxide bond - [10] The [CrO₄²-] ions at equilibrium for the reaction $$Cr_2O_7^{2-} + H_2O \Longrightarrow 2CrO_4^{2-} + 2H^+ \text{ at pH} = 4 \text{ is }$$: - (a) $10^{-4} [Cr_2O_7^{2-}] \cdot K_C$ - (b) $10^{-8} \left[\text{Cr}_2 \text{O}_7^{2-} \right] \cdot K_C$ - (c) $10^{+4} [(Cr_2O_7^{2-}) \cdot K_C]^{1/2}$ - (d) $10^{-4} [Cr_2O_7^{2-}]^{1/2} \cdot K_C$ Comprehension 4: Redox changes are of three types. These includes, intermolecular redox reaction, intramolecular redox reactions and disproportionation. The equivalent mass 'E' of reductant or oxidant is given by the expression: $$E_{\text{red/oxi}} = \frac{\text{Molar mass of reductant or oxidant}}{\text{Number of electron lost or gained by}}$$ 1 molecule of reductant or oxidant [1] The equivalent mass of cyanogen (CN)2 in the redox change is: $$(CN)_2 + H_2O \longrightarrow HCN + HOCN$$ - (d) $\frac{M}{24}$ [2] The equivalent mass of KClO₃ in the redox reaction is: $$2KClO_3 \longrightarrow 2KCl + 3O_2$$ [3] The equivalent mass of Fe₂ (C₂O₄)₃ in the redox reaction is $$5Fe_2(C_2O_4)_3 + 6KMnO_4 + 24H_2SO_4 \longrightarrow 5Fe_2(SO_4)_3 + 6MnSO_4 + 30CO_2 + 24H_2O$$ Comprehension 5: Bleaching powder and bleach solution are produced on a large scale and used in several household products. The effectiveness of bleach solution is often measured by iodometry. (IIT 2012) - [1] Bleaching powder contains a salt of an oxoacid as one of its components. The anhydride of that oxoacid is: - (a) Cl₂O - (b) Cl_2O_7 - (c) ClO₂ - (d) Cl₂O₆ - [2] 25 mL of household bleach solution was mixed with 30 mL of 0.50 M KI and 10 mL of 4 N acetic acid. In the titration of the liberated iodine, 48 mL of 0.25 N Na 2S 2O3 was used to reach the end point. The molarity of the household bleach solution is: - (a) 0.48 M - (b) 0.96 M - (c) 0.24 M - (d) 0.024 M ## **SOLUTIONS** ## Comprehension 1 [1] (d) $$2Cu^{2+} + 2e \longrightarrow (Cu^{2+})_2$$ [2] (c) $$2S_2O_3^{2-} \longrightarrow S_4O_6^{2-} + 2e$$ [3] (a) : 1 mole Hg $$_5$$ (IO $_6$) $_2$ or 1448.5 g gives = 8 mole I $_2$: 0.7245 g Hg $_5$ (IO $_6$) $_2$ will give $$= \frac{8 \times 0.7245}{1448.5} \text{ mole I}_2$$ $$2e + I_2 \longrightarrow 2I^-$$ $$2S_2^{2+} \longrightarrow S_4^{5/2+} + 2e$$ $=4.0\times10^{-3}$ mole 1, Meq. of Na₂S₂O₃ = Meq. of I₂ = $$4 \times 10^{-3} \times 10^{3} \times 2 = 8$$ Meq. of Na₂S₂O₃ in one mL = Meq. of CuSO₄ = $\frac{0.0499}{249/1} \times 1000 = 0.20$ $$\therefore \quad 0.20 \times V = 8 \quad \therefore \quad V = 40 \text{ mL}$$ #### Comprehension 2 [1] (a) The reactions are: $$2(Cu^{2+}) + 2e \longrightarrow (Cu^{+})_{2}, E = \frac{M}{1}$$ $$2(I^{-1}) \longrightarrow I_{2} + 2e, E_{1-} = \frac{M}{1}$$ $$2(S^{2+})_{2} \longrightarrow (S^{5/2+})_{4} + 2e,$$ $$E_{Na_{2}S_{2}O_{3}} = \frac{M}{1}$$ Meq. of $$CuSO_4$$ = Meq. of $Na_2S_2O_3$ = Meq. of