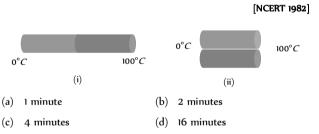
Grdinary Thinking

Objective Questions

Conduction


- 1. In which case the thermal conductivity increases from left to right[NCERT 1974, 76; AFMC 2000]
 - (a) *Al, Cu, Ag* (b) *Ag, Cu, Al*
 - (c) *Cu, Ag, Al* (d) *Al, Ag, Cu*
- Which of the following cylindrical rods will conduct most heat, when their ends are maintained at the same steady temperature [CPMT 1981; NCERT 1973, 81;

MP PMT 1987; CBSE PMT 1995]

- (a) Length 1 *m*; radius 1 *cm*
- (b) Length 2 m; radius 1 cm
- (c) Length 2 *m*; radius 2 *cm*
- (d) Length 1 *m*; radius 2 *cm*
- **3.** The heat is flowing through two cylindrical rods of same material. The diameters of the rods are in the ratio 1 : 2 and their lengths are in the ratio 2 : 1. If the temperature difference between their ends is the same, the ratio of rate of flow of heat through them will be

[NCERT 1982; CBSE PMT 1995; EAMCET 1997]

- $(c) \quad 1:4 \qquad \qquad (d) \quad 1:8 \\$
- 4. Two identical square rods of metal are welded end to end as shown in figure (i), 20 calories of heat flows through it in 4 minutes. If the rods are welded as shown in figure (ii), the same amount of heat will flow through the rods in

5. For cooking the food, which of the following type of utensil is most suitable

[MNR 1986; MP PET 1990; CPMT 1991;

SCRA 1998; MP PMT/PET 1998, 2000; RPET 2001]

- (a) High specific heat and low conductivity
- (b) High specific heat and high conductivity
- (c) Low specific heat and low conductivity
- (d) Low specific heat and high conductivity

- 6. Under steady state, the temperature of a body [CPMT 1978]
 - (a) Increases with time
 - (b) Decreases with time
 - (c) Does not change with time and is same at all the points of the body
 - $\left(d\right) \;\;$ Does not change with time but is different at different points of the body
- 7. The coefficient of thermal conductivity depends upon

[MP PET/PMT 1984; AFMC 1996; Orissa JEE 2005]

- (a) Temperature difference of two surfaces
- (b) Area of the plate
- (c) Thickness of the plate
- (d) Material of the plate
- **8.** When two ends of a rod wrapped with cotton are maintained at different temperatures and after some time every point of the rod attains a constant temperature, then

[MP PET/PMT 1988]

14.

17.

- (a) Conduction of heat at different points of the rod stops because the temperature is not increasing
- (b) Rod is bad conductor of heat
- (c) Heat is being radiated from each point of the rod
- (d) Each point of the rod is giving heat to its neighbour at the same rate at which it is receiving heat
- **9.** The length of the two rods made up of the same metal and having the same area of cross-section are 0.6 *m* and 0.8 *m* respectively. The temperature between the ends of first rod is $90^{\circ}C$ and $60^{\circ}C$ and that for the other rod is 150 and $110^{\circ}C$. For which rod the rate of conduction will be greater

(a)) First	(b) Second	
-----	---------	------------	--

- (c) Same for both (d) None of the above
- **10.** The ratio of thermal conductivity of two rods of different material is 5 : 4. The two rods of same area of cross-section and same thermal resistance will have the lengths in the ratio

(a)	4:5	(b)	9:1
(c)	1:9	(d)	5:4

- The thermal conductivity of a material in CGS system is 0.4. In steady state, the rate of flow of heat 10 *cal/sec-cm*, then the thermal gradient will be [MP PMT 1989]
 - (a) $10^{\circ}C/cm$ (b) $12^{\circ}C/cm$
 - (c) $25^{\circ}C/cm$ (d) $20^{\circ}C/cm$
- **12.** Two rectangular blocks *A* and *B* of different metals have same length and same area of cross-section. They are kept in such a way that their cross-sectional area touch each other. The temperature at one end of *A* is $100^{\circ}C$ and that of *B* at the other end is $0^{\circ}C$. If the ratio of their thermal conductivity is 1: 3, then under steady state, the temperature of the junction in contact will be
 - (a) $25^{\circ}C$ (b) $50^{\circ}C$
 - (c) $75^{\circ}C$ (d) $100^{\circ}C$
- 13. Two vessels of different materials are similar in size in every respect. The same quantity of ice filled in them gets melted in 20 minutes and 30 minutes. The ratio of their thermal conductivities will be [MP PMT 1989;
 - (a) 1.5 (b) 1
 - (c) 2/3 (d) 4

Two rods A and B are of equal lengths. Their ends are kept between the same temperature and their area of cross-sections are A_1 and A_2 and thermal conductivities K_1 and K_2 . The rate of heat transmission in the two rods will be equal, if [MP PMT 1991; CBSE PMT 2002]

(a)
$$K_1 A_2 = K_2 A_1$$
 (b) $K_1 A_1 = K_2 A_1$

(c)
$$K_1 = K_2$$
 (d) $K_1 A_1^2 = K_2 A_2^2$

15. In variable state, the rate of flow of heat is controlled by

- (a) Density of material (b) Specific heat
- (c) Thermal conductivity (d) All the above factors
- 16. If the ratio of coefficient of thermal conductivity of silver and copper is 10 : 9, then the ratio of the lengths upto which wax will melt in Ingen Hausz experiment will be

[DPMT 2001]

- (a) 6:10 (b) $\sqrt{10}:3$ (c) 100:81 (d) 81:100
- The thickness of a metallic plate is 0.4 cm. The temperature
- between its two surfaces is $20^{\circ}C$. The quantity of heat flowing per second is 50 calories from $5cm^2$ area. In CGS system, the coefficient of thermal conductivity will be
- (a) 0.4 (b) 0.6
- (c) 0.2 (d) 0.5
- In Searle's method for finding conductivity of metals, the temperature gradient along the bar [MP PMT 1984]
 - (a) Is greater nearer the hot end
 - (b) Is greater nearer to the cold end
 - (c) Is the same at all points along the bar
 - (d) Increases as we go from hot end to cold end
- 19. The dimensions of thermal resistance are [MP PET 1984; BVP 2003]

(a)
$$M^{-1}L^{-2}T^{3}K$$
 (b) $ML^{2}T^{-2}K^{-1}$

(c)
$$ML^2T^{-3}K$$
 (d) $ML^2T^{-2}K^{-2}$

- A piece of glass is heated to a high temperature and then allowed to cool. If it cracks, a probable reason for this is the following property of glass
 [CPMT 1985]
 - (a) Low thermal conductivity
 - (b) High thermal conductivity
 - (c) High specific heat
 - (d) High melting point
- Two walls of thicknesses d and d and thermal conductivities k and k are in contact. In the steady state, if the temperatures at the outer [MPSPMTacgsBg]e T₁ and T₂, the temperature at the common wall is

[MP PMT 1990; CBSE PMT 1999]

(a)
$$\frac{k_1T_1d_2 + k_2T_2d_1}{k_1d_2 + k_2d_1}$$
 (b) $\frac{k_1T_1 + k_2d_2}{d_1 + d_2}$

22. A slab consists of two parallel layers of copper and brass of the same thickness and having thermal conductivities in the ratio 1 : 4. If

the free face of brass is at $100^{o} C$ and that of copper at $0^{o} C$, the temperature of interface is

		[IIT 1981; MP PMT 1987, 2001]
(a)	80° <i>C</i>	(b) 20° <i>C</i>

- (c) $60^{\circ}C$ (d) $40^{\circ}C$
- **23.** The temperature gradient in a rod of 0.5 *m* long is $80^{\circ}C/m$. If the temperature of hotter end of the rod is $30^{\circ}C$, then the temperature of the cooler end is

- (c) $10^{\circ} C$ (d) $0^{\circ} C$
- **24.** On heating one end of a rod, the temperature of whole rod will be uniform when
 - (a) K = 1 (b) K = 0
 - (c) K = 100 (d) $K = \infty$
- 25. Snow is more heat insulating than ice, because
 - (a) Air is filled in porous of snow
 - $(b) \quad \text{lce is more bad conductor than snow} \\$
 - (c) Air is filled in porous of ice
 - (d) Density of ice is more
- **26.** Two thin blankets keep more hotness than one blanket of thickness equal to these two. The reason is
 - (a) Their surface area increases
 - (b) A layer of air is formed between these two blankets, which is bad conductor
 - (c) These have more wool
 - (d) They absorb more heat from outside
- 27. Ice formed over lakes has
 - (a) Very high thermal conductivity and helps in further ice formation
 - (b) Very low conductivity and retards further formation of ice
 - (c) It permits quick convection and retards further formation of ice
 - (d) It is very good radiator
- **28.** Two rods of same length and material transfer a given amount of heat in 12 seconds, when they are joined end to end. But when they are joined lengthwise, then they will transfer same heat in same conditions in

			[BHU 1998; UPSEAT 2002]
(a)	24 <i>s</i>	(b)	3 <i>s</i>
(c)	1.5 <i>s</i>	(d)	48 <i>s</i>

29. Wires *A* and *B* have identical lengths and have circular crosssections. The radius of *A* is twice the radius of *B i.e.* $r_A = 2r_B$. For a given temperature difference between the two ends, both wires conduct heat at the same rate. The relation between the thermal conductivities is given by

(a)
$$K_A = 4K_B$$
 (b) $K_A = 2K_B$
(c) $K_A = K_B / 2$ (d) $K_A = K_B / 4$

30. Two identical plates of different metals are joined to form a single plate whose thickness is double the thickness of each plate. If the coefficients of conductivity of each plate are 2 and 3 respectively, then the conductivity of composite plate will be

- (b) 2.4
- (c) 1.5 (d) 1.2

(a) 5

- **31.** If the radius and length of a copper rod are both doubled, the rate of flow of heat along the rod increases
 - (a) 4 times (b) 2 times
 - (c) 8 times (d) 16 times
- **32.** The coefficients of thermal conductivity of copper, mercury and glass are respectively *K*, *K* and *K* such that *K* > *K* > *K*. If the same quantity of heat is to flow per second per unit area of each and corresponding temperature gradients are *X*, *X* and *X*, then

(a)
$$X_c = X_m = X_g$$
 (b) $X_c > X_m > X_g$

(c)
$$X_c < X_m < X_g$$
 (d) $X_m < X_c < X_g$

33. If two metallic plates of equal thicknesses and thermal conductivities K_1 and K_2 are put together face to face and a common plate is constructed, then the equivalent thermal conductivity of this plate will be [MP PMT 1991]

 ν

(a)
$$\frac{K_1 K_2}{K_1 + K_2}$$
 (b) $\frac{2K_1 K_2}{K_1 + K_2}$
(c) $\frac{(K_1^2 + K_2^2)^{3/2}}{K_1 K_2}$ (d) $\frac{(K_1^2 + K_2^2)^{3/2}}{2K_1 K_2}$

34. The quantity of heat which crosses unit area of a metal plate during conduction depends upon

[MP PMT 1992; JIPMER 1997]

- (a) The density of the metal
- (b) The temperature gradient perpendicular to the area
- (c) The temperature to which the metal is heated
- (d) The area of the metal plate
- **35.** The ends of two rods of different materials with their thermal conductivities, radii of cross-sections and lengths all are in the ratio 1 : 2 are maintained at the same temperature difference. If the rate of flow of heat in the larger rod is 4 4 *cal*/sec , that in the shorter rod in *cal*/sec will be

[EAMCET 1986]

(a)	1	(b)	2
(c)	8	(d)	16

- **36.** Two spheres of different materials one with double the radius and one-fourth wall thickness of the other, are filled with ice. If the time taken for complete melting ice in the large radius one is 25 *minutes* and that for smaller one is 16 *minutes*, the ratio of thermal conductivities of the materials of larger sphere to the smaller sphere is **[EAMCET 1991]**
 - (a) 4:5 (b) 5:4
 - (c) 25:1 (d) 1:25

37.

- The ratio of the diameters of two metallic rods of the same material is 2 : 1 and their lengths are in the ratio 1 : 4. If the temperature difference between their ends are equal, the rate of flow of heat in them will be in the ratio [MP PET 1994]
 - $(a) \quad 2:1 \\ (b) \quad 4:1 \\$
 - (c) 8:1 (d) 16:1

- Two cylinders P and Q have the same length and diameter and are 38. made of different materials having thermal conductivities in the ratio 2 : 3. These two cylinders are combined to make a cylinder. One end of *P* is kept at $100^{\circ}C$ and another end of *Q* at $0^{\circ}C$. The temperature at the interface of P and Q is [MP PMT 1994; EAMCET 2000]
 - $30^{\circ}C$ $40^{o} C$ (a)
 - $50^{\circ}C$ (d) $60^{\circ} C$ (c)
- 39. Two identical rods of copper and iron are coated with wax uniformly. When one end of each is kept at temperature of boiling water, the length upto which wax melts are 8.4cm and 4.2cm respectively. If thermal conductivity of copper is 0.92, then thermal conductivity of iron is [MP PET 1995]
 - (a) 0.23 (b) 0.46
 - (c) 0.115 (d) 0.69
- 47. Mud houses are cooler in summer and warmer in winter because[BVP 2003] 40.
 - (a) Mud is superconductor of heat
 - (b) Mud is good conductor of heat
 - (c) Mud is bad conductor of heat
 - (d) None of these

(a

43.

- The temperature of hot and cold end of a 20cm long rod in 41. thermal steady state are at $100^{\circ}C$ and $20^{\circ}C$ respectively. Temperature at the centre of the rod is[MP PMT 1996]
 - $50^{\circ}C$ (b) $60^{\circ} C$ (a)
 - $40^{o} C$ (d) $30^{\circ} C$ (c)
- 42. Two bars of thermal conductivities K and 3K and lengths 1cm and 2cm respectively have equal cross-sectional area, they are joined lengths wise as shown in the figure. If the temperature at the ends of this composite bar is $0^{\circ}C$ and $100^{\circ}C$ respectively (see figure), then the temperature ϕ of the interface is

- (c) $60^{\circ} C$ (d) 3 A heat flux of 4000 J/s is to be passed through a copper rod of
- length $10 \ cm$ and area of cross-section $100 \ cm^2$. The thermal conductivity of copper is $400 W/m^{o}C$. The two ends of this rod must be kept at a temperature difference of
 - (a) $1^{o} C$ (b) $10^{\circ} C$
 - (c) $100^{\circ} C$ (d) $1000^{\circ} C$
- On a cold morning, a metal surface will feel colder to touch than a 44. wooden surface because [AIIMS 1998]
 - (a) Metal has high specific heat
 - Metal has high thermal conductivity (b)
 - Metal has low specific heat (c)

- (d) Metal has low thermal conductivity
- In order that the heat flows from one part of a solid to another part, 45. what is required

[Pb. PMT 1999; EAMCET 1998]

- (a) Uniform density (b) Density gradient
- (c) Temperature gradient (d) Uniform temperature
- 46 At a common temperature, a block of wood and a block of metal feel equally cold or hot. The temperatures of block of wood and block of metal are [AllMS 1999]
 - (a) Equal to temperature of the body
 - (b) Less than the temperature of the body
 - Greater than temperature of the body (c)
 - (d) Either (b) or (c)

According to the experiment of Ingen Hausz the relation between the thermal conductivity of a metal rod is K and the length of the rod whenever the wax melts is

[UPSEAT 1999]

- (b) $K^2 / l = \text{constant}$ (a) K/l = constant
- (c) $K/l^2 = \text{constant}$ (d) *Kl* = constant
- Temperature of water at the surface of lake is $-20^{\circ}C$. Then 48. temperature of water just below the lower surface of ice layer is

(a)
$$-4^{\circ}C$$
 (b) $0^{\circ}C$
(c) $4^{\circ}C$ (d) $-20^{\circ}C$

One end of a metal rod of length 1.0 *m* and area of cross section 49 $100 cm^2$ is maintained at $100^{\circ} C$. If the other end of the rod is maintained at $0^{\circ} C$, the quantity of heat transmitted through the rod per minute is (Coefficient of thermal conductivity of material of rod = 100 W/m-K

[EAMCET (Engg.) 2000]

- (b) $6 \times 10^3 J$ (a) $3 \times 10^3 J$
- (c) $9 \times 10^3 J$ (d) $12 \times 10^3 J$
- The coefficient of thermal conductivity of copper is nine times that 50. of steel. In the composite cylindrical bar shown in the figure. What will be the temperature at the junction of copper and steel

(a) 75° C	100° <i>C</i>	0° <i>C</i>
(b) $67^{\circ} C$	Copper	Steel
(c) $33^{\circ} C$	18	$\rightarrow \longleftrightarrow $
(d) $25^{\circ} C$	18 cm	0 <i>cm</i>

- 51. The lengths and radii of two rods made of same material are in the ratios [MP2PMITd999] 3 respectively. If the temperature difference between the ends for the two rods be the same, then in the steady state, the amount of heat flowing per second through them will be in the ratio [MP PET 2000]
 - (a) 1: 3 (b) 4:3 (c) 8:9 (d) 3:2
- A slab consists of two parallel layers of two different materials of same thickness having thermal conductivities K and K. The equivalent conductivity of the combination is

[BHU 2001]

52.

(a)	$K_1 + K_2$	(b)	$\frac{K_1 + K_2}{2}$
	$2K_{\rm r}K_{\rm r}$		K + K

(c)
$$\frac{2K_1K_2}{K_1 + K_2}$$
 (d) $\frac{K_1 + K_2}{2K_1K_2}$

53. There are two identical vessels filled with equal amounts of ice. The vessels are of different metals., If the ice melts in the two vessels in 20 and 35 minutes respectively, the ratio of the coefficients of thermal conductivity of the two metals is

[AFMC 1998; MP PET 2001]

61.

63.

(a)	4:7	(b)	7:4
(c)	16 :49	(d)	49 : 16

- 54. Surface of the lake is at 2°C. Find the temperature of the bottom of the lake [Orissa JEE 2002]
 - (a) $2^{o} C$ (b) $3^{o} C$
 - (c) $4^{o}C$ (d) $1^{o}C$
- **55.** The heat is flowing through a rod of length 50 cm and area of cross-section $5cm^2$. Its ends are respectively at $25^{\circ}C$ and $125^{\circ}C$. The coefficient of thermal conductivity of the material of the rod is 0.092 *kcal*/*m*×*s*×*C*. The temperature gradient in the rod is [MP PET 2002]
 - (a) $2^{\circ} C / cm$ (b) $2^{\circ} C / m$
 - (c) $20^{\circ} C/cm$ (d) $20^{\circ} C/m$
- **56.** In the Ingen Hauz's experiment the wax melts up to lengths 10 and 25 *cm* on two identical rods of different materials. The ratio of thermal conductivities of the two materials is

[MP PET 2002]

(a) 1:6.25 (b) 6.25:1

(c)
$$1:\sqrt{2.5}$$
 (d) $1:2.5$

- Heat current is maximum in which of the following (rods are of identical dimension) [Orissa JEE 2003]
 - (a) Copper (b) Copper Steel (c) Steel Copper (d) Steel
- **58.** Two rods of same length and cross section are joined along the length. Thermal conductivities of first and second rod are K_1 and K_2 . The temperature of the free ends of the first and second rods are maintained at θ_1 and θ_2 respectively. The temperature of the common junction is

[MP PET 2003]

(a)
$$\frac{\theta_1 + \theta_2}{2}$$
 (b) $\frac{K_2 K_2}{K_1 + K_2} (\theta_1 + \theta_2)$

(c)
$$\frac{K_1\theta_1 + K_2\theta_2}{K_1 + K_2}$$
 (d) $\frac{K_2\theta_1 + K_1\theta_2}{K_1 + K_2}$

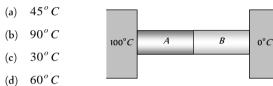
59. Consider a compound slab consisting of two different materials having equal thickness and thermal conductivities K and 2K respectively. The equivalent thermal conductivity of the slab is

a)
$$\sqrt{2K}$$
 (b) 3*K*

c)
$$\frac{4}{3}K$$
 (d) $\frac{2}{3}K$

60. Two rods having thermal conductivity in the ratio of 5:3 having equal lengths and equal cross-sectional area are joined by face to face. If the temperature of the free end of the first rod is 100[°]C and

free end of the second rod is 20 C. Then temperature of the junction is

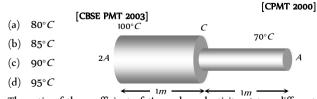

[CPMT 1996; DPMT 1997, 03; BVP 2004]

(a) $70^{\circ} C$ (b) $50^{\circ} C$

(c) $50 \cdot C$ (d) $90 \cdot C$

Woollen clothes are used in winter season because woolen clothes[EAMCET 197

- (a) Are good sources for producing heat
- (b) Absorb heat from surroundings
- $(c) \quad \text{Are bad conductors of heat} \\$
- (d) Provide heat to body continuously
- **62.** Two metal cubes *A* and *B* of same size are arranged as shown in the figure. The extreme ends of the combination are maintained at the indicated temperatures. The arrangement is thermally insulated. The coefficients of thermal conductivity of *A* and *B* are $300 W/m^{o}C$ and $200 W/m^{o}C$, respectively. After steady state is reached, the temperature of the interface will be [**IIT 1996**]


A cylindrical rod having temperature T_1 and T_2 at its ends. The rate of flow of heat is Q_1 *cal/sec*. If all the linear dimensions are doubled keeping temperature constant then rate of flow of heat Q_2 will be [CBSE PMT 2001]

(a)
$$4Q_1$$
 (b) $2Q_1$
(c) $\frac{Q_1}{4}$ (d) $\frac{Q_1}{2}$

64. A body of length 1*m* having cross sectional area 0.75*m* has heat flow through it at the rate of 6000 *Joule/sec*. Then find the temperature difference if $K = 200 Jm^{-1}K^{-1}$

(a) $20^{\circ}C$ (b) $40^{\circ}C$ (c) $80^{\circ}C$ (d) $100^{\circ}C$

- **65.** A wall has two layers *A* and *B* made of different materials. The thickness of both the layers is the same. The thermal conductivity of *A* and *B* are *K* and *K* such that K = 3K. The temperature across the wall is $20^{\circ}C$. In thermal equilibrium
 - (a) The temperature difference across $A = 15^{\circ}C$
 - (b) The temperature difference across $A = 5^{\circ}C$
 - (c) The temperature difference across A is $10^{\circ}C$
 - (d) The rate of transfer of heat through A is more than that through B.
- **66.** A metal rod of length 2m has cross sectional areas 2A and A as shown in figure. The ends are maintained at temperatures $100^{\circ}C$ and $70^{\circ}C$. The temperature at middle point C is

67. The ratio of the coefficient of thermal conductivity of two different materials is 5 : 3. If the thermal resistance of the rod of same

710 Transmission of Heat

thickness resistance of the	rods of same thickness of these materials		
is same, then the ratio of the length of these rods will be			
	(1) τ τ		

(a)	3:5	(b)	5:3

(c) 3:4 (d) 3:2

68. Which of the following circular rods. (given radius *r* and length *l*) each made of the same material as whose ends are maintained at the same temperature will conduct most heat

[CBSE PMT 2005]

8.

9

11.

(a)
$$r = 2r_0; l = 2l_0$$
 (b) $r = 2r_0; l = l_0$

(c) $r = r_0; l = l_0$ (d) $r = r_0; l = 2l_0$

Convection

 It is hotter for the same distance over the top of a fire than it is in the side of it, mainly because

[NCERT 1976, 79, 80; AllMS 2000]

- (a) Air conducts heat upwards
- (b) Heat is radiated upwards
- (c) Convection takes more heat upwards
- (d) Convection, conduction and radiation all contribute significantly transferring heat upwards
- 2. One likes to sit under sunshine in winter season, because
 - (a) The air surrounding the body is hot by which body gets heat
 - (b) We get energy by sun
 - (c) We get heat by conduction by sun
 - (d) None of the above
- **3.** Air is bad conductor of heat or partly conducts heat, still vacuum is to be placed between the walls of the thermos flask because
 - (a) It is difficult to fill the air between the walls of thermos flask
 - (b) Due to more pressure of air, the thermos can get crack
 - (c) By convection, heat can flow through air
 - (d) On filling the air, there is no advantage
- **4.** While measuring the thermal conductivity of a liquid, we keep the upper part hot and lower part cool, so that

[CPMT 1985; MP PMT/PET 1988]

- (a) Convection may be stopped
- (b) Radiation may be stopped
- (c) Heat conduction is easier downwards
- (d) It is easier and more convenient to do so
- 5. For proper ventilation of building, windows must be open near the bottom and top of the walls so as to let pass
 - (a) In more air
 - (b) In cool air near the bottom and hot air out near the roof
 - $(c) \quad \mbox{In hot air near the roof and cool air out near the bottom}$
 - $(d) \quad \text{Out hot air near the roof} \\$
- **6.** The layers of atmosphere are heated through
 - (a) Convection (b) Conduction
 - (c) Radiation (d) (b) and (c) both
- Mode of transmission of heat, in which heat is carried by the moving particles, is [KCET 1999]
 - (a) Radiation (b) Conduction

(c) Convection	(d) Wave motion	
In a closed 4 3000, heat tra	ansfer takes place by	[BHU 2001]
(a) Conduction	(b) Convection	
(c) Radiation	(d) All of these	
In heat transfor which m	athed is based on growitation	

In heat transfer, which method is based on gravitation

- [CBSE PMT 2000] (a) Natural convection (b) Conduction
- (c) Radiation (d) Stirring of liquids
- 10.
 When fluids are heated from the bottom, convection currents are produced because
 [UPSEAT 2000]
 - (a) Molecular motion of fluid becomes aligned
 - (b) Molecular collisions take place within the fluid
 - $(c) \quad \mbox{Heated fluid becomes more dense than the cold fluid above it}$
 - $(d) \quad \text{Heated fluid becomes less dense than the cold fluid above it} \\$
 - If a liquid is heated in weightlessness, the heat is transmitted through [RPMT1996]
 - (a) Conduction(b) Convection

 - (c) Radiation
 - (d) Neither, because the liquid cannot be heated in weightlessness
- 12. The rate of loss of heat from a body cooling under conditions of forced convection is proportional to its (A) heat capacity (B) surface area (C) absolute temperature (D) excess of temperature over that of surrounding : state if

[NCERT 1982]

- (a) *A*, *B*, *C* are correct (b) Only *A* and *C* are correct
- (c) Only *B* and *D* are correct (d)Only *D* is correct
- In which of the following process, convection does not take place primarily [IIT-JEE (Screening) 2005]
 - (a) Sea and land breeze
 - (b) Boiling of water
 - (c) Warming of glass of bulb due to filament
 - (d) Heating air around a furnace

Radiation (General, Kirchoff's law, Black body)

- On a clear sunny day, an object at temperature *T* is placed on the top of a high mountain. An identical object at the same temperature is placed at the foot of mountain. If both the objects are exposed to sun-rays for two hours in an identical manner, the object at the top of the mountain will register a temperature
 - (a) Higher than the object at the foot
 - (b) Lower than the object at the foot
 - (c) Equal to the object at the foot
 - (d) None of the above
- 2. The velocity of heat radiation in vacuum is

[EAMCET 1982; KCET 1998]

- (c) Greater than that of light (d) Equal to that of sound
- In which process, the rate of transfer of heat is maximum

[EAMCET 1977; MP PMT 1994; MH CET 2001]

- (a) Conduction
- (b) Convection
- (c) Radiation
- (d) In all these, heat is transferred with the same velocity

- On 1

3.

[MP PET 1986]

ŀ.	Which of the following is the correct device for the detection of thermal radiation [Manipal MEE 1995, UPSEAT 2000]		(a) Poor emitters(b) Non-emitters(c) Good emitters(d) Highly polished
	(a) Constant volume thermometer		
	(b) Liquid-in-glass thermometer	14.	For a perfectly black body, its absorptive power is [MP PMT 1989, 92; RPMT 2001; RPET 2001, 03; AFMC 2002
	(c) Six's maximum and minimum thermometer		(a) 1 (b) 0.5
	(d) Thermopile		(c) 0 (d) Infinity
	A thermos flask is polished well [AFMC 1996]		
.	(a) To make attractive	15.	Certain substance emits only the wavelengths λ_1 , λ_2 , λ_3 and λ_4 when it is at a high temperature. When this substance is at a colde temperature, it will absorb only the following wavelengths
	(b) For shining		(a) λ_1 (b) λ_2
	(c) To absorb all radiations from outside		
	(d) To reflect all radiations from outside		(c) λ_1 and λ_2 (d) $\lambda_1, \lambda_2, \lambda_3$ and λ_4
	Heat travels through vacuum by [AIIMS 1998; CPMT 2003]	16.	As compared to the person with white skin, the person with black skin will experience [CPMT 1988
	(a) Conduction (b) Convection		(a) Less heat and more cold (b) More heat and more cold
	(c) Radiation (d) Both (a) and (b)		(c) More heat and less cold (d) Less heat and less cold
•	The energy supply being cut-off, an electric heater element cools down to the temperature of its surroundings, but it will not cool	17.	Relation between emissivity e and absorptive power a is (fo
	further because [CPMT 2001]	.,.	black body)
	(a) Supply is cut off		(a) $e = a$ (b) $e = \frac{1}{a}$
	(b) It is made of metal		(c) $e = a^2$ (d) $a = e^2$
	(c) Surroundings are radiating	10	
	(d) Element & surroundings have same temp.	18.	Which of the following statements is wrong [BCECE 200 (a) Reurfaces are better redictors then smooth surfaces
•	We consider the radiation emitted by the human body. Which of the following statements is true [CBSE PMT 2003]		(a) Rough surfaces are better radiators than smooth surface(b) Highly polished mirror like surfaces are very good radiators
	(a) The radiation is emitted only during the day		(b) Highly polished mirror like surfaces are very good radiators(c) Black surfaces are better absorbers than white ones
	(b) The radiation is emitted during the summers and absorbed		(d) Black surfaces are better radiators than white
	during the winters	19.	Half part of ice block is covered with black cloth and rest half i
	 (c) The radiation emitted lies in the ultraviolet region and hence is not visible (1) The radiation of the radiation	19.	covered with white cloth and then it is kept in sunlight. After som time clothes are removed to see the melted ice. Which of th
	(d) The radiation emitted is in the infra-red region		following statements is correct
).	The earth radiates in the infra-red region of the spectrum. The spectrum is correctly given by		(a) Ice covered with white cloth will melt more
	[RPET 2002; AIEEE 2003]		(b) Ice covered with black cloth will melt more(c) Equal ice will melt under both clothes
	(a) Wien's law (b) Rayleigh jeans law		(d) It will depend on the temperature of surroundings of ice
	(c) Planck's law of radiation (d) Stefan's law of radiation	20.	If between wavelength λ and $\lambda + d\lambda$, e_{λ} and a_{λ} be the emissiv
0.	Infrared radiation is detected by [AIEEE 2002]	20.	and absorptive powers of a body and E_{λ} be the emissive power of
	(a) Spectrometer (b) Pyrometer		a perfectly black body, then according to Kirchoff's law, which i
	(c) Nanometer (d) Photometer		true [RPMT 1998; MP PET 1991]
1.	Pick out the statement which is not true [KCET 2002]		(a) $e_{\lambda} = a_{\lambda} = E_{\lambda}$ (b) $e_{\lambda}E_{\lambda} = a_{\lambda}$
	 (a) <i>IR</i> radiations are used for long distance photography (b) <i>IR</i> radiations arise due to inner electron transitions in atoms 		(c) $e_{\lambda} = a_{\lambda}E_{\lambda}$ (d) $e_{\lambda}a_{\lambda}E_{\lambda} = \text{constant}$
	 (b) <i>IR</i> radiations arise due to inner electron transitions in atoms (c) <i>IR</i> radiations are detected by using a bolometer 	21.	When p calories of heat is given to a body, it absorbs q calories
	(d) Sun is the natural source of <i>IR</i> radiation		then the absorbtion power of body will be
2.	A hot and a cold body are kept in vacuum separated from each		(a) p/q (b) q/p
	other. Which of the following cause decrease in temperature of the hot body [AFMC 2005]		(c) p^2/q^2 (d) q^2/p^2
	(a) Radiation	22.	Distribution of energy in the spectrum of a black body can be correctly represented by [MP PMT 1989
	(b) Convection		(a) Wien's law (b) Stefan's law
	(c) Conduction		(c) Planck's law (d) Kirchhoff's law
	(d) Temperature remains unchanged	23.	In rainy season, on a clear night the black seat of a bicycle become
3.	Good absorbers of heat are [] & K CET 2002]		wet because

	[AIEEE 2002; CBSE PMT 2002](a) Kajal(b) Black board		(a) The temperature of <i>A</i> is maximum, <i>B</i> is minimum and <i>C</i> is intermediate
32.	Which of the following is the example of ideal black body		[CPMT 1989]
	(c) Absorber of photons (d) Perfectly black-body		it can be concluded that
	(a) Good conductor (b) Partial radiator		the intensity of yellow colour is maximum. From these observations
31.	A body, which emits radiations of all possible wavelengths, is known as [CPMT 2001; Pb. PET 2002]	2.	On investigation of light from three different stars A , B and C , it was found that in the spectrum of A the intensity of red colour is maximum, in B the intensity of blue colour is maximum and in C
	(c) Black & polished (d) Black & rough		
	(a) White & polished (b) White & rough		(c) $\frac{T}{\lambda_m}$ = constant (d) $T + \lambda_m$ = constant
	[UPSEAT 1999, 2000]		(a) $\lambda_m T = \text{constant}$ (b) $\frac{\lambda_m}{T} = \text{constant}$
30.	A hot body will radiate heat most rapidly if its surface is		λ_{m}
	(c) Black (d) Yellow	·	DPMT 1999; AllMS 2002; CBSE PMT 2004]
	(a) Green (b) Purple	1.	According to Wein's law [DCE 1995, 96; MP PET/PMT 1988
49.	when red glass is heated in dark room it will seem [RPET 2000]		Radiation (Wein's law)
29.	When red glass is heated in dark room it will seem		Padiation (Main's law)
	(c) Kirchoff's law (d) Stefan's		(c) Planck's law (d) Wein's law
	dark room then it glows more. This can be explained on the basis of [RPET 2000] (a) Newton's law of cooling (b) Wien's law		good emitters"[Orissa JEE 2005](a) Stefan's law(b) Kirchoff's law
28.	(d) Temperature of <i>B</i> will rise faster There is a black spot on a body. If the body is heated and carried in	38.	(d) Both the pieces will look equally red.Which of the following law states that "good absorbers of heat are
	(c) Temperature of <i>A</i> will remain more than <i>B</i>		(c) Blue shines like brighter red compared to the red piece(d) Both the pieces will look anyally red
	(b) Both <i>A</i> and <i>B</i> show equal rise in beginning		
	temperature will be the same in both		(a) The blue piece will look blue and red will look as usual(b) Red look brighter red and blue look ordinary blue
	[BHU (Med.) 1999; MH CET 1999] (a) Temperature of <i>A</i> will rise faster than <i>B</i> but the final		red glass at room temperature, are taken inside a dimly lit room then [KCET 2005]
27.	Two thermometers A and B are exposed in sun light. The value of A is painted black, But that of B is not painted. The correct statement regarding this case is	37.	wavelength of maximum emission from an ideal black body is Plank's law A piece of blue glass heated to a high temperature and a piece of
	(d) Transmission of radiations by chromosphere		(d) The law showing the relation of temperatures with the
	(c) Emission of radiations by chromosphere		 (c) The energy of radiations emitted from a black body is same for all wavelengths
	(a) Reflection of radiations by chromosphere(b) Absorption of radiations by chromosphere		(b) Every body absorbs and emits radiations at every temperature
	[RPMT 1996; EAMCET 200 1] (a) Reflection of radiations by chromosphere		(a) A good absorber is a bad emitter
26.	The cause of Fraunhoffer lines is [BPMT 1006: FAMCET 2001]	36.	Which of the following statement is correct [RPMT 2001] (a) A good absorbur is a bad emitter
n £	(c) Absorption coefficient (d) Coefficient of reflection	<u>96</u>	(c) Flint (d) Crown Which of the following statement is correct [PDMT 2001]
	(a) Relative emissivity (b) Emissivity		(a) Rock-salt (b) Nicol
25.	At a certain temperature for given wave length, the ratio of emissive power of a body to emissive power of black body in same circumstances is known as [RPMT 1997]	35.	Which of the prism is used to see infra-red spectrum of light [RPMT 2000]
	(d) The plate and the black spot can not be seen in the dark room		(c) 1 (d) 0.25
	$(c) \mbox{The spot and the plate will be equally bright}$		(a) Zero (b) 0.5
	(b) In comparison with the plate, the spot will appear more black	34.	Absorption co-efficient of an open window is [KCET 2004]
	(a) In comparison with the plate, the spot will shine more		(d) Initially it is the darkest body and at later times it cannot be distinguished
24.	upto 1400 <i>K</i> approximately and then at once taken in a dark room. Which of the following statements is true		(b) It is the darkest body at all times(c) It cannot be distinguished at all times
	(d) None of the above There is a rough black spot on a polished metallic plate. It is heated		
	(c) Black seat is good radiator of heat energy		is observed that [IIT-JEE (Screening) 2002] (a) Initially it is the darkest body and at later times the brightest
	(b) Black seat is good absorber of heat	33.	An ideal black body at room temperature is thrown into a furnace. It

- (b) The temperature of A is maximum, C is minimum and B is intermediate
- (c) The temperature of B is maximum, A is minimum and C is intermediate
- (d) The temperature of C is maximum, B is minimum and A is intermediate
- 3. If wavelengths of maximum intensity of radiations emitted by the sun and the moon are $0.5 \times 10^{-6} m$ and $10^{-4} m$ respectively, the ratio of their temperatures is

[MP PMT 1990]

16.

18.

[MP PMT 1991]

- (a) 1/100 (b) 1/200
- (c) 100 (d) 200
- The wavelength of radiation emitted by a body depends upon
 - (a) The nature of its surface

4.

- (b) The area of its surface
- (c) The temperature of its surface
- (d) All the above factors
- 5. If black wire of platinum is heated, then its colour first appear red, then yellow and finally white. It can be understood on the basis of
 - (a) Wien's displacement law
 - (b) Prevost theroy of heat exchange
 - $(c) \quad \text{Newton's law of cooling} \\$
 - $(d) \quad \text{None of the above} \\$
- 6. Colour of shining bright star is an indication of its
 - [AllMS 2001; RPMT 1999; BCECE 2005] (a) Distance from the earth (b) Size
 - (c) Temperature (d) Mass
- 7. The wavelength of maximum emitted energy of a body at 700 K is 4.08 μm . If the temperature of the body is raised to 1400 K, the wavelength of maximum emitted energy will be
 - (a) 1.02 μm (b) 16.32 μm
 - (c) 8.16 µm (d) 2.04 µm
- 8. A black body at 200 K is found to exit maximum energy at a at wavelength of $14 \mu m$. When its temperature is raised to 1000 K, the (a) wavelength at which maximum energy is emitted is [RPMT 1998; MP PET 1991; BVP 2003]

(a)	14 µm	(b)	70 µF
(c)	2.8 µm	(d)	2.8 <i>mm</i>

9. Two stars emit maximum radiation at wavelength 3600 \mathring{A} and 4800 \mathring{A} respectively. The ratio of their temperatures is

(a)	1:2	(b)	3:4
(c)	4:3	(d)	2:1

10. A black body emits radiations of maximum intensity at a wavelength of 5000Å, when the temperature of the body is 1227° C. If the temperature of the body is increased by 1000° C, the maximum intensity of emitted radiation would be observed at

(a)	2754.8 <i>Å</i>	(b)	3000Å

(c) 3500\AA (d) 4000\AA

- Four pieces of iron heated in a furnace to different temperatures show different colours listed below. Which one has the highest temperature [MP PET 1992]
 - (a) White (b) Yellow
 - (c) Orange (d) Red
- 12. If a black body is heated at a high temperature, it seems to be
 - (a) Blue (b) White
 - (c) Red (d) Black
- If the temperature of the sun becomes twice its present temperature, then [MP PET 1989; RPMT 1996]
 - $(a) \quad \mbox{Radiated energy would be predominantly in infrared}$
 - (b) Radiated energy would be predominantly in ultraviolet [MP PMT 1992]
 - (c) Radiated energy would be predominantly in X-ray region
 - (d) Radiated energy would become twice the present radiated energy
- 14. The maximum energy in the thermal radiation from a hot source occurs at a wavelength of $11 \times 10^{-5} cm$. According to Wein's law, the temperature of the source (on Kelvin scale) will be n times the temperature of the source (on Kelvin scale) for which the wavelength at maximum energy is $5.5 \times 10^{-5} cm$. The value n is [CPMT 1991]
 - (a) 2 (b) 4 (c) $\frac{1}{2}$ (d) 1
- **15.** The wavelength of maximum energy released during an atomic explosion was $2.93 \times 10^{-10} m$. Given that Wein's constant is $2.93 \times 10^{-3} m K$, the maximum temperature attained must be of the order of

[Haryana CEE 1996; MH CET 2002; Pb. PET 2000]

(a)	$10^{-7} K$	[MP PET 1990]	(b)	$10^7 K$
(c)	$10^{-13} K$		(d)	$5.86 \times 10^7 K$

- The maximum wavelength of radiation emitted at 2000 K is $4 \mu m$. What will be the maximum wavelength of radiation emitted at [MP PMT/PET 1998; DPMT 2000]
 - (a) 3.33 μan (b) 0.66 μan **003** (c) 1 μan (d) 1 m
- **17.** How is the temperature of stars determined by
 - [BHU 1999, 02; DCE 2000, 03]
 - (a) Stefan's law (b) Wein's displacement law
 - (c) Kirchhoff's law (d) Ohm's law

On increasing the temperature of a substance gradually, which of the following colours will be noticed by you

[Pb. PMT 1995; Pb. PET 1996; CPMT 1995, 98; KCET 2000]

- (a) White(b) Yellow(c) Green(d) Red
- A black body has maximum wavelength λ_m at temperature 2000 *K*.

A black body has maximum wavelength λ_m at temperature 2000 K.
 Its corr[MPoPting92] velength at temperature 3000 K will be [CBSE PMT 2001; I

- (a) $\frac{3}{2}\lambda_m$ (b) $\frac{2}{3}\lambda_m$
- (c) $\frac{4}{9}\lambda_m$ (d) $\frac{9}{4}\lambda_m$

Relation	between	the o	colour	and	the	temperature	of a sta	r is given	
by							[Kerala	PET 2001]	

- (a) Wein's displacement law
- (b) Planck's law

20.

- (c) Hubble's law
- (d) Fraunhofer diffraction law
- **21.** A black body at a temperature of 1640 *K* has the wavelength corresponding to maximum emission equal to 1.75 μ . Assuming the moon to be a perfectly black body, the temperature of the moon, if the wavelength corresponding to maximum emission is 14.35 μ is

				•	
(a)	100 <i>K</i>	(b)	150 K		
(c)	200 K	(d)	250 K		

22. The maximum wavelength of radiations emitted at 900 K is $4 \mu m$. What will be the maximum wavelength of radiations emitted at 1200 K [BHU 2002]

				[5	1
(a)	3 µm		(b)	0.3 µm	

- (c) $1 \mu m$ (d) 1 m
- 23. Solar radiation emitted by sun resembles that emitted by a black body at a temperature of 6000 *K*. Maximum intensity is emitted at a wavelength of about 4800Å. If the sun were to cool down from 6000 *K* to 3000 *K* then the peak intensity would occur at a wavelength [UPSEAT 2002]
 - (a) 4800Å (b) 9600Å
 - (c) 7200\AA (d) 6400\AA
- 24.What will be the ratio of temperatures of sun and moon if the
wavelengths of their maximum emission radiations rates are 140 \mathring{A}
and 4200 \mathring{A} respectively[] & K CET 2004]

(a)	1:30	(b)	30 : 1
(c)	42:14	(d)	14:42

25. The radiation energy density per unit wavelength at a temperature *T* has a maximum at a wavelength λ . At temperature 2T, it will have a maximum at a wavelength

[UPSEAT 2004]

3.

5.

6.

[Kerala (Med.) 2002]

- (a) 4λ (b) 2λ
- (c) $\lambda/2$ (d) $\lambda/4$
- **26.** The absolute temperatures of two black bodies are 2000 *K* and 3000 *K* respectively. The ratio of wavelengths corresponding to maximum emission of radiation by them will be

(a)	2:3	(b)	3:2
(c)	9:4	(d)	4:9

27. The temperature of sun is 5500 *K* and it emits maximum intensity radiation in the yellow region $(5.5 \times 10^{-7} m)$. The maximum radiation from a furnace occurs at wavelength $11 \times 10^{-7} m$. The temperature of furnace is **[] & K CET 2000**]

(a)	1125 <i>K</i>	(b)	2750 K
(-)	FFOO K	(L)	$\nu \rho \rho \rho \nu$

- (c) 5500 K (d) 11000 K
- **28.** A particular star (assuming it as a black body) has a surface temperature of about $5 \times 10^4 K$. The wavelength in nanometers at which its radiation becomes maximum is

$(b = 0.0029 \ mK)$		[EAMCET (Med.) 2003]
(a) 48	(b) 58	
(c) 60	(d) 70	

The maximum energy in thermal radiation from a source occurs at the wavelength 4000Å. The effective temperature of the source is

(a) 7000 K (b) 80000 K

(c) $10^4 K$ (d) $10^6 K$

29.