I_2 liberated $$10 \times 0.02 \times 1 = V \times 0.1 \times 1$$ $$V = 2 \text{ mL}$$ [2] (b) Meq. of CuSO₄ in $100 \text{ mL} = 100 \times 0.02 = 2$ $$w_{CuSO_4} = \frac{2 \times 249.6}{1000} = 0.499 g$$ $$w_{Cu} = \frac{0.499 \times 63.6}{249.6} = 0.127 g$$ $$w_{Cu} = \frac{0.127}{2.5} \times 100 = 5.08$$ [3] (b) Eq. of $I_2 = Eq. of CuSO_4$ $$= \frac{10 \times 0.02}{1000} = 2 \times 10^{-4}$$ $$\frac{w}{254/2} = 2 \times 10^{-4}$$ $$w_{12} = 0.0254 \text{ g}$$ - [4] (b) Liberated iodine on dissolution in solution of Cu 2 l2 and KI develops brown colour. - [5] (a) If I2 is used as intermediate, the process is iodometric. #### Comprehension 3 [1] (b) $$2CrO_4^{2-} + 2H^+ \longrightarrow Cr_2O_7^{2-} + H_2O$$ [2] (c) $$4NaCl + K_2Cr_2O_7 + 6H_2SO_4 \longrightarrow 2CrO_2Cl_2 + 4NaHSO_4 + 2KHSO_4 + 3H_2O$$ [3] (a) $$CrO_3 + 2HCl \longrightarrow CrO_2Cl_2 + H_2O$$ $$CrO_3 + 2NaOH \longrightarrow Na_2CrO_4 + H_2O$$ [4] (a) $$[\operatorname{Sn}^{2^{+}} \longrightarrow \operatorname{Sn}^{4^{+}} + 2e] \times 3$$ $6e + (\operatorname{Cr}^{6^{+}})_{2} \longrightarrow 2\operatorname{Cr}^{3^{+}}$ ∴ 1 mole of K₂Cr₂O₇ will oxidise 3 mole of Sn²⁺ [5] (b) $$3e + Cr^{6+} \longrightarrow Cr^{3+}$$; $E = \frac{M}{3} = \frac{253.34}{3} = 85.78$ [6] (c) $$6e+1^{5+} \longrightarrow 1^-$$; $E=\frac{M}{6}$ [7] (b) $$Cr_2O_7^{2-} + 2H^+ + 4H_2O_2 \longrightarrow 2CrO_5 + 5H_2O$$ (Not a redox change) [8] (a) Cu²⁺ ions are blue and Cr₂O₂²⁻ ions are orange to give green colour [10] (c) $$K_C = \frac{[\operatorname{CrO}_4^{2-}]^2[\operatorname{H}^+]^2}{[\operatorname{Cr}_2\operatorname{O}_7^{2-}]}$$ $$\therefore \quad [\operatorname{CrO}_4^{2-}]^2 = \frac{[\operatorname{Cr}_2\operatorname{O}_7^{2-}] \times K_C}{[\operatorname{H}^+]^2} = \frac{K_C [\operatorname{Cr}_2\operatorname{O}_7^{2-}]}{(10^{-4})^2}$$ $$= 10^4 [K_C \cdot \operatorname{Cr}_2\operatorname{O}_7^{2-}]^{1/2}$$ #### Comprehension 4 [1] (b) $$2e + (C^{3+})_2 \longrightarrow 2C^{2+}$$ $(C^{3+})_2 \longrightarrow 2C^{4+} + 2e$ $(C^{3+})_2 \longrightarrow 2C^{2+} + 2C^{4+}$ $2(CN)_2 + 2H_2O \longrightarrow 2HCN + 2HOCN$ $2 \text{ mole } (CN)_2 = 2 \text{ mole } HCN$ $= 2 \times 1\text{eq. } HCN$ (V.f. for $HCN = 1$) $= 2 \text{ eq. } (CN)_2$ $\therefore 1 \text{ mole } of (CN)_2 = 1 \text{ eq. } (CN)_2$ or V.f. for $(CN)_2 = 1$ $\therefore E = M$ [2] (a) $$6e + C1^{5+} \longrightarrow C1^{-1}$$ $2(O^{-2})_3 \longrightarrow 3(O_2^0) + 12e$ $\therefore 2KCIO_3 \longrightarrow 2KC1 + 3O_2$ 2 mole KCIO₃ = 2 mole KCI = 2×6 eq. KCI = 12 eq. KCIO₃ ∴ 1 mole KClO₃ $$\equiv$$ 6 eq. KClO₃ ∴ v.f. for KClO₃ \equiv 6 ∴ $E_{\text{KClO}_3} = \frac{M}{6}$ [3] (b) $$(C_2^{3+})_3 \longrightarrow 6C^{4+} + 6e$$ $$Mn^{7+} + 5e \longrightarrow Mn^{2+}$$ ∴ $$5\text{Fe}_2(\text{C}_2\text{O}_4)_3 + 6\text{KMnO}_4 + 24\text{H}_2\text{SO}_4 \longrightarrow \\ 5\text{Fe}_2(\text{SO}_4)_3 + 6\text{MnSO}_4 + 3\text{K}_2\text{SO}_4 + 24\text{H}_2\text{O} \\ \text{v.f. of Fe}_2(\text{C}_2\text{O}_4)_3 = 6$$ #### Comprehension 5 13. (a) $Ca(OCl)Cl \longrightarrow Ca^{2+} + \overline{O}Cl + Cl^{-}$ (Bleaching powder) Thus bleaching powder contains OCl⁻ *i.e.*, part of oxoacid HOCl and Cl⁻ *i.e.*, part of HCl. Oxidation no. of Cl in oxoacid = +1. Thus, oxide of Cl with same ox. no. is Cl₂O .. Anhydride of oxoacid (HOCl) is Cl₂O. 14. (c) $CaOCl_2(aq.) + 2KI \longrightarrow I_2 + Ca(OH)_2 + KCI$ $I_2 + 2Na_2S_2O_3 \longrightarrow Na_2S_4O_6 + 2NaI$ Thus Meq. of Na₂S₂O₃ used = Meq. of I₂ formed = Meq. of bleaching powder $- \text{Meq. of bleaching powder} = N \times 25$ $48 \times 0.25 = \text{Meq. of bleaching powder} = N \times 25$ $$N_{\text{Bleaching powder}} = 0.48$$ or $$Cl^+ + 2e \longrightarrow Cl^-$$ Thus, n-factor for bleaching powder = 2 $$\therefore M_{\text{Bleaching powder}} = \frac{0.48}{2} = 0.24$$ ## Redox Titrations #### 317 ## STATEMENT BYPANATION PROBLEMS A Read the statements (S) and explanations (E) given below. Choose the correct choices a, b, c
and d from the options - (a) S is correct but E is wrong - (b) S is wrong but E is correct - (c) Both S and E are correct and E is correct explanation of S - (d) Both S and E are correct but E is not correct explanation of S - 1. S: The equivalent mass of NaCN in its conversion to NaOCN by KMnO₄ is M/2 - E: The reaction is: $C^{2+} \longrightarrow C^{4+} + 2e$ - 2. S: The I3 reacts with H3AsO3 as: $H_3AsO_3 + KI_3 + H_2O \longrightarrow H_3AsO_4 + KI + 2HI$ - **E**: Equivalent mass of $KI_3 = 210$. - 3. S: BrO₃ shows two reactions as: $$SeO_3^{2-} + BrO_3^{-} + H^+ \longrightarrow SeO_4^{2-} + Br_2 + H_2O$$ $AsO_2^{2-} + BrO_3^{-} + H^+ \longrightarrow Br^- + AsO_4^{-} + H_2O$ - E: The ratio of equivalent mass of BrO₃ in two reactions is 5/6. - 4. S: One equivalent of MnO₂ reacts with 2 equivalent of HCl in the reaction: $$MnO_2 + 4HCl \longrightarrow MnCl_2 + 2H_2O + Cl_2$$ - E: One equivalent of MnO₂ reacts with one equivalent of HCl. - 5. S: The reaction: $$\begin{array}{cccc} \text{CHO} & & \text{CH}_2\text{OH} & \text{COO}^- \\ | & +\text{OH}^- & \longrightarrow | & + | \\ \text{COOH} & & \text{COOH} & \text{COO}^- \end{array}$$ is Cannizzaro's reaction. - E: This is an example of disproportionation reaction. - S: In acidic medium, equivalent mass of K₂Cr₂O₇ is 49. E: $$(Cr^{6+})_2 + 6e \longrightarrow 2Cr^{3+}$$; Thus, $E = \frac{M}{6}$. 