30. The intensity of radiation emitted by the sun has its maximum value at a wavelength of 510 nm and that emitted by the north star has the maximum value at 350 nm. If these stars behave like black bodies, then the ratio of the surface temperature of the sun and north star is

[IIT 1997 Cancelled; JIPMER 2000; AIIMS 2000]

(a) 1.46 (b) 0.69 (c) 1.21 (d) 0.83

Radiation (Stefan's law)

 The amount of radiation emitted by a perfectly black body is proportional to [AFMC 1995; Pb. PMT 1997;

CPMT 1974, 98, 02; AIIMS 2000; DPMT 1995, 98, 02]

- (a) Temperature on ideal gas scale
- (b) Fourth root of temperature on ideal gas scale
- (c) Fourth power of temperature on ideal gas scale
- (d) Source of temperature on ideal gas scale

2. A metal ball of surface area 200 cm^2 and temperature $527^{\circ}C$ is

surrounded by a vessel at $27^{\circ}C$. If the emissivity of the metal is 0.4, then the rate of loss of heat from the ball is $(\sigma = 5.67 \times 10^{-8} J/m^2 - s - k^4)$ [MP PMT/PET 1988]

- (a) 108 joules approx. (b) 168 joules approx.
- (c) 182 joules approx. (d) 192 joules approx.
- The rate of radiation of a black body at $0^{\circ}C$ is *EJ/sec*. The rate of radiation of this black body at $273^{\circ}C$ will be

[MP PMT 1989; Kerala PET 2002; UPSEAT 2001]

- (a) 16 *E* (b) 8 *E*
- (c) 4 E (d) E

4. A black body radiates energy at the rate of E *W/m* at a high temperature *TK*. When the temperature is reduced to $\frac{T}{2}K$, the

[RPMatli2003]energy will be

[CPMT 1988; UPSEAT 1998; MNR 1993; SCRA 1996; MP PMT 1992; DPMT 2001; MH CET 2001]

(a)	$\frac{E}{16}$	(b)	$\frac{E}{4}$

- (c) 4E (d) 16E
 - An object is at a temperature of $400^{\circ} C$. At what temperature would it radiate energy twice as fast? The temperature of the surroundings may be assumed to be negligible[MP PMT 1990; DPMT 2002]
- (a) $200^{\circ} C$ (b) 200 K
- (c) $800^{\circ} C$ (d) 800 K

A black body at a temperature of $227^{\circ}C$ radiates heat energy at the rate of 5 *cal/cm-sec*. At a temperature of $727^{\circ}C$, the rate of heat radiated per unit area in *cal/cm*-will be

(a) 80 (b) 160

Transmission of Heat 715

	(c) 250	(d) 500		(a) 410W	(b)	81 W	
' .		from the surface of a black body at		(c) $405 W$	(d)	200 W	
		at the rate of $1.0 \times 10^6 J/\sec{-m^2}$. body at which the rate of energy emission ² will be	16.	A thin square steel plat a blacksmith. The rate o <i>W</i> . The temperature o	f radiated ene	rgy by the heated pla	te is 1134
		[MP PMT 1991; AFMC 1998]		$\sigma = 5.67 \times 10^{-8} wattr$		•	
	(a) 254° C	(b) $508^{\circ} C$		(a) 1000 K		1189 <i>K</i>	
	(c) $527^{o} C$	(d) $727^{\circ} C$					
	In MKS system, Stefan's σ multiplying factor of σ w	constant is denoted by σ . In CGS system ill be	17.	(c) 2000 <i>K</i> The temperatures of		2378 K A and B are res	spectively
	(a) 1	(b) 10^3		$727^{\circ}C$ and $327^{\circ}C$. The ratio <i>I</i>	$H_A: H_B$ of the rates	s of heat
	(c) 10^5	(d) 10^2		radiated by them is		-	EAT 1999;
	If temperature of a black then the rate of energy rad	body increases from $7^{o}C$ to $287^{o}C$, diation increases by		(a) 727:327		1999; MH CET 2000; All 5 : 3	MS 2000]
		[AIIMS 1997; Haryana PMT 2000; RPMT 2003]		(c) 25:9	(d)	625 : 81	
	(a) $\left(\frac{287}{7}\right)^4$	(b) 16	18.	The energy emitted per If the temperature of tl			
	(c) 4	(d) 2		energy emitted per seco	nd will be		
	The temperature of a pie	ece of iron is $27^{\circ}C$ and it is radiating				[CPMT 1999; I	DCE 1999]
	energy at the rate of Q	kWm^{-2} . If its temperature is raised to		(a) 20 <i>J</i>	(b)	40 <i>J</i>	
	$151^{o}C$, the rate of radia	tion of energy will become approximately		(c) 80 / [MP PET 1992]		160 J	
	(a) $2Q \ kWm^{-2}$	(b) $4Q \ kWm^{-2}$	19.	The radiant energy from		-	
	(c) $6Q \ kWm^{-2}$	(d) $8Q \ kWm^{-2}$		earth is $20 kcal/m^2$ energy incident normally twice of the present one	y on the earth		
	The temperatures of two l The ratio of rate of emissi					[CBSE PMT 1998; Pb.	PET 2001]
	(a) 707/107	[MP PET 1986] (b) 625/16		(a) $160 \ kcal/m^2 \ mi$	<i>n</i> (b)	$40 \ kcal/m^2 \ min$	
	(a) 727/127 (c) 1000/400	(d) 100/16		(c) $320 \ kcal/m^2 \ mi$	<i>n</i> (d)	$80 \ kcal/m^2 \ min$	
		a black body of unit area loses its energy	20.	A spherical black body power at $500 K$. If the function of the second			
	(a) $-65^{\circ} C$	(b) $65^{\circ}C$		doubled, the power radia			
	(c) 65 K	(d) None of these				[IIT 1997	Re-Exam]
	The area of a hole of	heat furnace is $10^{-4} m^2$. It radiates		(a) 225		450	
	1.58×10^5 calories of here is 0.80, then its temperatu	at per hour. If the emissivity of the furnace ire is	21.	(c) 900 If the temperature of th	ne sun (black	• ·	
	(a) 1500 <i>K</i>	(b) 2000 <i>K</i>		energy received on earth		•	ISE PMT 199
	(c) 2500 K	(d) 3000 K		(a) 2 (c) 8	(b) (d)	-	
		, of same colour having radii 8 cm and					$\mathbf{D}\mathbf{T}^{\boldsymbol{\theta}}$
		at temperatures $127^{\circ}C$ and $527^{\circ}C$	22.	The ratio of energy of ϵ	emitted radiati		
	respectively. The ratio of e	energy radiated by P and Q is		and 927° [MP PM is 1994]	1007 2000 CB	נאסן 36 PMT 2000; DPMT 199	PMT 1995;
	(a) 0.054	(b) 0.0034		(a) 1:4		1 : 16	,0, 02, 03]
	(c) 1	(d) 2		(c) 1:64		1 : 256	
		δW at a temperature of $127^{o}C$. If the	23.	If the temperature of a	a black body	be increased from 2	$7^{\circ}C$ to
	temperature is increased	to $927^{o}C$, then it radiates energy at the	-3.		-		
	rate of			$327^{\circ}C$ the radiation e	emitted increa	ses by a fraction of	

0.	a bla	acksmith. The rate of radiated	d ene	rgy by the heated plate is 1134 el plate is (Stefan's constant
		$= 5.67 \times 10^{-8}$ watt $m^{-2} K^{-4}$		
	(a)	1000 K	(b)	1189 <i>K</i>
	(c)	2000 K	(d)	2378 K
7.	The	temperatures of two bod	ies	A and B are respectively
	727	$7^{\circ}C$ and $327^{\circ}C$. The rat	io H	$H_A: H_B$ of the rates of heat
	radi	ated by them is		[UPSEAT 1999;
		мр	PET	1999; MH CET 2000; A11MS 2000]
	(a)	727:327	(b)	5:3
	(c)	25:9	(d)	625 : 81
8.	The	energy emitted per second b	y a b	lack body at $27^{o}C$ is $10 J$.
		e temperature of the black gy emitted per second will be		is increased to $327^{o}C$, the
				[CPMT 1999; DCE 1999]
	(a)	20 J	(b)	40 <i>J</i>
	(c)	80 / [MP PET 1992]	(d)	160 J
9.	The	radiant energy from the sun	incic	lent normally at the surface of
	eart	h is 20 kcal/m ² min. Wi	nat v	vould have been the radiant
		gy incident normally on the e of the present one	earth	, if the sun had a temperature
				[CBSE PMT 1998; Pb. PET 2001]
	(a)	$160 \ kcal/m^2 \ min$	(b)	$40 \ kcal/m^2 \ min$
	(c)	$320 \ kcal/m^2 \ min$	(d)	$80 \ kcal/m^2 \ min$
20.	A sp	oherical black body with a r	adius	of 12 cm radiates 440 W
	pow	er at $500 K$. If the radius	wer	e halved and the temperature
	doul	bled, the power radiated in w	att w	
				[11T 1997 Re-Exam]
	(a)	225	(b)	450
	()	900		
21.				body) is doubled, the rate of used by a factor of [CBSE PMT 1993; BHU 2
	(a)	2	(b)	4
	(c)	8	(d)	16
22.	The	ratio of energy of emitted ra	adiati	on of a black body at $27^{o}C$
	and	927°C [MP PM is 1994]		[Pb. PMT 1995;
				E PMT 2000; DPMT 1998, 02, 03]
	(a)	1:4	(b)	1 : 16
	(c)	1 : 64	(d)	1 : 256
23.	lf t	he temperature of a black b	ody	be increased from $27^{\circ}C$ to

(a)	16	(b)	8
(\mathbf{c})	4	(d)	2

24. The rectangular surface of area 8 $cm \times 4cm$ of a black body at a temperature of $127^{\circ}C$ emits energy at the rate of *E* per second. If the length and breadth of the surface are each reduced to half of the initial value and the temperature is raised to $327^{\circ}C$, the rate of emission of energy will become [MP PET 2000]

(a)
$$\frac{3}{8}E$$
 (b) $\frac{81}{16}E$
(c) $\frac{9}{16}E$ (d) $\frac{81}{64}E$

25. At temperature *T*, the power radiated by a body is *Q watts*. At the temperature 3*T* the power radiated by it will be

				•
(a)	3 <i>Q</i>	(b)	9 <i>Q</i>	
(c)	27 Q	(d)	81 <i>Q</i>	

26. Two spherical black bodies of radii r_1 and r_2 and with surface temperature T_1 and T_2 respectively radiate the same power. Then the ratio of r_1 and r_2 will be

[KCET 2001; UPSEAT 2001]

[RPET 2000; AIEEE 2002]

[MP PET 2000]

(a)
$$\left(\frac{T_2}{T_1}\right)^2$$
 (b) $\left(\frac{T_2}{T_1}\right)^4$
(c) $\left(\frac{T_1}{T_2}\right)^2$ (d) $\left(\frac{T_1}{T_2}\right)^4$

27. Temperature of a black body increases from $327^{\circ} C \text{ to } 927^{\circ} C$, the initial energy possessed is 2KJ, what is its final energy

(a) 32 <i>KJ</i>	(b)	320 <i>KJ</i>
------------------	-----	---------------

- (c) 1200 KJ (d) None of these
- 28. The original temperature of a black body is 727° C. The temperature at which this black body must be raised so as to double the total radiant energy, is [Pb. PMT 2001]
 - (a) 971 *K* (b) 1190 *K*
 - (c) 2001 K (d) 1458 K
- **29.** Two black metallic spheres of radius 4m, at 2000 *K* and 1m at 4000 *K* will have ratio of energy radiation as

(a)	1:1	(b)	4:1	
(c)	1:4	(d)	2:1	

30. The energy spectrum of a black body exhibits a maximum around a wavelength λ_o . The temperature of the black body is now changed 3λ

such that the energy is maximum around a wavelength $\frac{3\lambda_o}{4}$. The

power radiated by the black body will now increase by a factor of [KCET 2002]

- (a) 256/81 (b) 64/27
- (c) 16/9 (d) 4/3
- **31.** A black body is at a temperature 300 K. It emits energy at a rate, which is proportional to

[Pb. PMT 1998; AIIMS 2002; MH CET 2003]

(a)	300	(b)	$(300)^2$
(a)	300	(b)	(30

- (c) $(300)^3$ (d) $(300)^4$
- **32.** If the temperature of a hot body is increased by 50% then the increase in the quantity of emitted heat radiation will be

[RPET 1998; EAMCET 2001; MP PMT 2003]

- (a) 125% (b) 200%
- (c) 300% (d) 400%

33. Two identical metal balls at temperature $200^{\circ} C$ and $400^{\circ} C$

- kept in air at $27^{\,o}\,C$. The ratio of net heat loss by these bodies is
- (a) 1/4 (b) 1/2
- (c) 1/16 (d) $\frac{473^4 300^4}{673^4 300^4}$
- **34.** Two spheres made of same material have radii in the ratio 1: 2 Both are at same temperature. Ratio of heat radiation energy emitted per second by them is

[MP PMT 2002; MH CET 2004]

(a)	1:2	(b)	1:8
(c)	1:4	(d)	1 : 16

- **35.** A black body at a temperature of $127^{\circ}C$ radiates heat at the rate of 1 *cal/cm* × *sec.* At a temperature of $527^{\circ}C$ the rate of heat radiation from the body in (*cal/cm* × *sec*) will be
 - [MP PET 2002] (b) 10.45
 - (c) 4.0 (d) 2.0
- **36.** A black body radiates 20 *W* at temperature $227^{\circ}C$. If temperature of the black body is changed to $727^{\circ}C$ then its radiating power will be [DCE 2001]

	[CBSE PMT 2002; DCE 1999, 03; AIIMS 2003]
(a) 120 W	(b) 240 <i>W</i>

- (c) 320 W (d) 360 W
- Two spheres of same material have radius 1m and 4 m and temperature 4000K and 2000K respectively. The energy radiated per second by the first sphere is [Pb. PMT 2002]
 - (a) Greater than that by the second
 - (b) Less than that by the second
 - (c) Equal in both cases

38.

(a) 16.0

- (d) The information is incomplete
- The radiation emitted by a star A is 10,000 times that of the sun. If the surface temperatures of the sun and the star A are 6000 K and 2000 K respectively, the ratio of the radii of the star A and the sun is
 - (a) 300 : 1 (b) 600 : 1
- (c) 900:1 (d) 1200:1
- **39.** A black body radiates at the rate of *W* watts at a temperature *T*. If the temperature of the body is reduced to *T*/3, it will radiate at the rate of (in *Watts*)

[BHU 1998; MP PET 2003]

- (a) $\frac{W}{81}$ (b) $\frac{W}{27}$
- (c) $\frac{W}{9}$ (d) $\frac{W}{3}$

Transmission of Heat 717

7 × 50

40.		e temperature T while star B has radius $4r$ T/2. The ratio of the power of two starts, $P[MP PMT 2004]$	50
	(a) 16 : 1	(b) 1:16	
	(c) 1:1	(d) 1:4	51.
41.	present radius and its s	so that its radius becomes 100 times its surface temperature becomes half of its nergy emitted by it then will increase by a [AIIMS 2004]	
	(a) 10 [.]	(b) 625	
	(c) 256	(d) 16	
42.	-	sun were to be increased from T to $2T$ and nen the ratio of the radiant energy received as previously will be	52
	(a) 4	(b) 16	
	(c) 32	(d) 64	
43.	At 127 [.] C radiates energy is energy is 4.32 × 10 [.] J/s	: 2.7 \times 10 J/s. At what temperature radiated [BCECE 2004]	53
	(a) 400 <i>K</i>	(b) 4000 <i>K</i>	
	(c) 80000 K	(d) 40000 <i>K</i>	
14.	-	of metallic sphere and disc, of the same are equal, then the ratio of their rate of ent will be	
		[] & K CET 2004]	
	(a) 1:4	(b) 4:1	
	(c) 1:2	(d) 2:1	
45.	•	hergy at the rate of $1 \times 10^{\circ} J / s \times m$ at the temperature to which it must be heated at rate of $1 \times 10^{\circ} / \text{sm}$ is	
	(a) 5000 <i>K</i>	(b) $5000^{\circ}C$	54
	(a) 5000 K (c) 500 K	(d) 500 C	
46.	() -	ody is increased from -73° C to 327° C, the	
		[CPMT 2001; Pb. PET 2001]	
	(a) 1:3	(b) 1:81	55
	(c) 1:27	(d) 1:9	
		body is increased by 10%, the percentage	

				[RPMT 2001, 02]
(a)	46%	(b)	40%	
(c)	30%	(d)	80%	

If the sun's surface radiates heat at $6.3 \times 10^7 Wm^{-2}$. Calculate the 48. temperature of the sun assuming it to be a black body $(\sigma = 5.7 \times 10^{-8} W m^{-2} K^{-4})$ [BHU (Med.) 2000]

(a)	$5.8 \times 10^3 K$	(b)	$8.5 \times 10^3 K$
-----	---------------------	-----	---------------------

(c)	3.5×10^{-3}	(6	I)	5.3×	< 10	° K			
A sp	ohere at	temperature	600 <i>K</i> is	s p	olaced	in	an	environment	of

49.

- The value of Stefan's constant is [RPMT 2002] 0. (a) $5.67 \times 10^{-8} W / m^2 - K^4$ (b) $5.67 \times 10^{-5} W / m^2 - K^4$ (c) $5.67 \times 10^{-11} W / m^2 - K^4$ (d) None of these
- Rate of cooling at 600K, if surrounding temperature is 300K is R. 1. The rate of cooling at 900K is [DPMT 2002]

(a)
$$\frac{16}{3}R$$
 (b) $2R$

(c)
$$3R$$
 (d) $\frac{2}{3}R$

- A black body of surface area $10 \, cm$ is heated to $127^{\circ}C$ and is 2. suspended in a room at temperature 27°C. The initial rate of loss of heat from the body Atten 2000 m temperature will be
 - (a) 2.99 W (b) 1.89 W
 - (c) 1.18 W (d) 0.99 W
- Two identical objects A and B are at temperatures T and T3. respectively. Both objects are placed in a room with perfectly absorbing walls maintained at temperatures $T(T_A > T > T_B)$. The objects A and B attain temperature T eventually which one of the following is correct statement

[CPMT 1997]

- (a) 'A' only emits radiations while B only absorbs them until both attain temperature
- A loses more radiations than it absorbs while *B* absorbs more (b) radiations that it emits until temperature T is attained
- Both A and B only absorb radiations until they attain (c) temperature T
- Both *A* and *B* only emit radiations until they attain temperature (d)
- [DPMT 2004] When the body has the same temperature as that of surroundings [UPSEAT 199 4.
 - (a) It does not radiate heat
 - (b) It radiates the same quantity of heat as it absorbs
 - It radiates less quantity of heat as it receives from surroundings (c)
 - (d) It radiates more quantity of heat as it receives heat from surroundings
- The ratio of radiant energies radiated per unit surface area by two 5. bodies is 16 : 1, the temperature of hotter body is 1000 K, then the temperature of colder body will be

[UPSEAT 2001]

- (a) 250 K (b) 500 K
- (c) 1000 K (d) 62.5 K
- The spectral energy distribution of star is maximum at twice 56. temperature as that of sun. The total energy radiated by star is
 - (a) Twice as that of the sun
 - (b) Same as that of the sun
 - (c) Sixteen times as that of the sun
 - (d) One sixteenth of sun

Radiation (Newton's Law of Cooling)

temperature is 200K. Its cooling rate is H. If its temperature reduced to 400 K then cooling rate in same environment will become [CBSE PMT 1999; BHU 2004] water cools from 60° C to 50° C in the first 10 minutes and to $42^{\circ}C$ in the next 10 minutes. The temperature of the (a) (3/16)*H* (b) (16/3)*H*

- surrounding is [MP PET 1993] (d) (1/16)*H* (c) (9/27)H
 - (a) $5^{o}C$ (b) $10^{\circ} C$

(d) $20^{\circ} C$ (c) $15^{\circ}C$ A bucket full of hot water cools from $75^{\circ}C$ to $70^{\circ}C$ in time T_1 , 2. from $70^{\circ}C$ to $65^{\circ}C$ in time T_2 and from $65^{\circ}C$ to $60^{\circ}C$ in time T_3 , then [NCERT 1980; MP PET 1989; CBSE PMT 1995; KCET 2003; MH CET 1999] (a) $T_1 = T_2 = T_3$ (b) $T_1 > T_2 > T_3$ (c) $T_1 < T_2 < T_3$ (d) $T_1 > T_2 < T_3$ Consider two hot bodies B_1 and B_2 which have temperatures 3.

 $100^{\circ} C$ and $80^{\circ} C$ respectively at t = 0. The temperature of the surroundings is $40^{\circ} C$. The ratio of the respective rates of cooling R_1 and R_2 of these two bodies at t = 0 will be

- (a) $R_1: R_2 = 3:2$ (b) $R_1: R_2 = 5:4$
- (c) $R_1: R_2 = 2:3$ (d) $R_1: R_2 = 4:5$
- Newton's law of cooling is a special case of 4.
 - (a) Stefan's law (b) Kirchhoff's law
 - (c) Wien's law (d) Planck's law
- Equal masses of two liquids are filled in two similar calorimeters. 5. The rate of cooling will [MP PMT 1987]
 - (a) Depend on the nature of the liquids
 - (b) Depend on the specific heats of liquids
 - (c) Be same for both the liquids
 - (d) Depend on the mass of the liquids
- 6. In Newton's experiment of cooling, the water equivalent of two similar calorimeters is 10 gm each. They are filled with 350 gm of water and 300 gm of a liquid (equal volumes) separately. The time taken by water and liquid to cool from $70^{\circ}C$ to $60^{\circ}C$ is 3 min and 95 sec respectively. The specific heat of the liquid will be
 - (a) 0.3 $Cal|gm \times^{\circ} C$ (b) 0.5 Callgm $\times^{\circ}C$
 - (c) 0.6 $Cal|gm \times^{\circ} C$ (d) 0.8 $Cal|gm \times^{\circ} C$
- 7. Newton's law of cooling is used in laboratory for the determination [CPMT 1973; CPMT 2002] of the
 - (a) Specific heat of the gases (b) The latent heat of gases
 - (c) Specific heat of liquids (d) Latent heat of liquids
- A body cools from $60^{\circ}C$ to $50^{\circ}C$ in 10 *minutes* when kept in 8. air at $30^{\circ} C$. In the next 10 *minutes* its temperature will be
 - (a) Below $40^{\circ} C$ (b) $40^{\circ} C$
 - (c) Above $40^{\circ} C$ (d) Cannot be predicted
- Liquid is filled in a vessel which is kept in a room with temperature 9 20° C. When the temperature of the liquid is 80° C, then it loses heat at the rate of 60 cal/sec. What will be the rate of loss of
 - heat when the temperature of the liquid is $40^{\circ} C$
 - (a) 180 *cal*/sec (b) $40 \ cal/sec$
 - (c) 30 cal/sec(d) 20 cal/sec
- Which of the following statements is true/correct 10.

[Manipal MEE 1995]

During clear nights, the temperature rises steadily upward near (a) the ground level

- Transmission of Heat 719
- Newton's law of cooling, an approximate form of Stefan's law, (b) is valid only for natural convection
- The total energy emitted by a black body per unit time per (c) unit area is proportional to the square of its temperature in the Kelvin scale
- (d) Two spheres of the same material have radii 1m and 4mand temperatures 4000 K and 2000 K respectively. The energy radiated per second by the first sphere is greater than that radiated per second by the second sphere
- A body takes 4 *minutes* to cool from $100^{\circ}C$ to $70^{\circ}C$. To cool 11.
 - from $70^{\circ}C$ to $40^{\circ}C$ it will take (room temperature is $15^{\circ}C$)
 - (b) 6 minutes (a) 7 minutes (c) 5 minutes (d) 4 minutes
- A cup [WP RET 2999] from $80^{\circ}C$ to $60^{\circ}C$ in one minute. The 12. ambient temperature is $30^{\circ}C$. In cooling from $60^{\circ}C$ to $50^{\circ}C$ it will take [MP PMT 1995; UPSEAT 2000;

(b)

- MH CET 2002]
- 30 seconds 60 seconds
- 90 seconds 50 seconds (d) (c)
- A liquid cools down from $70^{\circ}C$ to $60^{\circ}C$ in 5 *minutes*. The 13. time taken to cool it from $60^{\circ}C$ to $50^{\circ}C$ will be

[MP PET 1992, 2000; MP PMT 1996]

(a) 5 minutes

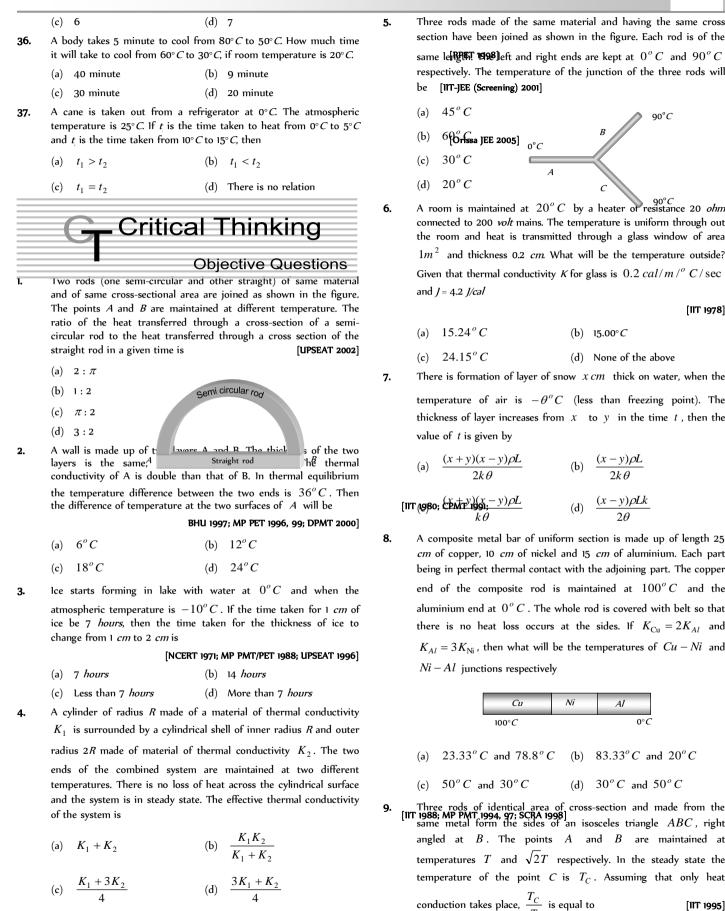
(a)

15.

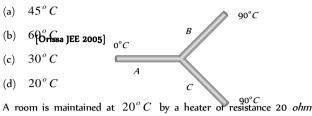
- (b) Lesser than 5 minutes
- Greater than 5 *minutes* (c)
- Lesser or greater than 5 minutes depending upon the density (d) of the liquid
- If a metallic sphere gets cooled from $62^{\circ}C$ to $50^{\circ}C$ in 14. 10 minutes and in the next 10 minutes gets cooled to $42^{\circ}C$, then the temperature of the surroundings is

[MP PET 1997]

- (a) $30^{\circ} C$ (b) $36^{\circ}C$
- (c) $26^{\circ} C$ (d) $20^{\circ} C$
- The rates of cooling of two different liquids put in exactly similar calorimeters and kept in identical surroundings are the same if
 - (a) The masses of the liquids are equal
 - (b) Equal masses of the liquids at the same temperature are taken
 - Dimeret von the liquids at the same temperature are (c) taker
 - (d) Equal volumes of the liquids at the same temperature are taken
- A body cools from $60^{\circ}C$ to $50^{\circ}C$ in 10 *minutes*. If the room 16. temperature is $25^{\circ}C$ and assuming Newton's law of cooling to hold good, the temperature of the body at the end of the next $\ 10$ minutes will be


[MP PMT 1994] [MP PMT/PET 1998; BHU 2000; Pb. PMT 2001]

- 38.5° C (b) $40^{\circ} C$ (a)
- (c) $42.85^{\circ}C$ (d) $45^{\circ}C$
- The temperature of a liquid drops from 365K to 361 K in 2 17. minutes. Find the time during which temperature of the liquid drops from 344 K to 342K. Temperature of room is 293 K
 - (a) 84 sec (b) 72 sec


	(c) 66 <i>sec</i>	(d) 60 <i>sec</i>	26.	The temperature of a	body falls from $50^{\circ}C$ to $40^{\circ}C$ in 10
18.	-	$5 49.9^{\circ}C$ in $5s$. How long will it		•	ture of the surroundings is $20^{\circ} C$ Then
		$39.9^{\circ}C$? Assume the temperature		temperature of the body	after another 10 minutes will be
	of surroundings to be 30.0° C valid	C and Newton's law of cooling to be [CBSE PMT 1994]		(a) $36.6^{\circ} C$	(b) $33.3^{\circ}C$
	(a) 2.5 <i>s</i>	(b) 10 <i>s</i>		(c) $35^{\circ}C$	(d) $30^{\circ} C$
	(c) 20 <i>s</i>	(d) 5 s	27.		cool a liquid from 61 C to 59 C. If room
9.	A container contains hot w	vater at $100^{o}C.$ If in time T_1		(a) 10 <i>min</i>	time taken in cooling from 51 ⁻ <i>C</i> to 49 ⁻ <i>C</i> is (b) 11 <i>min</i>
	temperature falls to $80^{\circ}C$ a	nd in time T_2 temperature falls to		(a) 10 mm (c) 13 min	(d) 15 <i>min</i>
	$60^{\circ} C$ from $80^{\circ} C$, then	[CPMT 1997]	28.		0.2 kg and specific heat 900 J/kg-k
	(a) $T_1 = T_2$	(b) $T_1 > T_2$			liquid of specific heat 2400 <i>J kg-K.</i> Its
	(c) $T_1 < T_2$	(d) None		temperature falls from 6	$50^{\circ}C$ to $55^{\circ}C$ in one minute. The rate o
20.	Hot water kent in a beaker pla	aced in a room cools from $70^{\circ}C$ to		cooling is	[MP PET 2003]
.0.		taken by it to cool from $69^{\circ}C$ to		(a) 5 <i>J/s</i>	(b) 15 <i>J/s</i>
	$59^{\circ}C$ will be	[JIPMER 1999]		(c) 100 <i>J/s</i>	(d) 115 <i>J/s</i>
	(a) The same 4 minutes	(b) More than 4 minutes	29.	According to Newton's la	w of cooling, the rate of cooling of a body
	(c) Less than 4 minutes	(d) We cannot say definitely)", where $\Delta heta$ is the difference of the
21.	Newton's law of cooling, ho	lds good only if the temperature		• •	and the surroundings, and <i>n</i> is equal to
	difference between the body and	C C		(a) One	(b) Two
		[BHU 2000]		(c) Three	(d) Four
	(a) Less than $10^{o} C$	(b) More than $10^{\circ} C$	20		
	(c) Less than $100^{\circ} C$	(d) More than $100^{\circ} C$	30.		f a body is 80° <i>C</i> . If its temperature falls to n 10 <i>minutes</i> to 52° <i>C</i> then the temperature
22.	In a room where the tempera	sture is $30^{\circ}C$, a body cools from		of surrounding will be	[MP PMT 2003]
	$61^{\circ}C$ to $59^{\circ}C$ in 4 minut	tes. The time (in min.) taken by the		(a) 26° <i>C</i>	(b) 49° <i>C</i>
	body to cool from $51^0 C$ to 49	$\Theta^0 C$ will be			
		[UPSEAT 2000]		(c) $35^{\circ}C$	(d) 42° <i>C</i>
	(a) 4 <i>min</i> (c) 5 <i>min</i>	(b) 6 <i>min</i> (d) 8 <i>min</i>	31.		C to 45 °C in 5 minutes and from 45 °C to to the temperature of the surrounding is
23.	() -	cooling', the rate of cooling of a body		(a) 27 · C	(b) 40.3 <i>C</i>
-	is proportional to the	[MP PET 2001]		(c) $23.3 C$	(d) 33.3 <i>C</i>
	(a) Temperature of the body		32.	A cup of tea cools from 6	55.5 C to 62.5 C in one minute in a room of
	(b) Temperature of the surrou	-	-	22.5 C. How long will the	same cup of tea take, in minutes, to
	(c) Fourth power of the tempo	,		value)	0.5 [.] <i>C</i> in the same room ? (choose nearest [Kerala PMT 2004]
	(d) Difference of the tem surroundings	perature of the body and the		(a) 1	(b) 2
24.	e	m $60^{\circ}C$ to $40^{\circ}C$ What time (in		(c) 3	(d) 4
	-	I from $40^{\circ}C$ to $28^{\circ}C$ if the	33.	•	dy falls from 62 [.] C to 50 [.] C in 10 <i>minutes</i> . If
		10° C? Assume Newton's Law of [Kerala (Engg.) 2001]		the temperature of the next 10 <i>minutes</i> will beco	surroundings is 26 [.] <i>C</i> , the temperature ir me [RPMT 2002]
	(a) 3.5	(b) 11		(a) 42 [.] C	(b) 40 [.] <i>C</i>
	(c) 7	(d) 10		(c) $56 C$	(d) 55 [.] C
25.	A body takes 5 minutes for c	ooling from $50^{\circ}C$ to $40^{\circ}C$. Its	34.		<i>tes</i> to cool from 90 <i>C</i> to 60 <i>C</i> . If the undings is 20 <i>C</i> , the time taken by it to coo
		$33.33^{\circ}C$ in next 5 minutes.		from 60 <i>C</i> to 30 <i>C</i> will be	. [RPMT 2003]
	Temperature of surroundings is	[MP PMT 2002]		(a) 5 <i>min</i>	(b) 8 <i>min</i>
	(a) $15^{\circ} C$	(b) $20^{\circ} C$		(c) 11 <i>min</i>	(d) 12 <i>min</i>
	(c) $25^{\circ}C$	(d) $10^{\circ} C$	35.	· ·	1 75°C to 65°C in 2 minutes in a room at cool another object from 55°C to 45°C in as is
					[EAMCET (Med.) 1996]

[EAMCET (Med.) 1996]

(a) 4 (b) 5

Three rods made of the same material and having the same cross section have been joined as shown in the figure. Each rod is of the same le **RPET 1998** left and right ends are kept at $0^{\circ}C$ and $90^{\circ}C$ respectively. The temperature of the junction of the three rods will be [IIT-JEE (Screening) 2001]

connected to 200 volt mains. The temperature is uniform through out the room and heat is transmitted through a glass window of area $1m^2$ and thickness 0.2 *cm*. What will be the temperature outside? Given that thermal conductivity K for glass is $0.2 cal/m/^{\circ} C/sec$

[IIT 1978]

- (a) $15.24^{\circ}C$ (b) 15.00°*C*
 - (d) None of the above

temperature of air is $-\theta^o C$ (less than freezing point). The thickness of layer increases from x to y in the time t, then the

(a)
$$\frac{(x+y)(x-y)\rho L}{2k\theta}$$
 (b) $\frac{(x-y)\rho L}{2k\theta}$

[IIT (980;
$$(x+y)\rho L$$

 $k\theta$ (d) $(x-y)\rho Lk$
 2θ

A composite metal bar of uniform section is made up of length 25 cm of copper, 10 cm of nickel and 15 cm of aluminium. Each part being in perfect thermal contact with the adjoining part. The copper end of the composite rod is maintained at $100^{\circ}C$ and the aluminium end at $0^{\,o}\,C$. The whole rod is covered with belt so that there is no heat loss occurs at the sides. If $K_{\rm Cu}=2K_{Al}$ and $K_{Al} = 3K_{Ni}$, then what will be the temperatures of Cu - Ni and Ni - Al junctions respectively

Си	Ni	Al
100° <i>C</i>		0° <i>C</i>

- $23.33^{\circ}C$ and $78.8^{\circ}C$ (b) $83.33^{\circ}C$ and $20^{\circ}C$
- (c) $50^{\circ} C$ and $30^{\circ} C$ (d) $30^{\circ}C$ and $50^{\circ}C$
- Three rods of identical area of cross-section and made from the [IIT 1988; MP PMT 1994, 97; SCRA 1998] same metal form the sides of an isosceles triangle *ABC*, right angled at B. The points A and B are maintained at temperatures T and $\sqrt{2}T$ respectively. In the steady state the temperature of the point C is T_C . Assuming that only heat conduction takes place, $\frac{I_C}{T}$ is equal to [IIT 1995]

(a)
$$\frac{1}{(\sqrt{2}+1)}$$
 (b) $\frac{3}{(\sqrt{2}+1)}$

(c)
$$\frac{1}{2(\sqrt{2}-1)}$$
 (d) $\frac{1}{\sqrt{3}(\sqrt{2}-1)}$

- The only possibility of heat flow in a thermos flask is through its 10. cork which is 75 cm in area and 5 cm thick. Its thermal conductivity is 0.0075 cal/cmsec C. The outside temperature is 40 C and latent heat of ice is 80 cal g. Time taken by 500 g of ice at 0 C in the flask to melt into water at 0 C is [CPMT 1974, 78; MNR 1983]
 - (a) 2.47 hr (b) 4.27 hr (c) 7.42 hr
 - (d) 4.72 hr
- A sphere, a cube and a thin circular plate, all made of the same 11. material and having the same mass are initially heated to a temperature of 1000°C. Which one of these will cool first

] & K CET 2000 MH CET 2000; UPSEAT 2001]

3

- (a) Plate (b) Sphere
- (c) Cube None of these (d)
- Three rods of the same dimension have thermal conductivities 3K, 2K 12. and K. They are arranged as shown in fig. Given below, with their ends at 100 C, 50 C and 20 C. The temperature of their junction is
 - 60° C (a)
 - 50°C (b) 70° C

(c)
$$50^{\circ}C$$
 $100^{\circ}C$

$$\begin{array}{c} (c) & 50 \\ (d) & 35 \\ \end{array}$$

Two identical conducting rods are first connected independently to 13. two vessels, one containing water at 100 C and twothercontaining ice at 0 C. In the second case, the rods are joined end to end and connected to the same vessels. Let q and q g / s be the rate of melting of ice in two cases respectively. The ratio of $\, q_1 \, / \, q_2 \,$ is

[IIT-JEE (Screening) 2004]

(a) (c) (d)

A solid cube and a solid sphere of the same material have equal 14.

- (a) Both the cube and the sphere cool down at the same rate
- (b) The cube cools down faster than the sphere
- (c) The sphere cools down faster than the cube
- Whichever is having more mass will cool down faster (d)
- Two bodies A and B have thermal emissivities of 0.01 and 0.81 15. respectively. The outer surface areas of the two bodies are the same. The two bodies emit total radiant power at the same rate. The wavelength λ_B corresponding to maximum spectral radiancy in the radiation from B is shifted from the wavelength corresponding to

maximum spectral radiancy in the radiation from A , by $1.00 \,\mu m$. If the temperature of A is 5802 K

- (a) The temperature of B is 1934 K
- (b) $\lambda_B = 1.5 \,\mu m$
- (c) The temperature of B is 11604 K
- (d) The temperature of B is 2901 K

A black body is at a temperature of 2880 K. The energy of radiation emitted by this object with wavelength between 499 nm and 500 nm is U_1 , between 999 nm and 1000 nm is U_2 and between 1499 nm and 1500 nm is U_3 . The Wein's constant $b = 2.88 \times 10^6 nm K$. Then

[11T 1998]

- (a) $U_1 = 0$ (b) $U_3 = 0$
- (c) U[IIT51972; MP PMT 1993; (d) $U_2 > U_1$

are doubled, the power received by the foil will be

17.

18.

19.

16.

A black metal foil is warmed by radiation from a small sphere at temperature T and at a distance d. It is found that the power

received by the foil is 'P. If both the temperature and the distance

$$\begin{array}{c} (a) & 16P \\ [UPSEAT 2002] \\ (c) & 2P \end{array} \qquad \qquad (b) & 4P \\ (d) & P \end{array}$$

Three rods of same dimensions are arranged as shown in figure they have thermal conductivities K_1, K_2 and K_3 . The points P and Q are maintained at different temperatures for the heat to flow at the same rate along PRQ and PQ then which of the following option is [KCET 2001] correct

(a)
$$K_3 = \frac{1}{2}(K_1 + K_2)$$

(b) $K_3 = K_1 + K_2$
(c) $K_3 = \frac{K_1 K_2}{K_1 + K_2}$
(d) $K_3 = 2(K_1 + K_2)$

Two metallic spheres S_1 and S_2 are made of the same material and have identical surface finish. The mass of S_1 is three times that of S_2 . Both the spheres are heated to the same high temperature surface area. Both are at the same temperature 120° C, then [MP PET 1992, 96; MR MJ area of the same room having lower temperature but are thermally insulated from each other. The ratio of the initial rate of cooling of S_1 to that of S_2 is [IIT 1995]

(a)
$$1/3$$
 (b) $(1/3)^{1/3}$

(c)
$$1/\sqrt{3}$$
 (d) $\sqrt{3}/1$

Three discs A, B and C having radii 2m, 4m, and 6m respectively are 20. coated with carbon black on their other surfaces. The wavelengths corresponding to maximum intensity are 300 nm, 400 nm and 500 nm, respectively. The power radiated by them are Q, Q, and Q respectively

				Trans	smission of Heat 72	23
		[IIT-JEE (Screening) 2004	+]	the first and if the therm	nal conductivity of material	of second rod is
	(a) Q is maximum	(b) Q is maximum		$\frac{1}{4}$ that of first, the rate	at which ice melts in $gm/$	sec will be [EAMCE
	(c) Q is maximum	$(\mathbf{d}) \mathbf{Q} = \mathbf{Q} = \mathbf{Q}$				
I .		from a black body source is collected fo		(a) 3.2 (c) 0.2	(b) 1.6 (d) 0.1	
		b heat a quantity of water. The temperatur crease form $20^{\circ}C$ to $20.5^{\circ}C$. If th		. ,	d of length $1.0 m$ and area	of anosa coation
		f the black body is doubled and th			ç	
		with the same quantity of water at $20^{\circ}C$			oiling water and the other o onductivity of copper is 9	
	the temperature of water $(1) = 21^{\circ} C$	_	ŀJ			
	(a) $21^{\circ}C$ (c) $24^{\circ}C$	(b) $22^{\circ}C$		and the latent heat of id ice which will melt in on	ce is $8\! imes\!10^4cal/kg$, then be minute is	n the amount of
2.		(d) $28^{\circ}C$ ow sphere of the same material and size ar	e			[MNR 1994]
	heated to the same temp	perature and allowed to cool in the sam	e	(a) $9.2 \times 10^{-3} kg$	(b) $8 \times 10^{-3} kg$	
	surroundings. If the tem and its surroundings is T	nperature difference between each spher	e	(c) $6.9 \times 10^{-3} kg$	(d) $5.4 \times 10^{-3} k$	g
		, then [Manipal MEE 1995	il 29 .		eping eatable cold has a to	
	(a) The hollow sphere w	ill cool at a faster rate for all values of T	•	$1 metre^2$ and a wa	all thickness of 5.0 <i>cm</i>	. The thermal
		cool at a faster rate for all values of T		conductivity of the ice l	box is $K = 0.01 \text{ joule}/m$	$etre - {}^oC$. It is
	(c) Both spheres will coo	I at the same rate for all values of T ol at the same rate only for small values o	f	temperature is 30° <i>C</i> .	' along with eatables on a The latent heat of fus	sion of ice is
	Т			334×10^3 joules/kg.	The amount of ice melted in	n one day is
3.	A solid copper cube of e	edges 1 cm is suspended in an evacuate	d	(1 day = 86,400 sec or	ıds)	[MP PMT 1995]
	•	e is found to fall from $100^{\circ}C$ to $99^{\circ}C$		(a) 776 gms	(b) 7760 gms	
		copper cube of edges $2 cm$, with similar ded in a similar manner. The time require		(c) 11520 gms	(d) 1552 gms	
	for this cube to cool from	$100^{\circ}C$ to $99^{\circ}C$ will be approximatel	u √MP PMT ⊮	Five rods of same dimer	nsions are arranged as show	n in the figure.
	(a) 25 <i>s</i>	(b) 50 s	,	They have thermal cond	uctivities <i>K, K, K, K</i> and <i>K</i> at different temperatures,	When points A
	. ,			through the central rod i	•	no near nows
	(c) 200 s	(d) 400 s			C	[KCET 2002]
24.	A body initially at 80° <i>C</i> c 10 <i>minutes</i> . The temperatu	cools to 64 [.] <i>C</i> in 5 <i>minutes</i> and to 52 [.] <i>C</i> i ure of the body after 15 <i>minutes</i> will be[UF	n SEAT 2000:	(a) $K_1 = K_4$ and $K_2 =$ Pb. PET 2004]	= K ₃ K ₁	<i>K</i> ₂
	(a) 42.7 <i>C</i>	(b) 35 [.] C		(b) $K_1 K_4 = K_2 K_3$		
	(c) $47^{\circ} C$	(d) 40 ⁻ C		(c) $K_1 K_2 = K_3 K_4$	A K5	В
5.	_	there on the surface of water in a lake. Th 9°C; how much time it will take to doubl		(d) $\frac{K_1}{K_4} = \frac{K_2}{K_3}$	K ₃ D	κ ₄
	$(L = 80 \ cal/g, K_{L} = 0.004 \ L$	$Erg/s-k, d = 0.92 \ g \ cm^{-3}$	31.	A hot metallic sphere of	radius r radiates heat. It's i	ate of cooling is
		[RPET 1998	3]	(a) Independent of r	(b) Proportional	to r
	(a) 1 <i>hour</i>	(b) 191 <i>hours</i>		(c) Proportional to r^2	(d) Proportional	to 1/ <i>r</i>
	(c) 19.1 <i>hours</i>	(d) 1.91 <i>hours</i>	32.		density $ ho$ and specific hea	
6.		ne material are joined end to end to form e difference between the ends of a diagona			temperature 200 <i>K</i> is susp e at almost 0 <i>K</i> . The time re	

Four identical rods of same material are joined end to end to form a square. If the temperature difference between the ends of a diagonal is $100^{\circ} C$, then the temperature difference between the ends of other diagonal will be

[MP PET 1989; RPMT 2002]

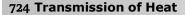
(a)
$$0^{\circ} C$$

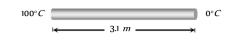
(b) $\frac{100}{l} \circ C$; where *l* is the length of each rod
(c) $\frac{100}{2l} \circ C$
(d) $100^{\circ} C$

27. A cylindrical rod with one end in a steam chamber and the other end in ice results in melting of 0.1*gm* of ice per second. If the rod is replaced by another with half the length and double the radius of

One end of a copper rod of uniform cross-section and of length 3.1 m is kept in contact with ice and the other end with water at 100° C. At what point along it's length should a temperature of 200° C be maintained so that in steady state, the mass of ice melting be equal to that of the steam produced in the same interval of time. Assume that the whole system is insulated from the surroundings. Latent heat of fusion of ice and vaporisation of water are 80 *cal/gm* and 540 *cal/gm* respectively

(b) $\frac{7}{72} \frac{r\rho c}{\sigma}$

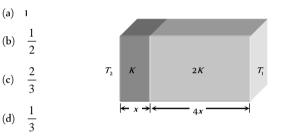

(d) $\frac{7}{27} \frac{r\rho c}{\sigma}$


for the temperature of the sphere to drop to 100 K is

(a) $\frac{72}{7} \frac{r\rho c}{\sigma}$

(c) $\frac{27}{7} \frac{r\rho c}{\sigma}$

33.