7. S: Iodimetric titration are redox titrations. E: The iodine solution acts as an oxidant to reduce the reductant. $$I_2 + 2e \longrightarrow 2I^-$$ - S: The redox titrations in which liberated I₂ is used as oxidant are called as iodometric titration. - E: Addition of KI of CuSO₄ liberates I₂ which is estimated against hypo solution. - S: KMnO₄ acts as oxidant as well as self indicator in its titration with ferrous ammonium sulphate solution in acidic medium. - E: KMnO₄ reduces itself to Mn²⁺ ions and oxidises Fe²⁺ to Fe³⁺ as well as after redox reaction is complete, the KMnO₄ at the equivalence point imparts pink colour. - 10. S: The equivalence point refers the condition where equivalents of one species react with same number of equivalent of other species. - E: The end point of titration is exactly equal to equivalence point. - S: The equivalent mass of KMnO₄ when it is converted to K₂MnO₄ is equal to its molar mass converted to $$K_2MnO_4$$ is equal to its molar mass. **E**: $Mn^{7+} + e \longrightarrow Mn^{6+}$ $\therefore E = \frac{M}{1}$ - S: The number of equivalent per mole of H₂S used in its oxidation to SO₂ is six. - E: $S^{2-} \longrightarrow S^{4+} + 6$: Equivalent = Mole × 6. - S: Starch is generally used as absorption indicator in iodometric or iodimetric titrations. - E: Starch imparts blue colour with iodine. - S: The colour of KMnO₄ discharges slowly in the beginning by the oxalic acid but fastens after sometime. - E: The Mn²⁺ ion act as auto catalyst for the reaction. - S: KMnO₄ has different equivalent mass in acid, neutral or alkaline medium. - E: In different medium change in oxidation number shown by manganese is altogether different. ## **ANSWERS (Statement Explanation Problems)** - 1. (c) E = M/2 - 2. (c) E = M / 2 because $2e + (I^{-1/3})_3 \longrightarrow 3I^-$. - 3. (a) (i) $E_{\text{BrO}_3^-} = \frac{M}{5}$ - (ii) $E_{\text{BrO}_3} = \frac{M}{6}$ $10e + 2\text{Br}^{5+} \longrightarrow \text{Br}^{0};$ $6e + \text{Br}^{5+} \longrightarrow \text{Br}^{-1}$ $$\therefore \qquad \text{Ratio} = \frac{6}{5}$$ **4.** (a) 1 mole MnO₂ \equiv 4 mole HCl - $2 \text{ eq. MnO}_2 \equiv 4 \text{ eq. HCl}$ 5. (c) Both are facts. - 6. (c) One mole of K₂Cr₂O₇ shows a change of six N electrons. - 7. (c) The electrons liberated during oxidation of species are used by ${\rm I}_2$ to get itself reduced. - 8. (c) $2KI + CuSO_4 \longrightarrow CuI_2 + K_2SO_4$ $2CuI_2 \longrightarrow Cu_2I_2 + I_2$ $I_2 + 2Na_2S_2O_3 \longrightarrow Na_2S_4O_6 + 2NaI$ - 9. (c) The explanation is correct reason of the statement. - 10. (a) The equivalent point is nearly same but not exactly same to end point. However for all practical purposes the two are taken same. - 11. (c) One mole of KMnO₄ shows a change of N electrons. - 12. (c) Equivalent = Mole × valence factor. - 13. (c) The explanation is correct reason of the statement. - 14. (c) KMnO₄ is reduced to MnO₂ by oxalic acid. The redox change is catalysed by Mn²⁺ ions *i.e.