4 -

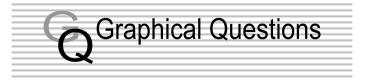
1

- (a) 40 cm from 100°C end
 (b) 40 cm from 0°C end
 (c) 125 cm from 100°C end
 (d) 125 cm from 0°C end
- **34.** A sphere and a cube of same material and same volume are heated upto same temperature and allowed to cool in the same surroundings. The ratio of the amounts of radiations emitted will be

(a) 1:1
(b)
$$\frac{4\pi}{3}$$
:1
(c) $\left(\frac{\pi}{6}\right)^{1/3}$:1
(d) $\frac{1}{2}\left(\frac{4\pi}{3}\right)^{2/3}$:

35. The temperature of the two outer surfaces of a composite slab, consisting of two materials having coefficients of thermal conductivity *K* and 2*K* and thickness *x* and 4*x*, respectively are *T* and *T* (*T* > *T*). The rate of heat transfer through the slab, in a steady state is $\left(\frac{A(T_2 - T_1)K}{x}\right)f$, with *f* which equal to[**AIEEE 2004**]

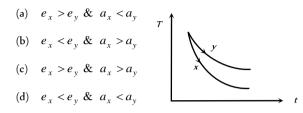
36. The figure shows a system of two concentric spheres of radii *r* and *r* and kept at temperatures *T* and *T*, respectively. The radial rate of flow of heat in a substance between the two concentric spheres is proportional to [AIEEE 2005]


(a)
$$\frac{r_1 r_2}{(r_1 - r_2)}$$

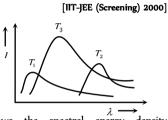
(b) $(r_2 - r_1)$
(c) $(r_2 - r_1)(r_1 r_2)$
(d) $\ln\left(\frac{r_2}{r_1}\right)$

37. Four rods of identical cross-sectional area and made from the same metal form the sides of square. The temperature of two diagonally opposite points and T and $\sqrt{2}$ T respective in the steady state. Assuming that only heat conduction takes place, what will be the temperature difference between other two points

(a)
$$\frac{\sqrt{2}+1}{2}T$$
 (b) $\frac{2}{\sqrt{2}+1}T$


(c) 0

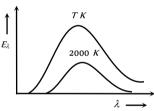
(d) None of these


The graph. Shown in the adjacent diagram, represents the variation of temperature (T) of two bodies, x and y having same surface area, with time (t) due to the emission of radiation. Find the correct relation between the emissivity (e) and absorptivity (a) of the two bodies

[IIT-JEE (Screening) 2003]

2. The plots of intensity versus wavelength for three black bodies at temperatures T, T and T respectively are as shown. Their temperature are such that

(a) $T_{1} > T_{2} > T_{1}$ (b) $T_{2} > T_{2} > T_{1}$ (c) $T_{2} > T_{2} > T_{2}$ (d) $T_{3} > T_{4} > T_{3}$

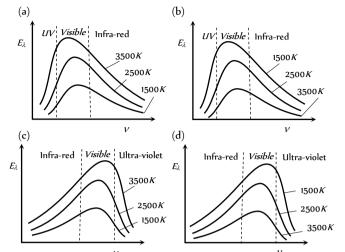


The adjoining diagram shows the spectral energy density distribution E_{λ} of a black body at two different temperatures. If the areas under the curves are in the ratio 16 : 1, the value of temperature *T* is **[DCE 1999]**

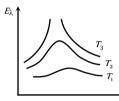
(a) 32,000 K

3.

- (b) 16,000 *K*
- (c) 8,000 K
- (d) 4,000 K


[BCECE 2005]

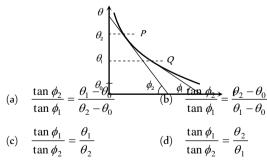
1.

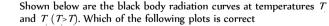

Transmission of Heat 727

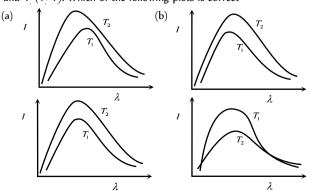
(d)

4. Following graph shows the correct variation in intensity of heat radiations by black body and frequency at a fixed temperature

5. Variation of radiant energy emitted by sun, filament of tungsten lamp and welding arc as a function of its wavelength is shown in figure. Which of the following option is the correct match




- (a) Sun- T_1 , tungsten filament $-T_2$, welding arc $-T_3$
- (b) Sun $-T_2$, tungsten filament $-T_1$, welding arc $-T_3$
- (c) Sun $-T_3$, tungsten filament $-T_2$, welding arc $-T_1$
- (d) Sun $-T_1$, tungsten filament $-T_3$, welding arc $-T_2$

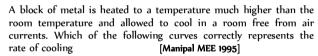

6.

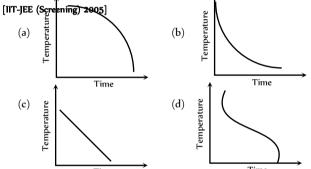
7.

A body cools in a surrounding which is at a constant temperature of θ_0 . Assume that it obeys Newton's law of cooling. Its temperature θ is plotted against time *t*. Tangents are drawn to the curve at the points $P(\theta = \theta_1)$ and $Q(\theta = \theta_2)$. These tangents meet the time axis at angles of ϕ_2 and ϕ_1 , as shown

8.

The spectrum of a black body at two temperatures 27 C and 327 C is shown in the figure. Let A and A be the areas under the two

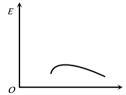

curves respectively. The value of $\frac{A_2}{A_1}$ is

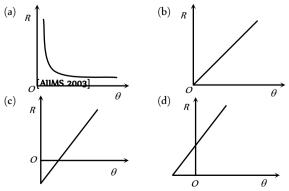

(a) 1:16

(b) 4:1

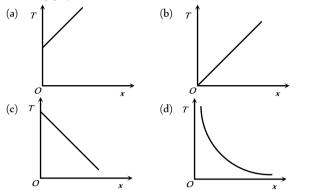
(c) 2:1

(d) 16:1

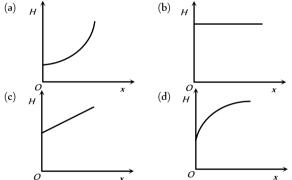


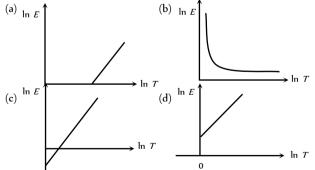


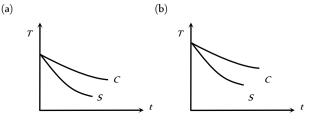
11.

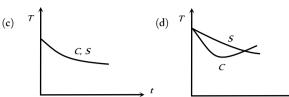

The energy distribution E with the wavelength (λ) for the black body radiation at temperature T Kelvin is shown in the figure. As the temperature is increased the maxima will

- (a) Shift towards left and become higher
- (b) Rise high but will not shift
- (c) Shift towards right and become higher
- (d) Shift towards left and the curve will become broader
- For a small temperature difference between the body and the surroundings the relation between the rate of loss heat R and the temperature of the body is depicted by


12. Heat is flowing through a conductor of length *l* from x = 0 to x = l. If its thermal resistance per unit length is uniform, which of the following graphs is correct

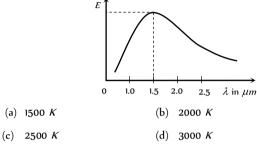

13. Radius of a conductor increases uniformly from left end to right end as shown in fig.


Material of the conductor is isotropic and its curved surface is thermally isolated from surrounding. Its ends are maintained at temperatures T and T (T > T): If, in steady state, heat flow rate is equal to H, then which of the following graphs is correct

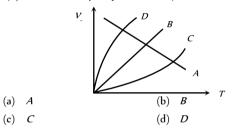


Which of the following graphs correctly represents the relation between ln *E* and ln *T* where *E* is the amount of radiation emitted per unit time from unit area of a body and *T* is the absolute temperature [DCE 2002]

15. A hollow copper sphere *S* and a hollow copper cube *C*, both of negligible thin walls of same area, are filled with water at $90^{\circ}C$ and allowed to cool in the same environment. The graph that correctly represents their cooling is



In the figure, the distribution of energy density of the radiation emitted by a black body at a given temperature is shown. The possible temperature of the black body is


16.

t

[RPMT 1996]

17. Which of the following is the v = T graph for a perfectly black body (v =maximum frequency of radiation)

Ŕ	As	sertion & Reason
.1	1	For AIIMS Aspirants reason carefully to mark the correct option out of
ptions given b		reason carefully to mark the correct option out of
		and reason are true and the reason is the correct
,		he assertion. I and reason are true but reason is not the correct
explanation	n of th	ne assertion.
		ne but reason is false. and reason both are false.
		lse but reason is true.
Assertion	:	A body that is a good radiator is also a good absorber of radiation at a given wavelength.
Reason	:	According to Kirchoff's law the absorptivity of a body is equal to its emissivity at a given wavelength. [AIIMS 2005]
Assertion	:	For higher temperature, the peak emission
Assertion	•	wavelength of a black body shifts to lower wavelengths.
Reason	:	Peak emission wavelength of a blackbody is proportional to the fourth power of temperature. [AIIMS 2005]
Assertion	:	Temperatures near the sea coast are moderate.
Reason	:	Water has a high thermal conductivity.
		[AIIMS 2003]
Assertion	:	It is hotter over the top of a fire than at the same distance on the sides.
Reason	:	Air surrounding the fire conducts more heat upwards. [AIIMS 2003]
Assertion	:	Bodies radiate heat at all temperatures.
Reason	:	Rate of radiation of heat is proportional to the fourth power of absolute temperature.
A		[AllMS 1999, 2002]
Assertion	:	Woolen clothes keep the body warm in winter.
Reason	:	Air is a bad conductor of heat. [AIIMS 2002]
Assertion	:	The equivalent thermal conductivity of two plates
		of same thickness in contact (series) is less than
		the smaller value of thermal conductivity.
Reason	:	For two plates of equal thickness in contact (series) the equivalent thermal conductivity is given by [AIIMS 1997]
		$\frac{1}{K} = \frac{1}{K_1} + \frac{1}{K_2}$
Assertion	:	A hollow metallic closed container maintained at
7.6501.001	•	a uniform temperature can act as a source of black body radiation.
Reason	:	All metals acts as a black body
		[A11MS 1996]
Assertion	:	If the temperature of a star is doubled then the rate of loss of heat from it becomes 16 times.

10.	Assertion	:	The radiation from the sun's surface varies as the fourth power of its absolute temperature.
	Reason	:	The sun is not a black body. [AIIMS 1999]
n.	Assertion	:	Blue star is at high temperature than red star.
	Reason	:	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
12.	Assertion	:	The S.I. unit of thermal conductivity is watt $m K$.
	Reason	:	Thermal conductivity is a measure of ability of the material to allow the passage of heat through it.
13.	Assertion	:	A brass tumbler feels much colder than a wooden tray on a chilly day.
	Reason	:	The thermal conductivity of brass is less than that of wood.
14.	Assertion	:	Like light radiations, thermal radiations are also electromagnetic radiation.
	Reason	:	The thermal radiations require no medium for propagation.
15.	Assertion	:	Snow is better insulator than ice.
	Reason	:	Snow contain air packet and air is good insulator of heat.
16.	Assertion	:	Water can be boiled inside satellite by convection.
	Reason	:	Convection is the process in which heat is transmitted from a place of higher temperature to a place of lower temperature by means of particles with their migrations from one place to another.
17.	Assertion	:	The absorbance of a perfect black body is unity.
	Reason	:	A perfect black body when heated emits radiations of all possible wavelengths at that temperature.
18.	Assertion	:	A man would feel iron or wooden balls equally hot at $98.4^{\circ}F$.
	Reason	:	At 98.4° F both iron and wood have same thermal conductivity.
19.	Assertion	:	As temperature of a black body is raised, wavelength corresponding to maximum energy reduces.
	Reason	:	Higher temperature would mean higher energy and hence higher wavelength.
20.	Assertion	:	All black coloured objects are considered black bodies.
	Reason	:	Black colour is a good absorber of heat.
21.	Assertion	:	Greater is the coefficient of thermal conductivity of a material, smaller is the thermal resistance of a rod of that material.
	Reason	:	Thermal resistance is the ratio of temperature difference between the ends of the conductor and rate of flow of heat.
22.	Assertion	:	Radiation is the speediest mode of heat transfer.
	Reason	:	Radiation can be transmitted in zig-zag motion.
23.	Assertion	:	Two thin blankets put together are warmer than a single blanket of double the thickness.

	Reason	:	Thickness increases because of air layer enclosed between the two blankets.
24.	Assertion	:	Animals curl into a ball, when they feel very cold.
	Reason	:	Animals by curling their body reduces the surface area.

Answers

Conduction

1	а	2	d	3	d	4	а	5	d
6	d	7	d	8	d	9	c	10	d
11	с	12	a	13	a	14	b	15	d
16	b	17	c	18	с	19	a	20	a
21	a	22	a	23	b	24	d	25	a
26	b	27	b	28	d	29	d	30	b
31	b	32	C	33	b	34	b	35	a
36	d	37	d	38	b	39	a	40	C
41	b	42	C	43	C	44	b	45	C
46	а	47	C	48	b	49	b	50	а
51	c	52	b	53	b	54	C	55	a
56	a	57	a	58	C	59	C	60	a
61	C	62	d	63	b	64	b	65	b
66	C	67	b	68	b				

	Convection										
1	с	2	а	3	с	4	а	5	b		
6	а	7	С	8	b	9	а	10	d		
11	а	12	С	13	С						

Radiation (General, Kirchoff's law, Black body)

1	b	2	a	3	с	4	d	5	d
6	с	7	d	8	d	9	С	10	b
11	b	12	а	13	с	14	а	15	d
16	b	17	а	18	b	19	b	20	C
21	b	22	С	23	С	24	а	25	b
26	b	27	а	28	С	29	а	30	d
31	d	32	С	33	а	34	С	35	а
36	d	37	С	38	b				

Radiation (Wein's law)

1	а	2	C	3	d	4	c	5	а
6	с	7	d	8	с	9	С	10	b
11	а	12	b	13	b	14	C	15	b
16	а	17	b	18	а	19	b	20	а

21	C	22	a	23	b	24	b	25	с
26	b	27	b	28	b	29	а	30	b

Radiation (Stefan's law)

1	C	2	C	3	а	4	а	5	d
6	а	7	С	8	b	9	b	10	b
11	b	12	C	13	С	14	С	15	C
16	b	17	d	18	d	19	С	20	d
21	d	22	d	23	а	24	d	25	d
26	а	27	а	28	b	29	а	30	а
31	d	32	d	33	d	34	С	35	а
36	с	37	с	38	с	39	а	40	С
41	b	42	d	43	С	44	d	45	а
46	b	47	а	48	а	49	а	50	а
51	а	52	d	53	b	54	b	55	b
56	c								

Radiation (Newton's Law of Cooling)

1	b	2	С	3	а	4	а	5	b
6	С	7	С	8	С	9	d	10	b
11	b	12	d	13	С	14	С	15	d
16	С	17	а	18	b	19	С	20	b
21	а	22	b	23	d	24	С	25	b
26	b	27	d	28	d	29	а	30	b
31	d	32	d	33	а	34	С	35	а
36	b	37	b						

Critical Thinking Questions

1	a	2	b	3	d	4	C	5	b
6	а	7	а	8	b	9	b	10	а
11	а	12	b	13	С	14	b	15	ab
16	d	17	b	18	С	19	b	20	b
21	d	22	а	23	С	24	а	25	C
26	а	27	С	28	С	29	d	30	b
31	d	32	b	33	а	34	С	35	d
36	а	37	C						

Graphical Questions

1	с	2	b	3	d	4	c	5	с
6	b	7	а	8	d	9	b	10	a
11	C	12	C	13	b	14	d	15	C
16	b	17	b						

Assertion & Reason

1	а	2	с	3	b	4	с	5	е
6	а	7	d	8	С	9	b	10	C

Answers and Solutions

Conduction

- 1. (a) Cu is better conductor than Al and Ag is better conductor than Cu. Hence conductivity in increasing order is Al < Cu < Ag.
- 2. (d) $\frac{Q}{t} = \frac{KA \Delta \theta}{l} \Rightarrow \frac{Q}{t} \propto \frac{A}{l} \propto \frac{r^2}{l}$ $\therefore \frac{r^2}{l}$ is maximum in option (d), hence it will conduct more heat.
- 3. (d) $\frac{Q}{t} = \frac{KA \Delta \theta}{l} \Rightarrow \frac{Q}{t} \propto \frac{A}{l} \propto \frac{d^2}{l}$ (*d* = Diameter of rod) $\Rightarrow \frac{(Q/t)_1}{(Q/t)_2} = \left(\frac{d_1}{d_2}\right)^2 \times \frac{l_2}{l_1} = \left(\frac{1}{2}\right)^2 \times \left(\frac{1}{2}\right) = \frac{1}{8}$
- **4.** (a) $\frac{Q}{t} = \frac{KA \Delta \theta}{l} = \frac{\Delta \theta}{(l / KA)} = \frac{\Delta \theta}{R}$ (*R* = Thermal resistance)

$$\Rightarrow t \propto R$$
 ($\because Q$ and $\Delta \theta$ are same)

$$\Rightarrow \frac{t_P}{t_S} = \frac{R_P}{R_S} = \frac{R/2}{2R} = \frac{1}{4} \Rightarrow t_P = \frac{t_S}{4} = \frac{4}{4} = 1 \text{ min}$$

(Series resistance $R_S = R_1 + R_2$ and parallel resistance

$$R_P = \frac{R_1 R_2}{R_1 + R_2} \,)$$

- 5. (d) For cooking utensils, low specific heat is preferred for it's material as it should need less heat to raise it's temperature and it should have high conductivity, because, it should transfer heat quickly.
- 6. (d) In steady state there is no absorption of heat in any position. Heat passes on or is radiated from it's surface. Therefore, in steady state the temperature of the body does not change with time but can be different at different points of the body.
- 7. (d) It is the property of material.
- 8. (d) Because steady state has been reached.

9. (c)
$$\frac{Q_1}{t} = \frac{KA(90-60)}{0.6} = 50 \ KA$$

and $\frac{Q_2}{t} = \frac{KA(150-110)}{0.8} = 50 \ KA$
10. (d) Given $A_1 = A_2$ and $\frac{K_1}{K_2} = \frac{5}{4}$

$$R_1 = R_2 \implies \frac{l_1}{K_1 A} = \frac{l_2}{K_2 A} \implies \frac{l_1}{l_2} = \frac{K_1}{K_2} = \frac{5}{4}.$$

11. (c)
$$\frac{\Delta Q}{\Delta t} = \frac{KA \Delta \theta}{\Delta x} \Rightarrow$$
 Thermal gradient $\frac{\Delta \theta}{\Delta x}$
 $= \frac{(\Delta Q / \Delta t)}{KA} = \frac{10}{0.4} = 25^{\circ}C / cm$

•

13.

12. (a) It is given that
$$\frac{K_1}{K_2} = \frac{1}{3} \implies K_1 = K$$
 then $K_2 = 3K$

the temperature of the junction in contact

$$\theta = \frac{K_1\theta_1 + K_2\theta_2}{K_1 + K_2} = \frac{1 \times 100 + 3 \times 0}{1 + 3} = \frac{100}{4} = 25^{\circ}C$$

$$Q \xrightarrow{\text{Junction temperature } \theta}$$

$$Q \xrightarrow{\text{Junction tempe$$

are some so
$$Kt = \text{constant} \Rightarrow \frac{K_1}{K_2} = \frac{t_1}{t_2} = \frac{30}{20} = \frac{3}{2} = 1.5$$

14. (b)
$$\left(\frac{Q}{t}\right)_1 = \frac{K_1 A_1 (\theta_1 - \theta_2)}{l}$$
 and $\left(\frac{Q}{t}\right)_2 = \frac{K_2 A_2 (\theta_1 - \theta_2)}{l}$
given $\left(\frac{Q}{t}\right)_1 = \left(\frac{Q}{t}\right)_2 \Rightarrow K_1 A_1 = K_2 A_2$

15. (d) In variable state
$$\frac{Q}{t} \propto K$$
 and $\frac{Q}{t} \propto \frac{1}{\rho c} \Rightarrow \frac{Q}{t} \propto \frac{K}{\rho c}$

(K = thermal conductivity, ρ = density, c = specific heat)

16. (b)
$$K_1 : K_2 = l_1^2 : l_2^2 \Rightarrow \frac{l_1}{l_2} = \sqrt{\frac{K_1}{K_2}} = \sqrt{\frac{10}{9}} = \frac{\sqrt{10}}{3}$$

17. (c) $\frac{Q}{t} = \frac{KA(\Delta\theta)}{l} \Rightarrow 50 = \frac{5 \times 20 \ K}{0.4} \Rightarrow K = \frac{1}{5} = 0.2$

18. (c)

19. (a) Thermal resistance

$$= \frac{l}{KA} = \left[\frac{L}{MLT^{-3}K^{-1} \times L^{2}}\right] = [M^{-1}L^{-2}T^{3}K]$$

- 20. (a) When a piece of glass is heated, due to low thermal conductivity it does not conduct heat fast. Hence unequal expansion of it's layers crack the glass.
- 21. (a) In series both walls have same rate of heat flow. Therefore

$$\frac{dQ}{dt} = \frac{K_1 A(T_1 - \theta)}{d_1} = \frac{K_2 A(\theta - T_2)}{d_2} \qquad T_1 \qquad \theta$$

$$\Rightarrow K_1 d_2(T_1 - \theta) = K_2 d_1(\theta - T_2)$$

$$\Rightarrow \theta = \frac{K_1 d_2 T_1 + K_2 d_1 T_2}{K_1 d_2 + K_2 d_1} \qquad K_1 \theta + K_2 \theta_2^{\mathsf{loc}} \quad d \to \mathsf{c}_2 \to \mathsf{c}_2$$

22. (a) Temperature of interface
$$\theta = \frac{K_1 \theta_1 + K_2 \theta_2}{K_1 + K_2}$$

$$(: \frac{K_1}{K_2} = \frac{1}{4} \Longrightarrow \text{ If } K = K \text{ then } K = 4K)$$
$$\Rightarrow \theta = \frac{K \times 0 + 4K \times 100}{5 K} = 80^{\circ}C$$

23. (b)
$$\frac{\theta_1 - \theta_2}{l} = 80 \Rightarrow \frac{30 - \theta_2}{0.5} = 80 \Rightarrow \theta_2 = -10^{\circ} C$$

24. (d)
$$\frac{dQ}{dt} = -KA \frac{d\theta}{dx}$$
; when $K = \infty$, $\frac{d\theta}{dx} = 0$

i.e. θ is independent of *x i.e.* constant or uniform.

- (a) Air is poor conductor of heat.
- **26.** (b)
- **27.** (b)

25.

28. (d) Let the heat transferred be Q.

37.

38.

When rods are joined lengthwise, $Q = \frac{KA\Delta\theta}{2l}t$ (ii)

From equation (i) and (ii) we get $t = 48 \ s$

29. (d)
$$\frac{Q}{t} = \frac{KA\Delta\theta}{l} \Rightarrow \frac{K_A}{K_B} = \frac{A_B}{A_A} = \left(\frac{r_B}{r_B}\right)^2 = \frac{1}{4} \Rightarrow K_A = \frac{K_B}{4}$$

30. (b) Thermal conductivity of composite plate

$$K_{eq} = \frac{2K_1K_2}{K_1 + K_2} = \frac{2 \times 2 \times 3}{2 + 3} = \frac{12}{5} = 2.4$$

31. (b)
$$Q \propto \frac{A}{l} \propto \frac{r^2}{l} \Rightarrow \frac{Q_2}{Q_1} = \frac{r_2^2}{r_1^2} \times \frac{l_1}{l_2}$$

 $\Rightarrow \frac{Q_2}{Q_1} = \frac{4}{1} \times \frac{1}{2} \Rightarrow Q_2 = 2Q_1$

32. (c)
$$\frac{Q}{At} = K \frac{\Delta \theta}{l} \Rightarrow K \frac{\Delta \theta}{l} = \text{constant} \Rightarrow \frac{\Delta \theta}{l} \propto \frac{1}{K}$$

Hence If $K_c > K_m > K_g$, then
 $\left(\frac{\Delta \theta}{l}\right)_c < \left(\frac{\Delta \theta}{l}\right)_m < \left(\frac{\Delta \theta}{l}\right)_g \Rightarrow X_c < X_m < X_g$
because higher K implies lower value of the ter

because higher ${\it K}$ implies lower value of the temperature gradient.

33. (b) In series
$$R_{eq} = R_1 + R_2 \Rightarrow \frac{2l}{K_{eq}A} = \frac{l}{K_1A} + \frac{l}{K_2A}$$

$$\Rightarrow \frac{2}{K_{eq}} = \frac{1}{K_1} + \frac{1}{K_2} \Rightarrow K_{eq} = \frac{2K_1K_2}{K_1 + K_2}$$

34. (b)
$$\frac{dQ}{dt} = KA \frac{d\theta}{dl} \Rightarrow \frac{dQ}{dt} \propto \frac{d\theta}{dl}$$
 (Temperature gradient)

35. (a)
$$\frac{dQ}{dt} = \frac{K(\pi r^2)d\theta}{dl} \Rightarrow \frac{\left(\frac{dQ}{dt}\right)_s}{\left(\frac{dQ}{dt}\right)_l} = \frac{K_s \times r_s^2 \times l_l}{K_l \times r_l^2 \times l_s} = \frac{1}{2} \times \frac{1}{4} \times \frac{2}{1}$$
$$\Rightarrow \left(\frac{dQ}{dt}\right)_s = \frac{\left(\frac{dQ}{dt}\right)_l}{4} = \frac{4}{4} = 1$$
36. (d)
$$Q = \frac{KA(\Delta\theta)t}{l}$$

 $\because \ Q \ {\rm and} \ \Delta \theta \ {\rm are \ same \ for \ both \ spheres \ hence}$

$$K \propto \frac{l}{At} \propto \frac{l}{r^2 t} \Rightarrow \frac{K_{\text{larger}}}{K_{\text{smaller}}} = \frac{l}{l_s} \times \left(\frac{r_s}{r_l}\right)^2 \times \frac{t_s}{t_l}. \text{ It is given}$$

that $r_l = 2r_s, \ l_l = \frac{1}{4} l_s$ and $t_1 = 25 \text{ min}, \ t_s = 16 \text{ min}.$
 $\Rightarrow \frac{K_{\text{larger}}}{K_{\text{smaller}}} = \left(\frac{1}{4}\right) \left(\frac{1}{2}\right)^2 \times \frac{16}{25} = \frac{1}{25}$
(d) $\frac{Q}{t} = \frac{KA(\Delta\theta)}{l} \Rightarrow \frac{Q}{t} \propto \frac{A}{l} \propto \frac{r^2}{l}$
 $\Rightarrow \frac{(Q/t)_1}{(Q/t)_2} = \left(\frac{r_1}{r_2}\right)^2 \times \frac{l_2}{l_1} = \left(\frac{2}{1}\right)^2 \times \left(\frac{4}{1}\right) = \frac{16}{1}$
(b) Temperature of interface $\theta = \frac{K_1\theta_1 + K_2\theta_2}{K_1 + K_2}$
where $K = 2K$ and $K = 3K$ $\left(\because \frac{K_1}{K_2} = \frac{2}{3}\right)$

$$\Rightarrow \theta = \frac{2K \times 100 + 3K \times 0}{2K + 3K} = \frac{200K}{5K} = 40^{\circ}C$$

39. (a)
$$\frac{K_1}{K_2} = \frac{l_1^2}{l_2^2}$$
 \therefore $K_2 = \frac{K_1 l_2^2}{l_1^2} = \frac{0.92 \times (4.2)^2}{(8.4)^2} = 0.23$

(c) Mud is bad conductor of heat. So it prevents the flow of heat 40. between surroundings and inside.

41. (b) Temperature gradient
$$=\frac{100-20}{20}=4^{\circ}C/cm$$

temperature at centre = $100 - 4 \times 10 = 60^{\circ}C$

42. (c) Temperature of interface $\theta = \frac{K_1 \theta_1 l_2 + K_2 \theta_2 l_1}{K_1 l_2 + K_2 l_1} = \frac{K \times 0 \times 2 + 3K \times 100 \times 1}{K \times 2 + 3K \times 1}$

$$=\frac{300K}{5K}=60^{\circ}C$$

43. (c)
$$\Delta \theta = \frac{Q \times l}{KAt} = \frac{4000 \times 0.1}{400 \times 10^{-2}} = 100^{\circ} C$$

- Heat passes quickly from the body into the metal which leads 44. (b) to a cold feeling.
- 45. Heat energy always flow from higher temperature to lower (c) temperature. Hence, temperature difference w.r.t. length (temperature gradient) is required to flow heat from one part of a solid to other part.
- When the temperature of an object is equal to that of human 46. (a) body, no heat is transferred from the object to body and vice versa, Therefore block of wood and block of metal feel equally cold and hot if they have same temperature as human body.

48. (b) Temperature of water just below the lower surface of ice layer is 0°*C*.

49. (b)
$$\frac{Q}{t} = \frac{KA(\theta_1 - \theta_2)}{l} = \frac{100 \times 100 \times 10^{-4}(100 - 0)}{1}$$

 $\Rightarrow \frac{Q}{t} = 100 \text{ Joule / sec} = 6 \times 10^3 \text{ Joule / min}$

(a) Temperature of interface $\theta = \frac{K_1\theta_1l_2 + K_2\theta_2l_1}{K_1l_2 + K_2l_1}$ 50.

> It is given that $K_{Cu} = 9K_S$. So if $K_S = K_1 = K$ then $K_{Cu} = K_2 = 9K$

$$\Rightarrow \theta = \frac{9K \times 100 \times 6 + K \times 0 \times 18}{9K \times 6 + K \times 18} = \frac{5400K}{72K} = 75^{\circ}C$$

51. (c)
$$\frac{Q}{t} = \frac{KA(\theta_1 - \theta_2)}{l} \Rightarrow \frac{Q}{t} \propto \frac{A}{l} \propto \frac{r^2}{l}$$

[As $(\theta_1 - \theta_2)$ and *K* are constants]

$$\Rightarrow \frac{\left(\frac{Q}{t}\right)_1}{\left(\frac{Q}{t}\right)_2} = \frac{r_1^2}{r_2^2} \times \frac{l_2}{l_1} = \frac{4}{9} \times \frac{2}{1} = \frac{8}{9}$$

(b) In parallel combination equivalent conductivity 52.

$$K = \frac{K_1 A_1 + K_2 A_2}{A_1 + A_2} = \frac{K_1 + K_2}{2} \text{ (As } A_1 = A_2 \text{)}$$

53. (b)
$$Q = \frac{KA(\theta_1 - \theta_2)}{l}t \implies K_1 t_1 = K_2 t_2 \implies \frac{K_1}{K_2} = \frac{t_2}{t_1} = \frac{35}{20} = \frac{7}{4}$$

Transmission of Heat 733

(As *Q*, *I*, *A* and $(\theta_1 - \theta_2)$ are same)

(c) A lake cools from the surface down. Above $4^{\circ}C$, the cooled 54. water at the surface flows to the bottom because of it's greater density. But when the surface temperature drops below $4^{\circ}C$ (here it is $2^{\circ}C$), the water near the surface is less dense than the warmer water below. Hence the downward flow ceases, the water at the bottom remains at $4^{\circ}C$ until nearly the entire lake, is frozen.

55. (a) Temperature gradient
$$\frac{d\theta}{dx} = \frac{(125-25)^{\circ}C}{50 \ cm} = 2^{\circ}C \ / \ cm$$

56. (a)
$$K \propto l^2 \Rightarrow \frac{K_1}{K_2} = \frac{l_1^2}{l_2^2} = \left(\frac{10}{25}\right)^2 = \frac{1}{6.25}$$

Thermal resistance of *Cu* is lesser than the thermal resistance 57. (a) of steel. Hence only in option (a) thermal resistance is minimum so heat current is maximum.

58. (c) At steady state, rate of heat flow for both blocks will be same
i.e.,
$$\frac{K_1 A(\theta_1 - \theta)}{l_1} = \frac{K_2 A(\theta - \theta_2)}{l_2} \text{ (given } l_1 = l_2 \text{)}$$

$$\Rightarrow K_1 A(\theta_1 - \theta) = K_2 A(\theta - \theta_2) \Rightarrow \theta = \frac{K_1 \theta_1 + K_2 \theta_2}{K_1 + K_2}$$

$$\theta_1 \qquad \theta \qquad \theta_2$$

$$K_1 = \frac{k_1 \theta_2}{k_1 + k_2}$$

59. (c)
$$K = \frac{2K_1 K_2}{K_1 + K_2} = \frac{2K_1 2K}{K + 2K} = \frac{4}{3}K$$

60. (a) Temperature of interface
$$\theta = \frac{K_1 U_1 + K_2 U_2}{K_1 + K_2}$$

It is given that $\frac{K_1}{K_1} = \frac{5}{4} \implies K_1 = 5K$ and $K_2 = 3K$

$$\theta = \frac{5K \times 100 + 3K \times 20}{5K + 3K} = \frac{560K}{8K} = 70^{\circ}C$$

61. (c) In winter, the temperature of surrounding is low compared to the body temperature $(37.4^{\circ} C)$. Since woolen clothes are bad conductors of heat, so they keep the body warm.

77 0

62. (d) Temperature of interface
$$T = \frac{K_1 \theta_1 + K_2 \theta_2}{K_1 + K_2}$$

$$= \frac{300 + 200}{300 + 200} = 60^{\circ}C$$

63. (b) Rate of heat flow
$$\left(\frac{Q}{t}\right) = \frac{k\pi r^2 (\theta_1 - \theta_2)}{L} \propto \frac{r^2}{L}$$

 $\therefore \frac{Q_1}{Q_2} = \left(\frac{r_1}{r_2}\right)^2 \left(\frac{l_2}{l_1}\right) = \left(\frac{1}{2}\right)^2 \times \left(\frac{2}{1}\right) = \frac{1}{2} \Rightarrow Q_2 = 2Q_1$

64. (b)
$$\frac{Q}{t} = \frac{KA\Delta\theta}{l} \Rightarrow 6000 = \frac{200 \times 0.75 \times \Delta\theta}{1}$$

 $\therefore \Delta\theta = \frac{6000 \times 1}{200 \times 0.75} = 40^{\circ}C$

65. (b) In series rate of flow of heat is same θ_{1} θ θ_{2} В Α K_A K_B

$$\Rightarrow \frac{K_A A(\theta_1 - \theta)}{l} = \frac{K_B A(\theta - \theta_2)}{l}$$

$$\Rightarrow 3K_B(\theta_1 - \theta) = K_B(\theta - \theta_2)$$

$$\Rightarrow 3(\theta_1 - \theta) = (\theta - \theta_2)$$

$$\Rightarrow 3\theta_1 - 3\theta = \theta - \theta_2 \Rightarrow 4\theta_1 - 4\theta = \theta_1 - \theta_2$$

$$\Rightarrow 4(\theta_1 - \theta) = (\theta_1 - \theta_2)$$

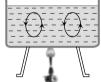
$$\Rightarrow 4(\theta_1 - \theta) = 20 \Rightarrow (\theta_1 - \theta) = 5^{\circ}C$$

66. (c) Let θ be temperature middle point *C* and in series rate of heat flow is same $\Rightarrow K(2A)(100 - \theta) = KA(\theta - 70)$

 $\Rightarrow 200 - 2\theta = \theta - 70 \Rightarrow 3\theta = 270 \Rightarrow \theta = 90^{\circ}C$

67. (b) Thermal resistances are same

$$\Rightarrow \frac{l_1}{K_1 A_1} = \frac{l_2}{K_2 A_2} \Rightarrow \frac{l_1}{K_1} = \frac{l_2}{K_2} (\because A_1 = A_2)$$
$$\Rightarrow \frac{l_1}{l_2} = \frac{K_1}{K_2} = \frac{5}{3}$$


68. (b) $\frac{Q}{t} \propto \frac{r^2}{l}$; from the given options, option (b) has higher value of $\frac{r^2}{l}$.

Convection

- (c) Convection significantly transferring heat upwards (Gravity effect).
- **3.** (c) No flow of heat by convection in vacuum.
- **4.** (a)
- (b) Density of hot air is lesser than the density of cold air so hot air rises up.
- **6.** (a)

8.

 (c) In convection hot particles moves up ward (due to low density) and light particle moves downward (due to high density).

- (a) Natural convection arises due to difference of density at two places and is a consequence of gravity.
- **10.** (d)

(b)

 (a) Convection is not possible in weightlessness. So the liquid will be heated through conduction.

12. (c) In forced convection rate of loss of heat
$$\frac{Q}{t} \propto A(T - T_0)$$

13. (c)

Radiation (General, Kirchoff's law, Black body)

- (b) Because of uneven surfaces of mountains, most of it's parts remain under shadow. So, most of the mountains. Land is not heated up by sun rays. Besides this, sun rays fall slanting on the mountains and are spread over a larger area. So, the heat received by the mountains top per unit area is less and they are less heated compared to planes (Foot).
- (a) The velocity of heat radiation in vacuum is equal to that of light.

3.	(c)	Radiation is the fastest mode of heat transfer.
4.	(d)	A thermopile is a sensitive instrument, used for detection of heat radiation and measurement of their intensity.
5.	(d)	The polished surface reflects all the radiation.
6.	(c)	Heat radiations are electromagnetic waves of high wavelength.
7.	(d)	When element and surrounding have same temperature. There will be no temperature difference, hence heat will not flow from the filament and it's temperature remains constant.
8.	(d)	Every body at all time, at all temperatures emits radiation
		(except at $T=0$). The radiation emitted by the human body is in the infra-red region.
9.	(c)	
10.	(b)	Infrared radiations are detected by pyrometer.
n.	(b)	
12.	(a)	In vacuum heat flows by the radiation mode only.
13.	(c)	Good absorbers are always good emitters of heat.
14.	(a)	A perfectly black body is a good absorber of radiations falls on it. So it's absorptive power is 1.
15.	(d)	According to Kirchoff's law in spectroscopy. If a substance emit certain wavelengths at high temperature, it absorbs the same wavelength at comparatively lower temperature.
16.	(b)	A person with dark skin absorbs more heat radiation and feels more heat. It also radiates more heat and feels more cold.
17.	(a)	For a black body emissivity = absorptive power.
18.	(b)	Highly polished mirror like surfaces are good reflectors, but not

- good radiators.19. (b) Black cloth is a good absorber of heat, therefore ice covered by black cloth make more as compared to that covered by white
- black cloth melts more as compared to that covered by white cloth.20. (c) According to Kirchoff's law, the ratio of emissive power to
 - absorptive power is same for all bodies is equal to the emissive power to power of a perfectly black body *i.e.*,

$$\left(\frac{e}{a}\right)_{body} = E_{\text{Blackbody}}$$
 for a particular wave length

$$\left(\frac{2\lambda}{d_{\lambda}}\right)_{\text{body}} = (E_{\lambda})_{\text{Blackbody}} \implies e_{\lambda} = a_{\lambda}E_{\lambda}$$

21. (b) Absorption power =
$$\frac{\text{Heat absorbed}}{\text{Total heat given}}$$

- Because Planck's law explains the distribution of energy
- (c) Because Planck's law explains the distribution of energ correctly at low temperature as well as at high temperature.
- **23.** (c)

22.

24.

- (a) The black spot on heating absorbs radiations and so emits them in the dark room while the polished shining part reflects radiation and absorbs nothing and so does not emit radiations and becomes invisible in the dark.
- **25.** (b)
- 26. (b) When the light emitted from the sun's photosphere passes through it's outer part Chromosphere, certain wave lengths are absorbed. In the spectrum of sunlight, a large number of dark lines are seen called Fraunhoffer lines.
- 27. (a) As for a black body rate of absorption of heat is more. Hence thermometer A shows faster rise in temperature but finally both will acquire the atmospheric temperature.
- **28.** (c) According to Kirchoff's law, a good emitter is also a good absorber.
- 29. (a) Red and green colours are complementary to each other. When red glass is heated it absorbs green light strongly, hence

according to Kirchoff's law, the emissive power of red glass should be maximum for green light. That's why when this heated red glass is taken in dark room it strongly emits green light and looks greenish.

- 30. (d) Black and rough surfaces are good absorber that's why they emit well. (Kirchoff's law).
- **31.** (d)
- 32. (c) When light incident on pin hole, enters into the box and suffers successive reflection at the inner wall. At each reflection some energy is absorbed. Hence the ray once it enters the box can never come out and pin hole acts like a perfect black body.
- 33. (a) Initially black body absorbs all the radiant energy incident on it, So it is the darkest one. Black body radiates maximum energy if all other condition are same. So when the temperature of the black body becomes equal to the temperature of furnace it will be brightest of all.
- 34. (c) Open window behaves like a perfectly black body.
- **35.** (a) Ordinary glass prism (crown, flint) absorbs the infrared radiation but rock salt prism transmit them. Hence it is used to obtain the spectrum of infrared radiation.
- 36. (d) A good absorber is a good emitter hence option (a) is wrong. Every body stops absorbing and emitting radiation at 0 K hence option (b) is wrong.

The energy of radiation emitted from a black body is not same for all wavelength hence option $\left(c\right)$ is wrong.

Plank's law relates the wavelength (λ) and temperature (T)

according to the relation
$$E_{\lambda}d_{\lambda} = \frac{8\pi hc}{\lambda^5} \frac{1}{[e^{hc/kT} - 1]} d_{\lambda}$$
. Hence

option (d) is correct.

37. (c) When blue glass is heated at high temperature, it absorbs all the radiation of, higher wavelength except blue. If it is taken inside a dark room, it emits all the radiation of higher wavelength, hence it looks brighter red as compared to the red piece.

38. (b)

Radiation (Wein's law)

- **I.** (a)
- **2.** (c) According to Wein's law, $\lambda_m T = \text{constant}$

$$\lambda_r > \lambda_y > \lambda_b \Longrightarrow T_r < T_y < T_b \text{ or } T_A < T_C < T_B$$

3. (d)
$$\lambda_m T = \text{constant} \Rightarrow \frac{T_1}{T_2} = \frac{\lambda_2}{\lambda_1} \Rightarrow \frac{10^{-4}}{0.5 \times 10^{-5}} = 200$$

- **4.** (c) $\lambda_m T = \text{constant}$
- 5. (a) According to Wein's law $\lambda_m T = \text{constant}$, on heating up to ordinary temperatures, only long wavelength (red) radiation is emitted. As the temperature rises, shorter wavelengths are also emitted in more and more quantity. Hence the colour of radiation emitted by the hot wire shifts from red to yellow, then to blue and finally to white.
- **6.** (c) According to Wein's displacement law.