*, autocatalysis. - 15. (c) $5e + \operatorname{Mn}^{7+} \longrightarrow \operatorname{Mn}^{2+}$ (Acidic) $3e + \operatorname{Mn}^{7+} \longrightarrow \operatorname{Mn}^{4+}$ (Alkaline or neutral) $1e + \operatorname{Mn}^{7+} \longrightarrow \operatorname{Mn}^{6+}$ (Neutral or alkaline) ## **MATCHING TYPE PROBLEMS** ## Type I: Only one match is possible | 1. | | Half Reactions | <i>n</i> -factor of reactant | | | |----|----|--|------------------------------|---------|---------| | | A. | $Bi_2S_3 \rightarrow Bi^{5+} + S$ | | (a) | 6 | | | B. | $FeS_2 \rightarrow Fe^{3+} + 2SO_2$ | | (b) | 10 | | | C. | $(NH_4)_2 Cr_2 O_7 \rightarrow N_2 + Cr_2 O_7$ | $_{2}O_{3}$ | (c) | 11 | | | D. | $Al_2(Cr_2O_7)_3 \rightarrow Al^{3+} + C$ | r ³⁺ | (d) | 18 | | 2. | | Reaction | n-fa | ctor of | reactan | | | A. | $Fe_3O_4 \rightarrow Fe_2O_3$ | (a) | 4/3 | | | | B. | $Fe_2O_3 \rightarrow Fe_3O_4$ | (b) | 2/3 | | | | C. | $P_2H_4 \rightarrow PH_3 + P_4H_2$ | (c) | 1 | | | | D. | $H_3PO_2 \rightarrow PH_3 + H_3PO_3$ | (d) | 5/3 | | | | E. | $I_2 \rightarrow I^- + IO_2^-$ | (e) | 6/5 | | ## Type II: More than one match are possible | 3. | | Titration | | Reagents | |----|----|---------------|-----|---| | | A. | Iodimetric | (a) | AgNO ₃ vs. KCl | | | B. | Iodometric | (b) | N_2H_4 vs. I_2 | | | C. | Redox | (c) | CuSO ₄ vs. KI | | | D. | Acid-Base | (d) | $H_2C_2O_4$ vs. $KMnO_4$ | | 9 | E. | Precipitation | (e) | H ₂ C ₂ O ₄ vs. NaOH | ## Reaction Equivalent mass of reactant A. $$Fe(SCN)_2 \rightarrow Fe^{3+} + SO_4^{2-} + CO_3^{2-} + NO_3^{-}$$ (a) $\frac{M}{28}$ B. $$As_2S_3 \rightarrow As^{5+} + SO_4^{2-}$$ (b) $$\frac{M}{33}$$ C. $$CrI_3 \rightarrow Cr_2^{6+} + I^{5+}$$ (c) $$\frac{M}{27}$$ D. $$CrI_3 \rightarrow Cr_2^{6+} + I^{7+}$$ (d) $$\frac{M}{21}$$ E. $$CrI_3 \rightarrow Cr^{6+} + I^{7+}$$ ## Type III: Only one match from each list | 5. | List A | List B | List C | |----|--------------------|------------------|---------------------------------| | | A. CH ₄ | (i) $E = M / 8$ | (a) $C^{2+} \rightarrow C^{4+}$ | | | B. CO | (ii) $E = M/2$ | (b) $C^{4-} \rightarrow C^{4+}$ | | | $C. C_2O_4^{2-}$ | (iii) $E = M/12$ | (c) $C^{3+} \rightarrow C^{4+}$ | | | $D.\ C_2H_4$ | | (d) $C^{2-} \rightarrow C^{4+}$ | | 5. | Redox change | Equivalent
mass | Number of
electrons
involved
in change | |----|---------------------------------|-------------------------------|---| | | A. $MnO_2 \rightarrow Mn_2O_3$ | i. $E_{\text{MmO}_2} = M / 2$ | (a) 4 | | | B. $MnO_2 \rightarrow MnSO_4$ | ii. $E_{\text{MnO}_2} = M/4$ | (b) 2 | | | C. $MnO_2 \rightarrow Mn$ | iii. $E_{\text{MnO}_2} = M/1$ | (c) 3 | | | D. $KMnO_4 \rightarrow Mn_2O_3$ | iv. $E_{MnO_4} = M/4$ | (d) 8 | | | E. $KMnO_4 \rightarrow MnO_2$ | $v. E_{MnO_4} = M/3$ | | | | | | | ## **ANSWERS** - 1. A-b; B-c; C-a; D-d - 2. A-c; B-b; C-e; D-a; E-d - 3. A-b; B-c; C-b,c,d; D-e; E-a - 4. A-b; B-a, d; C-c, d; D-c; E-c - 5. A-i-b; B-ii-a; C-ii-c; D-iii-d - **6.** A-iii-b; B-i-b; C-ii-a; D-iv-d; E-v-c