7. (d)
$$\lambda_{m_1} T_1 = \lambda_{m_2} T_2 \Longrightarrow \lambda_{m_2} = \frac{\lambda_{m_1} T_1}{T_2} = 4.08 \times \frac{700}{1400} = 2.04 \, m$$

8. (c)
$$\lambda_{m_1} T_1 = \lambda_{m_2} T_2 \Longrightarrow \lambda_{m_2} = \frac{\lambda_{m_1} T_1}{T_2} = \frac{14 \times 200}{1000} = 2.8 \ \mu m$$

9. (c)
$$\frac{T_1}{T_2} = \frac{\lambda_{m_2}}{\lambda_{m_1}} = \frac{4800}{3600} \Rightarrow \frac{48}{36} = \frac{4}{3}$$

10. (b)
$$\lambda_{m_2} = \frac{T_1}{T_2} \times \lambda_{m_1} = \frac{1500}{2500} \times 5000 = 3000 \text{\AA}$$

 (a) At low temperature short wavelength radiation is emitted. As the temperature rise colour of emitted radiation are in the following order

 $Red {\rightarrow} Yellow {\rightarrow} Blue {\rightarrow} White \ (at \ highest \ temperature)$

- 12. (b) Similar to Q. 11
- 13. (b) The wavelength corresponding to maximum emission of radiation from the sun is $\lambda_{max} = 4753 \text{ Å}$ (close to the wavelength of violet colour of visible region). Hence if temperature is doubled λ_{\perp} is decreased $\left(\lambda_m \propto \frac{1}{T}\right)$ *i.e.* mostly ultraviolet radiations emits.

14. (c)
$$\frac{T_1}{T_2} = \frac{\lambda_{m_2}}{\lambda_{m_1}} = \frac{5.5 \times 10^5}{11 \times 10^5} = \frac{1}{2} \implies n = \frac{1}{2}$$
.

15. (b)
$$\therefore T = \frac{b}{\lambda_m} = \frac{2.93 \times 10^{-3}}{2.93 \times 10^{-10}} = 10^7 K$$

16. (a)
$$\therefore \frac{\lambda_{m_2}}{\lambda_{m_1}} = \frac{T_1}{T_2} \Rightarrow \lambda_{m_2} = \frac{2000}{2400} \times 4 = 3.33 \ \mu m_2$$

20.

29

(b) (a)

(a)

19. (b)
$$\lambda_{m_2} = \frac{T_1}{T_2} \times \lambda_{m_1} = \frac{2000}{3000} \times \lambda_{m_1} = \frac{2}{3} \lambda_{m_1} = \frac{2}{3} \lambda_{m_2}$$

21. (c)
$$\frac{T_2}{T_1} = \frac{\lambda_{m_1}}{\lambda_{m_2}} = \frac{1.75}{14.35} \Rightarrow T_2 = \frac{1.75}{14.35} \times 1640 = 200 K$$

22. (a)
$$\frac{\lambda_2}{\lambda_1} = \frac{T_1}{T_2} \Longrightarrow \lambda_2 = \frac{T_1}{T_2} \times \lambda_1 = \frac{900}{1200} \times 4 = 3 \mu m$$

23. (b)
$$\lambda_{m_2} = \frac{\lambda_{m_1} T_1}{T_2} = \frac{4800 \times 6000}{3000} = 9600 \text{\AA}$$

24. (b)
$$\frac{T_1}{T_2} = \frac{\lambda_{m_2}}{\lambda_{m_1}} = \frac{4200}{140} = \frac{30}{1}$$

25. (c)
$$\therefore \lambda_m T = \lambda'_m T' \implies \lambda_0 T = \lambda' \times 2T \implies \lambda' = \frac{\lambda_0}{2}$$

26. (b)
$$\lambda_m T = \lambda'_m T' \implies \frac{\lambda_m}{\lambda'_m} = \frac{T'}{T} = \frac{3000}{2000} = \frac{3}{2}$$

27. (b)
$$\lambda_{m_1}T = \lambda_{m_2}T_2 \implies 5.5 \times 10^{-7} \times 5500 = 11 \times 10^{-7} T$$

 $T = 550 \times 5K = 2750K$

$$\lambda_m T = b \text{ or } \lambda_m = \frac{b}{T} = \frac{0.0029}{5 \times 10^4} = 58 \times 10^{-9} m = 58 nm$$

(a) $\lambda_m = \frac{b}{T} \Longrightarrow T = \frac{b}{\lambda_m} = \frac{2.93 \times 10^{-3}}{4000 \times 10^{-10}} = 7325 K$

30. (b)
$$\frac{T_S}{T_N} = \frac{(\lambda_N)_{\text{max}}}{(\lambda_S)_{\text{max}}} = \frac{350}{510} = 0.69$$

Radiation (Stefan's law)

- 1. (c) $E \propto T^4$ (Stefan's law)
- 2. (c) Rate of heat loss $E = \sigma eA(T^4 T_0^4)$ = 5.67×10⁻⁸×0.4×200×10⁻⁴×[(273 + 527)⁴-(273 + 27)⁴] = 5.67×10⁻⁸×0.4×200×10⁻⁴×(800)⁴-(300)⁴=182*J/sec*

3. (a)
$$\frac{E_1}{E_2} = \left(\frac{T_1}{T_2}\right)^4 \Rightarrow \frac{E}{E_2} = \left(\frac{273+0}{273+273}\right)^4 \Rightarrow E_2 = 16 E.$$

4. (a)
$$E \propto T^4 \Rightarrow \frac{E_1}{E_2} = \frac{T^4}{T^4} \times 2^4 \Rightarrow E_2 = \frac{E}{16}$$

5. (d) $\frac{E_2}{E_1} = \left(\frac{T_2}{T_1}\right)^4 \Rightarrow \frac{2}{1} = \left(\frac{420 + 273}{T}\right)^4 = \left(\frac{673}{T}\right)^4$ $\Rightarrow T = 2^{1/4} \times 673 = 800K.$

6. (a)
$$\frac{E_2}{E_1} = \left(\frac{T_2}{T_1}\right)^4 = \left(\frac{273 + 727}{237 + 227}\right) = \frac{(1000)^4}{(500)^4} = 16 \implies E_2 = 80$$

7. (c)
$$\frac{E_2}{E_1} = \left(\frac{T_2}{T_1}\right)^4 \Rightarrow T_2 = \left(\frac{E_2}{E_1}\right)^{1/4} \times T_1 = (16)^{1/4} \times (273 + 127)$$

 $\Rightarrow T_1 = 800 \ K = 527^o \ C$

8. (b) In M.K.S. system unit of
$$\sigma$$
 is $\frac{J}{m^2 \times sec \times K^4}$
 $\Rightarrow 1 \frac{J}{m^2 \times sec \times K^4} = \frac{10^7 erg}{10^4 cm^2 \times sec \times K^4}$
 $= 10^3 \frac{erg}{cm^2 \times sec \times K^4}$

9. (b) For a block body rate of energy
$$\frac{Q}{t} = P = A \sigma T^4$$

$$\Rightarrow P \propto T^4 \Rightarrow \frac{P_1}{P_2} = \left(\frac{T_1}{T_2}\right)^4 = \left\{\frac{(273+7)}{(273+287)}\right\}^4 = \frac{1}{16}$$

10. (b)
$$E_2 = E_1 \frac{T_2^4}{T_1^4} = Q \times \frac{(273 + 151)^4}{(273 + 27)^4} = \left(\frac{424}{300}\right)^4 = 3.99Q \approx 4Q$$

n. (b)
$$\frac{E_1}{E_2} = \left(\frac{T_1}{T_2}\right)^4 = \left(\frac{727 + 273}{127 + 273}\right)^4 = \frac{(1000)^4}{(400)^4} = \frac{10^4}{4^4} = \frac{625}{16}$$

12. (c)
$$E = \sigma T^4 \Rightarrow 5.6 \times 10^{-8} \times T^4 = 1$$

 $\Rightarrow T = \left[\frac{1}{5.6 \times 10^{-8}}\right]^{1/4} = 65 K$

13. (c) According to Stefen's law $E = \sigma \epsilon A T^4$ $\Rightarrow \frac{1.58 \times 10^5 \times 4.2}{\epsilon^2} = 5.6 \times 10^{-8} \times 10^{-4} \times 0.8 \times T^4$

$$60 \times 60$$
$$T \approx 2500 K$$

14. (c) Total energy radiated from a body
$$Q = A \, \varpi T^4 t$$

 $\Rightarrow Q \propto A T^4 \propto r^2 T^4$ ($\therefore A = 4 \pi r^2$)
 $\Rightarrow \frac{Q_P}{Q_Q} = \left(\frac{r_P}{r_Q}\right)^2 \left(\frac{T_P}{T_Q}\right)^4 = \left(\frac{8}{2}\right)^2 \left\{\frac{(273+127)}{(273+527)}\right\}^4 = 1$

15. (c) Rate of energy $\frac{Q}{t} = P = A \, \varpi T^4 \implies P \propto T^4$ $\implies \frac{P_1}{P_2} = \left(\frac{T_1}{T_2}\right)^4 = \left(\frac{927 + 273}{127 + 273}\right)^4 \implies P_1 = 405 W$

16. (b) The rate of radiated energy
$$\frac{Q}{t} = P = A \, \varepsilon \sigma T^4$$

$$\Rightarrow 1134 = 5.67 \times 10^{-8} \times (0.1)^2 T^4 \Rightarrow T = 1189 K$$

17. (d)
$$Q \propto T^4 \Rightarrow \frac{H_A}{H_B} = \left(\frac{273 + 727}{273 + 327}\right)^4 = \left(\frac{10}{6}\right)^4 = \left(\frac{5}{3}\right)^4 = \frac{625}{81}$$

18. (d)
$$(Q)_{Blackbody} = A \sigma T^4 t \implies Q \propto T$$

$$\Rightarrow Q_2 = Q_1 \left(\frac{T_2}{T_1}\right)^4 = 10 \left(\frac{273 + 327}{273 + 27}\right)^4 = 10 \left(\frac{600}{300}\right)^4 = 160J$$

19. (c)
$$\frac{E_2}{E_1} = \left(\frac{T_2}{T_1}\right)^4 \Rightarrow \frac{E_2}{20} = \left(\frac{2T}{T}\right)^4 = 16 \Rightarrow E_2 = 320 \ kcal/m^2 \ min.$$

20. (d) Radiated power by blackbody
$$P = \frac{Q}{t} = A \sigma T^4$$

$$\Rightarrow P \propto AT^4 \propto r^2 T^4 \Rightarrow \frac{P_1}{P_2} = \left(\frac{r_1}{r_2}\right)^2 \left(\frac{T_1}{T_2}\right)^4$$
$$\Rightarrow \frac{440}{P_2} = \left(\frac{12}{6}\right)^2 \left(\frac{500}{1000}\right)^4 \Rightarrow P_2 = 1760 \, W \approx 1800 \, W$$

21. (d) Amount of energy radiated \propto (Temperature).

22. (d)
$$\frac{Q_1}{Q_2} = \left(\frac{T_1}{T_2}\right)^4 = \left(\frac{273 + 27}{273 + 927}\right)^4 = \left(\frac{1}{4}\right)^4 = \frac{1}{256}$$

23. (a)
$$\frac{E_2}{E_1} = \frac{T_2^4}{T_1^4} = \left(\frac{237 + 227}{273 + 27}\right)^4 = \left(\frac{600}{300}\right)^4 = 16$$

24. (d)
$$(Q)_{Blackbody} = A\sigma T^4 t \Rightarrow \frac{Q}{t} \propto P = A\sigma T^4$$

Breadth are halved so area becomes one fourth.

$$\Rightarrow \frac{P_1}{P_2} = \frac{A_1}{A_2} \times \left(\frac{T_1}{T_2}\right)^4 \Rightarrow \frac{A_1}{(A_1/4)} \times \left(\frac{273 + 327}{273 + 127}\right)$$
$$\Rightarrow P_2 = \frac{81}{64} E$$

25. (d) Power radiated
$$P \propto T^4 \Rightarrow \frac{P_1}{P_2} = \left(\frac{T_1}{T_2}\right)^4$$

$$\Rightarrow \frac{Q}{P_2} = \left(\frac{T}{3T}\right)^4 \Rightarrow P_2 = 81Q$$

26. (a) For black body, $P = A \, \omega \tau^4$. For same power $A \propto \frac{1}{\tau^4}$

$$\Rightarrow \left(\frac{r_1}{r_2}\right)^2 = \left(\frac{T_2}{T_1}\right)^4 \Rightarrow \frac{r_1}{r_2} = \left(\frac{T_2}{T_1}\right)^2$$
27. (a) $\frac{Q_2}{Q_1} = \left(\frac{T_2}{T_1}\right)^4 = \left(\frac{273 + 927}{273 + 327}\right)^4 = \left(\frac{1200}{600}\right)^4 = 16$

$$\Rightarrow Q = 32 \ KJ$$
28. (b) $\frac{Q_2}{Q_1} = \left(\frac{T_2}{T_1}\right)^4 \Rightarrow \frac{2}{1} = \left(\frac{T_2}{T_1}\right)^4$

$$\Rightarrow T_2^4 = 2 \times T_1^4 = 2 \times (273 + 727)^4 \Rightarrow T_2 = 1190K.$$
29. (a) $\frac{Q_1}{Q_2} = \frac{r_1^2 T_1^4}{r_2^2 T_2^4} = \frac{4^2}{1^2} \times \left(\frac{2000}{4000}\right)^4 = 1$

(a) According to Wein's law $\lambda T = \text{constant}$ 30.

$$\Rightarrow \lambda_{m_1} T_1 = \lambda_{m_2} T_2 \Rightarrow T_2 = \frac{\lambda_{m_1}}{\lambda_{m_2}} T_1 = \frac{\lambda_0}{3\lambda_0 / 4} \times T_1 = \frac{4}{3} T_1$$

Now
$$P \propto T^4 \Rightarrow \frac{P_2}{P_1} = \left(\frac{T_2}{T_1}\right)^4 \Rightarrow \frac{P_2}{P_1} = \left(\frac{4/3}{T_1}\right)^4 = \frac{256}{81}$$

(d) $E \propto T^4$ 31.

32. (d)
$$Q \propto T^4 \Rightarrow \frac{Q_1}{Q_2} = \left(\frac{T_1}{T_2}\right)^4$$

 $\Rightarrow \frac{Q_1}{Q_2} = \left(\frac{T}{T+T/2}\right)^4 = \frac{16}{81} \Rightarrow Q_2 = \frac{81}{16}Q_1$
% increase in energy $= \frac{Q_2 - Q_1}{Q_1} \times 100 = 400\%$

33. (d) If temperature of surrounding is considered then net loss of energy of a body by radiation $Q = A \, \mathcal{E}(T^4 - T_0^4) t \Rightarrow Q \propto (T^4 - T_0^4) \Rightarrow \frac{Q_1}{Q_2} = \frac{T_1^4 - T_0^4}{T_2^4 - T_0^4}$ $=\frac{(273+200)^4-(273+27)^4}{(273+400)^4-(273+27)^4}=\frac{(473)^4-(300)^4}{(673)^4-(300)^4}$ (c) $Q = A g \sigma T^4 \Rightarrow Q \propto A \propto r^2$ (:: T-constant)

34. (c)
$$Q = A \, \varpi \sigma T^4 \Rightarrow Q \propto A \propto r^2$$
 ($\because T = \text{constant}$)
 $\Rightarrow \frac{Q_1}{Q_2} = \frac{r_1^2}{r_2^2} = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$
35. (a) $\frac{Q_2}{Q_1} = \frac{T_2^4}{T_1^4} = \left(\frac{273 + 527}{273 + 127}\right)^4 = \left(\frac{800}{400}\right)^4 \Rightarrow Q_2 = 16 \frac{cal}{cm^2 \times s}$
36. (c) For a black body $\frac{Q}{t} = P = A \, \sigma T^4$
 $\Rightarrow \frac{P_2}{P_1} = \left(\frac{T_2}{T_1}\right)^4 \Rightarrow \frac{P_2}{20} = \left(\frac{273 + 727}{273 + 227}\right)^4$
 $\Rightarrow \frac{P_2}{20} = (2)^4 \Rightarrow P_2 = 320W$

37. (c) Energy radiated per sec
$$\frac{Q}{t} = P = A \varepsilon \sigma T^4$$

$$P \propto r^{2}T^{4} \Rightarrow \frac{P_{2}}{P_{1}} = \frac{r_{2}}{r_{1}^{2}} \cdot \frac{I_{2}}{T_{1}^{4}} = \frac{4}{1^{2}} \times \left(\frac{2000}{4000}\right) = 1$$
38. (c) $Q \propto AT^{4} \propto r^{2}T^{4} \Rightarrow \frac{Q_{\text{star}}}{Q_{\text{sun}}} = \frac{r^{2} \operatorname{star} \cdot T^{4} \operatorname{star}}{r^{2} \operatorname{sun} \times T_{\text{sun}}^{4}}$

$$\Rightarrow \frac{10000}{1} = \frac{r_{\text{star}}^2}{r_{\text{sun}}^2} \times \left(\frac{6000}{2000}\right)^4 \Rightarrow \frac{r_{\text{star}}}{r_{\text{sun}}} = \frac{100 \times 9}{1} = \frac{900}{1}$$

39. (a)
$$P = \left(\frac{Q}{t}\right) \propto T^4 \Rightarrow \frac{W}{P_2} = \left(\frac{T}{T/3}\right)^4 \Rightarrow P_2 = \frac{W}{81}$$
.
40. (c) Power $P \propto AT^4 \propto r^2T^4$

40. (c) Power
$$P \propto AT^4 \propto r^2 T$$

41.

$$\Rightarrow \frac{P_2}{P_1} = \left(\frac{r_2}{r_1}\right)^2 \times \left(\frac{T_2}{T_1}\right)^4 = \left(\frac{4r}{r}\right)^2 \times \left(\frac{T/2}{T}\right)^4 = 1.$$

(b) $\frac{Q_2}{Q_1} = \left(\frac{r_2^2}{r^2}\right)^2 \times \left(\frac{T_2}{T}\right)^4 = \left(\frac{100}{1}\right)^2 \times \left(\frac{1}{2}\right)^4 = 625$

$$Q_{1} (r_{1}^{-}) (T_{1}) (T_{1}) (T_{1}) (2)$$
42. (d) $Q \propto r^{2}T^{4} \Rightarrow \frac{Q_{2}}{Q_{1}} = \left(\frac{r_{2}}{r_{1}}\right)^{2} \times \left(\frac{T_{2}}{T_{1}}\right)^{4} = (2)^{2} \times (2)^{4} = 64$

43. (c) Energy radiated from a body
$$Q = A \omega T^4 t$$

$$\Rightarrow \frac{Q_2}{Q_1} = \left(\frac{T_2}{T_1}\right)^4 \Rightarrow \frac{T_2}{T_1} = \left(\frac{Q_2}{Q_1}\right)^{1/4} = \left(\frac{4.32 \times 10^6}{2.7 \times 10^{-3}}\right)^{1/4}$$
$$= \left(\frac{16 \times 27}{27} \times 10^8\right)^{1/4} = 2 \times 10^2$$
$$\Rightarrow T_2 = 200 \times T_1 = 80000 K$$

44. (d)
$$E \propto AT^4 \Rightarrow \frac{E_{\text{sphere}}}{E_{\text{Disc}}} = \frac{4\pi r^2}{2\pi r^2} \times \left(\frac{T}{T}\right)^4 = \frac{2}{1}$$

45. (a)
$$\frac{E_2}{E_1} = \left(\frac{T_2}{T_1}\right)^4 \Rightarrow \frac{T_2}{T_1} = \left(\frac{E_2}{E_1}\right)^{1/4} = \left(\frac{10^9}{10^5}\right)^{1/4} = 10$$

 $\Rightarrow T_2 = 10T_1 = 10 \times (273 + 227) = 5000 K$

46. (b) Energy per second
$$P\left(=\frac{Q}{t}\right) \propto T^4$$

$$\frac{P_1}{P_2} = \left(\frac{T_1}{T_2}\right)^4 = \left(\frac{273 - 73}{273 + 327}\right)^4 = \left(\frac{200}{600}\right)^4 = \frac{1}{81}$$

47. (a)
$$Q \propto T^4 \Rightarrow \frac{Q_1}{Q_2} = \left(\frac{T_1}{T_2}\right)^2$$

If $T_1 = T$ then $T_2 = T + \frac{10}{100}T = 1.1T$
 $\Rightarrow \frac{Q_1}{Q_2} = \left(\frac{T}{1.1T}\right)^4 \Rightarrow Q_2 = 1.46 Q_1$
 $\Rightarrow \%$ increase in energy $= \frac{Q_2 - Q_1}{Q_1} \times 100 = 46\%$

(a) From Stefan's law $E = \sigma T^4$ 48.

49.

$$T^{4} = \frac{E}{\sigma} = \frac{6.3 \times 10^{7}}{5.7 \times 10^{8}} = 1.105 \times 10^{15} = 0.1105 \times 10^{16}$$
$$T = 0.58 \times 10^{4} K = 5.8 \times 10^{3} K$$

(a) Rate of cooling $\propto (T^4 - T_0^4)$

$$\Rightarrow \frac{H}{H'} = \frac{(T_1^4 - T_0^4)}{(T_2^4 - T_0^4)} = \frac{400^4 - 200^4}{600^4 - 200^4}$$

or
$$H' = \frac{(16+4)(16-4)H}{(36+4)(36-4)} = \frac{3}{16}H$$

50. (a)

51. (a) Rate of cooling
$$\propto (T^4 - T_0^4) \Rightarrow \frac{R_1}{R_2} = \frac{(T_1^4 - T_0^4)}{(T_2^4 - T_0^4)}$$

 $\Rightarrow \frac{R}{R_2} = \frac{(600)^4 - (300)^4}{(900)^4 - (300)^4} \text{ or } R_2 = \frac{16}{3} R$
52. (d) Loss of heat $\Delta Q = A \, \omega \sigma (T^4 - T_0^4) t$
 \Rightarrow Rate of loss of heat $\frac{\Delta Q}{t} = A \, \omega \sigma (T^4 - T_0^4)$
 $= 10 \times 10^{-4} \times 1 \times 5.67 \times 10^{-8} \{273 + 127)^4 - (273 + 27)^4 \}$

- = 0.99 *W*.
- 53. (b) According to Prevost theory every body radiate heat at all temperature (except 0 K) and also absorbs heat from surroundings.

 \therefore $T_A > T \implies$ Object A emits radiations more than the radiations it absorbs.

and $T_B < T \implies$ Object *B* absorbs more radiations than it emits.

After a certain time all bodies attains a common temperature. (b) According to Prevost theory

55. (b)
$$Q \propto T^4 \Rightarrow \frac{Q_1}{Q_2} = \frac{T_1^4}{T_2^4} \Rightarrow T_2^4 = \left(\frac{E_2}{E_1}\right) T_1^4$$

 $\Rightarrow T_2^4 = \frac{1}{16} \times (1000)^4 = \left(\frac{1000}{2}\right)^4 \Rightarrow T_2 = 500K$

56. (c) $Q \propto T^4$

54.

Radiation (Newton's Law of Cooling)

1. (b) According to Newton's law of cooling

$$\frac{\theta_1 - \theta_2}{t} = K \left[\frac{\theta_1 + \theta_2}{2} - \theta_0 \right]$$

In the first case, $\frac{(60 - 50)}{10} = K \left[\frac{60 + 50}{2} - \theta_0 \right]$
$$1 = K (55 - \theta)$$

In the second case,
$$\frac{(50-42)}{10} = K \left[\frac{50+42}{2} - \theta_0 \right]$$
$$0.8 = K (46 - \theta_0) \qquad \dots (ii)$$

Dividing (i) by (ii), we get
$$\frac{1}{0.8} = \frac{55 - \theta_0}{46 - \theta_0}$$

or
$$46 - \theta_0 = 44 - 0.8\theta_0 \implies \theta_0 = 10^{\circ} C$$

2. (c) According to Newton's law of cooling

Rate of cooling \propto Mean temperature difference

$$\Rightarrow \frac{\text{Fall in temperatur e}}{\text{Time}} \propto \left(\frac{\theta_1 + \theta_2}{2} - \theta_0\right)$$

$$\begin{array}{l} \because \left(\frac{\theta_1 + \theta_2}{2}\right)_1 > \left(\frac{\theta_1 + \theta_2}{2}\right)_2 > \left(\frac{\theta_1 + \theta_2}{2}\right)_3 \\ \Rightarrow T_1 < T_2 < T_3 \end{array}$$

(a) Initially at t = 0

З.

5.

6.

9

10.

....(i)

Rate of cooling (*R*) \propto Fall in temperature of body ($\theta - \theta$)

$$\Rightarrow \frac{R_1}{R_2} = \frac{\theta_1 - \theta_0}{\theta_2 - \theta_0} = \frac{100 - 40}{80 - 40} = \frac{3}{2}$$

- (a) For small difference of temperature, it is the special case of Stefan's law.
 - (b) Liquid having more specific heat has slow rate of cooling because for equal masses rate of cooling $\frac{d\theta}{dt} \propto \frac{1}{c}$.

(c)
$$S_l = \frac{1}{m_l} \left[\frac{t_l}{t_W} (m_W C_W + W) - W \right]$$

= $\frac{1}{300} \left[\frac{95}{3 \times 60} (350 \times 1 + 10) - 10 \right] = 0.6 \ Cal/gm \times^{\circ} C$

- (c) Newton's law of cooling is used for the determination of specific heat of liquids.
- 8. (c) By Newton's law of cooling.

. (d) Rate of loss of heat
$$\left(\frac{\Delta Q}{t}\right) \propto$$
 temperature difference $\Delta \theta$

$$\frac{\left(\frac{\Delta Q}{t}\right)_1}{\left(\frac{\Delta Q}{t}\right)_2} = \frac{\Delta \theta_2}{\Delta \theta_1} \implies \frac{60}{\left(\frac{\Delta Q}{t}\right)_2} = \frac{80 - 60}{40 - 20} \implies \left(\frac{\Delta Q}{t}\right)_2 = \frac{20 \, cal}{sec}$$

(b) During clear nights object on surface of earth radiate out heat and temperature falls. Hence option (a) is wrong.
 The total energy radiated by a body per unit time per unit area *E* ∝ *T*. Hence option (*c*) is wrong.

Energy radiated per second is given by
$$\frac{Q}{t} = PAs\sigma T^4$$

$$\Rightarrow \frac{P_1}{P_2} = \frac{A_1}{A_2} \cdot \left(\frac{T_1}{T_2}\right)^4 = \left(\frac{r_1}{r_2}\right)^2 \cdot \left(\frac{T_1}{T_2}\right)^4 = \left(\frac{1}{4}\right)^2 \left(\frac{4000}{200}\right) = \frac{1}{1}$$

 \therefore *P* = *P*, hence option (d) is wrong.

Newton's law is an approximate form of Stefan's law of radiation and works well for natural convection. Hence option (b) is correct.

11. (b)
$$\frac{\theta_1 - \theta_2}{t} = K\left(\frac{\theta_1 + \theta_2}{2} - \theta_0\right)$$

 $\therefore \frac{100 - 70}{4} = K\left(\frac{100 + 70}{2} - 15\right) = 60K \Rightarrow K = \frac{1}{8}$
Again $\frac{70 - 40}{t} = \frac{1}{8}\left(\frac{70 + 40}{2} - 15\right) = 5 \Rightarrow t = 6$ min.
12. (d) $\frac{80 - 60}{1} = K\left(\frac{80 + 60}{2} - 30\right) \Rightarrow K = \frac{1}{2}$
Again $\frac{60 - 50}{t} = \frac{1}{2}\left(\frac{60 + 50}{2} - 30\right) \Rightarrow t = 0.8 \times 60 = 48$ sec.
13. (c) According to Newton's law of cooling

Rate of cooling ∞ mean temperature difference.

Initially, mean temperature difference

$$= \left(\frac{70+60}{2} - \theta_0\right) = (65 - \theta_0)$$

Finally, mean temperature difference

$$= \left(\frac{60+50}{2} - \theta_0\right) = (55 - \theta_0)$$

In second case mean temperature difference decreases, so rate of fall of temperature decreases, so it takes more time to cool through the same range.

(c) $\frac{\theta_1 - \theta_2}{t} = K \left[\frac{\theta_1 + \theta_2}{2} - \theta_0 \right]$ 14.

In the first 10 minute

$$\frac{62-50}{10} = K \left[\frac{62+50}{2} - \theta_0 \right] \Rightarrow 1.2 = K [56 - \theta_0] \quad \dots \text{ (i)}$$
$$\frac{50-42}{10} = K \left[\frac{50+42}{2} - \theta_0 \right] \Rightarrow 0.8 = K [46 - \theta_0] \quad \dots \text{ (ii)}$$

from equations (i) and (ii)
$$\frac{1.2}{0.8} = \frac{(56 - \theta_0)}{(46 - \theta_0)} \Rightarrow \theta_0 = 26^{\circ}C$$

(d) $\frac{d\theta}{dt} = \frac{\sigma A}{mc} (T^4 - T_0^4)$. If the liquids put in exactly similar calorimeters and identical surrounding then we can consider $\ensuremath{\mathcal{T}}$ $d\theta = (T^4 - T_0^4)$

and A constant then
$$\frac{dv}{dt} \propto \frac{(1 - T_0)}{mc}$$

If we consider that equal masses of liquid (m) are taken at the If we consider the $\frac{d\theta}{dt} \propto \frac{1}{c}$

So for same rate of cooling c should be equal which is not possible because liquids are of different nature. Again from equation (i)

$$\frac{d\theta}{dt} \propto \frac{(T^4 - T_0^4)}{mc} \implies \frac{d\theta}{dt} \propto \frac{(T^4 - T_0^4)}{V\rho c}$$

Now if we consider that equal volume of liquid (V) are taken at the same temperature then $\frac{d\theta}{dt} \propto \frac{1}{\rho c}$.

So for same rate of cooling multiplication of $\rho \times c$ for two liquid of different nature can be possible. So option (d) may be correct.

16. (c)
$$\frac{60-50}{10} = K\left(\frac{60+50}{2}-25\right)$$
(i)

$$\frac{50-\theta}{10} = K \left[\frac{50+\theta}{2} - 25 \right] \qquad \dots \dots (ii)$$

On dividing, we get
$$\frac{10}{50-\theta} = \frac{60}{\theta} \Rightarrow \theta = 42.85^{\circ} C$$

17. (a)
$$\frac{365-361}{2} = K \left[\frac{365+361}{2} - 293 \right] = 70 \text{ K} \Rightarrow K = \frac{1}{35}$$

Again $\frac{344-342}{t} = \frac{1}{35} \left[\frac{344-342}{2} - 293 \right] = \frac{10}{7}$
 $\Rightarrow t = \frac{14}{10} \min = \frac{14}{10} \times 60 = 84 \text{ sec.}$
18. (b) $\frac{50-49.9}{5} = K \left(\frac{50+49.9}{2} - 30 \right)$ (i)

$$\frac{40-39.9}{t} = K \left[\frac{40+39.9}{2} - 30 \right] \qquad \dots \dots (ii)$$

from equations (i) and (ii) we get $t \approx 10$ sec.

Rate of loss of heat is directly proportional to the temperature (c) difference between water and the surroundings.

20. (b) Rate of cooling
$$= \frac{-d\theta}{dt} \propto \left(\frac{\theta_1 + \theta_2}{2} - \theta_0\right)$$

In second case average temperature will be less hence rate of cooling will be less. Therefore time taken will be more than 4 minutes.

....

19.

22. (b) First case,
$$\frac{61-59}{4} = K \left[\frac{61+59}{2} - 30 \right]$$
(i)

Second case,
$$\frac{51-49}{t} = K \left[\frac{51+49}{2} - 30 \right]$$
(ii)

By solving equation (i) and (ii) we get t = 6 min.

23. (d)
24. (c) In first case
$$\frac{60-40}{7} = K \left[\frac{60+40}{2} - 10 \right]$$
(i)

In second case
$$\frac{40-28}{t} = K \left[\frac{40+28}{2} - 10 \right]$$
(ii)

.....(1) By solving
$$t = 7$$
 minutes

25. (b) In first case
$$\frac{50-40}{5} = K \left[\frac{50+40}{2} - \theta_0 \right]$$
(i)

In second case
$$\frac{40-33.33}{5} = K \left[\frac{40+33.33}{2} - \theta_0 \right]$$
(ii)

By solving $\theta_0 = 20^o C$.

26. (b) In first case
$$\frac{50-40}{10} = K \left[\frac{50+40}{2} - 20 \right]$$
(i)

In second case
$$\frac{40 - \theta_2}{10} = K \left[\frac{40 + \theta_2}{2} - 20 \right]$$
(ii)

By solving
$$\theta_2 = 33.3^{\circ} C$$
.

27. (d) In first case
$$\frac{61-59}{10} = K \left[\frac{61+59}{2} - 30 \right]$$
(i)

In second case
$$\frac{51-49}{10} = K \left[\frac{51+49}{2} - 30 \right]$$
(ii)

By solving t = 15 min.

$$\frac{dQ}{dt} = (mc + W)\frac{d\theta}{dt} = (m_lc_l + m_cc_c)\frac{d\theta}{dt}$$
$$\Rightarrow \frac{dQ}{dt} = (0.5 \times 2400 + 0.2 \times 900)\left(\frac{60 - 55}{60}\right) = 115 \frac{J}{\text{sec}}.$$

29.

30.

Rate of cooling
$$\infty$$
 temperature difference $\Delta \theta$

(b) According to Newton's law
$$\frac{\theta_1 - \theta_2}{t} = k \left\lfloor \frac{\theta_1 + \theta_2}{2} - \theta_0 \right\rfloor$$

Initially,

15.

$$\frac{(80-64)}{5} = K\left(\frac{80+64}{2} - \theta_0\right) \implies 3.2 = K[72 - \theta_0] \quad \dots (i)$$

2.

3.

4.

5.

6.

Finally

$$\frac{(64-52)}{10} = K \left[\frac{64+52}{2} - \theta_0 \right] \Rightarrow 1.2 = K[58-\theta_0] \dots \text{ (ii)}$$

On solving equation (i) and (ii) $\theta_0 = 49^{\circ}C$.

31. (d)
$$\frac{50-45}{5} = K\left(\frac{50+45}{2} - \theta_0\right)$$
(i)
 $\frac{45-41.5}{5} = K\left(\frac{45+41.5}{2} - \theta_0\right)$ (ii)

Solving equation (i) and (ii) we set $\theta_0 = 33.3 \ ^\circ C$.

32. (d)
$$\frac{65.5 - 62.5}{1} = K\left(\frac{65.5 + 62.5}{2} - 22.5\right) \Rightarrow K = \frac{3}{41.5}$$
And again
$$\frac{46.5 - 40.5}{t} = \frac{3}{41.5}\left(\frac{46.5 + 40.5}{2} - 22.5\right)$$

$$\Rightarrow \frac{6}{t} = \frac{3}{41.5} \times 21 \Rightarrow t = \frac{82}{21} \approx 4 \text{ minute.}$$
33. (a)
$$\frac{62 - 50}{10} = K\left(\frac{62 + 50}{2} - 26\right) \Rightarrow \frac{6}{5} = K \times 30 \Rightarrow K = \frac{1}{25}$$
And,
$$\frac{50 - \theta}{10} = \frac{1}{25}\left(\frac{50 + \theta}{2} - 26\right) \Rightarrow \theta = 42^{\circ} C.$$
34. (c)
$$\frac{90 - 60}{5} = K\left(\frac{90 + 60}{2} - 20\right) \Rightarrow 6 = K \times 55 \Rightarrow K = \frac{6}{55}$$
And,
$$\frac{60 - 30}{t} = \frac{6}{55}\left(\frac{60 + 30}{2} - 20\right) \Rightarrow t = 11 \text{ minute.}$$
35. (a) According to Newton's law of cooling
in first case,
$$\frac{75 - 65}{t} = K\left[\frac{75 + 65}{2} - 30\right] \qquad \dots (i)$$

in first case, $\frac{73-63}{t} = K \left[\frac{73+63}{2} - 30 \right]$

in second case,
$$\frac{55-45}{t} = K \left[\frac{55+45}{2} - 30 \right]$$
(ii)

Dividing eq. (i) by (ii) we get $\frac{5t}{10} = \frac{40}{20} \Rightarrow t = 4$ minutes

37.

in first case,
$$\frac{80-50}{5} = K \left[\frac{80+50}{2} - 20 \right]$$
(i)
n second case $\frac{60-30}{5} = K \left[\frac{60+30}{2} - 20 \right]$ (ii)

in second case,
$$\frac{30^{\circ}}{t} = K \left[\frac{30^{\circ} + 30^{\circ}}{2} - 20 \right]$$
 (i

Dividing equation (i) by (ii) we get, $\frac{t}{2} = \frac{45}{25} \Rightarrow t = 9$ min. (b) According to Newton's law of cooling.

Critical Thinking Questions

1. (a)
$$\frac{dQ}{dt} = \frac{KA\Delta\theta}{l}$$
, For both rods K, A and $\Delta\theta$ are same \Rightarrow
 $\frac{dQ}{dt} \propto \frac{1}{l}$ So $\frac{(dQ/dt)_{semi\ circular}}{(dQ/dt)_{straight}} = \frac{l_{straight}}{l_{semicircular}} = \frac{2r}{\pi} = \frac{2}{\pi}$.

(b) Suppose thickness of each wall is x then

$$\left(\frac{Q}{t}\right)_{combination} = \left(\frac{Q}{t}\right)_{A} \Rightarrow \frac{K_{S}A(\theta_{1} - \theta_{2})}{2x} = \frac{2KA(\theta_{1} - \theta)}{x}$$

$$\therefore K_{S} = \frac{2 \times 2K \times K}{(2K + K)} = \frac{4}{3}K \text{ and } (\theta_{1} - \theta_{2}) = 36^{\circ}$$

$$\Rightarrow \frac{\frac{4}{3}KA \times 36}{2x} = \frac{2KA(\theta_{1} - \theta)}{x}$$
Hence temperature difference across wall A is

$$(\theta_{1} - \theta) = 12^{\circ}C$$

$$\theta_{1} = x + \theta + x + \theta_{2}$$

(d)
$$t = \frac{\rho L}{2K\theta} (x_2^2 - x_1^2) \Longrightarrow t \propto (x_2^2 - x_1^2)$$

 $\Rightarrow \frac{t}{t'} = \frac{(x_2^2 - x_1^2)}{(x_2'^2 - x_1'^2)} \Longrightarrow \frac{9}{t'} = \frac{(1^2 - 0^2)}{(2^2 - 1^2)} \Longrightarrow t' = 21 \text{ hours}$

 $(c) \;\;$ Both the cylinders are in parallel, for the heat flow from one end as shown.

Hence $K_{eq} = \frac{K_1 A_1 + K_2 A_2}{A_1 + A_2}$; where A = Area of cross-section

of inner cylinder = πR and A_2 = Area of cross-section of cylindrical shell $= \pi \{ (2R)^2 - (R)^2 \} = 3\pi R^2$

$$\Rightarrow K_{eq} = \frac{K_1(\pi R^2) + K_2(3\pi R^2)}{\pi R^2 + 3\pi R^2} = \frac{K_1 + 3K_2}{4}$$

(b) Let the temperature of junction be θ . Since roads *B* and *C* are parallel to each other (because both having the same temperature difference). Hence given figure can be redrawn as follows

$$R_{p} = \frac{R}{2}$$

$$R_{p} = \frac{Q}{R}$$

$$R_{p} = \frac{$$

(a) Heat developed by the heater $H = \frac{V^2}{R} \cdot \frac{t}{J} = \frac{(200)^2 \times t}{20 \times 4.2}$ Heat conducted by the glass $H = \frac{0.2 \times 1 \times (20 - \theta)t}{0.002}$

Hence
$$\frac{(200)^2 \times t}{20 \times 4.2} = \frac{0.2 \times (20 - \theta)t}{0.002} \Rightarrow \theta = 15.24^{\circ} C$$

7. (a) Since
$$t = \frac{\rho L}{2k\theta} (x_2^2 - x_1^2)$$

$$\therefore t = \frac{\rho L}{2k\theta} (x^2 - y^2) = \frac{\rho L(x+y)(x-y)}{2K\theta}$$

8. (b) If suppose
$$K_{Ni} = K \Longrightarrow K_{Al} = 3K$$
 and $K_{Cu} = 6K$.
Since all metal bars are connected in series

So
$$\left(\frac{Q}{t}\right)_{Combination} = \left(\frac{Q}{t}\right)_{Cu} = \left(\frac{Q}{t}\right)_{Al} = \left(\frac{Q}{t}\right)_{Ni}$$

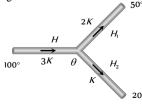
and $\frac{3}{K_{eq}} = \frac{1}{K_{Cu}} + \frac{1}{K_{Al}} + \frac{1}{K_{Ni}} = \frac{1}{6K} + \frac{1}{3K} + \frac{1}{K} = \frac{9}{6K}$
 $\Rightarrow K_{eq} = 2K$
 $Q \implies 25 \text{ cm} \Rightarrow (-10 \text{ cm} \Rightarrow (-15 \text{ cm} \Rightarrow -15 \text{ cm} \Rightarrow -10 \text{ cm} \Rightarrow (-15 \text{ cm} \Rightarrow -15 \text{ cm} \Rightarrow -10 \text{ cm} \Rightarrow (-15 \text{ cm} \Rightarrow -10 \text{ cm} \Rightarrow -10 \text{ cm} \Rightarrow (-15 \text{ cm} \Rightarrow -10 \text{ cm} \Rightarrow -10 \text{ cm} \Rightarrow (-15 \text{ cm} \Rightarrow -10 \text{ cm} \Rightarrow -10 \text{ cm} \Rightarrow (-15 \text{ cm} \Rightarrow -10 \text{ cm} \Rightarrow -10 \text{ cm} \Rightarrow -10 \text{ cm} \Rightarrow -10 \text{ cm} \Rightarrow (-15 \text{ cm} \Rightarrow -10 \text{$

9. (b) \therefore $T_B > T_A \implies$ Heat will flow *B* to *A* via two paths (i) *B* to *A* (ii) and along *BCA* as shown.

Rate of flow of heat in path BCA will be same

$$i.e. \left(\frac{Q}{t}\right)_{BC} = \left(\frac{Q}{t}\right)_{CA} \qquad (7)A$$

$$\Rightarrow \frac{k(\sqrt{2}T - T_C)A}{a} = \frac{k(T_C - T)A}{\sqrt{2}a} \xrightarrow{a} \qquad (7)A$$

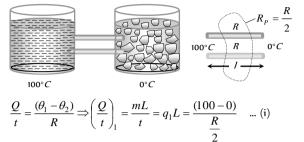

$$\Rightarrow \frac{T_C}{T} = \frac{3}{1 + \sqrt{2}} \qquad (7)A$$

10. (a)
$$mL = \frac{KA\Delta\theta \ t}{\Delta x} \Rightarrow 500 \times 80 = \frac{0.0075 \times 75 \times (40 - 0)t}{5}$$

$$\Rightarrow$$
 t = 8.9 × 10° sec = 2.47 hr.

11. (a) Rate of cooling $\frac{\Delta\theta}{t} = \frac{A \, \varepsilon \sigma (T^4 - T_0^4)}{mc} \Rightarrow \frac{\Delta\theta}{t} \propto A$. Since area of plate is largest so it will cool fastest.

12. (b) Let the temperature of junction be θ then according to following figure.



$$H = H + H$$

$$\Rightarrow \frac{3K \times A \times (100 - \theta)}{l} = \frac{2KA(\theta - 50)}{l} + \frac{KA(\theta - 20)}{l}$$

$$\Rightarrow 300 - 3\theta = 3\theta - 120 \Rightarrow \theta = 70^{\circ}C$$

13. (c) Initially the rods are placed in vessels as shown below

Finally when rods are joined end to end as shown

$$\Rightarrow \left(\frac{Q}{t}\right)_{2} = \frac{mL}{t} = q_{2}L = \frac{(100-0)}{2R} \qquad \dots \text{ (ii)}$$

From equation (i) and (ii), $\frac{q_1}{q_2} = \frac{\neg}{1}$

14. (b) Rate of cooling of a body
$$R = \frac{\Delta \theta}{t} = \frac{A \, \varepsilon \sigma (T^* - T_0^*)}{mc}$$

$$\Rightarrow R \propto \frac{A}{m} \propto \frac{\text{Area}}{\text{Volume}}$$

 \Rightarrow For the same surface area. $R \propto \frac{1}{\text{Volume}}$

: Volume of cube < Volume of sphere

 $\Rightarrow R_{Cube} > R_{Sphere}$ *i.e.* cube, cools down with faster rate.

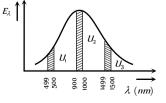
$$E = eA \sigma T^4 \Longrightarrow E_1 = e_1 A \sigma T_1^4 \text{ and } E_2 = e_2 A \sigma T_2^4$$

$$\therefore E_1 = E_2 \therefore e_1 T_1^4 = e_2 T_2^4$$

$$\Rightarrow T_2 = \left(\frac{e_1}{e_2} T_1^4\right)^{\frac{1}{4}} = \left(\frac{1}{81} \times (5802)^4\right)^{\frac{1}{4}} \Rightarrow T_B = 1934 K$$

And, from Wein's law $\lambda_A imes T_A = \lambda_B imes T_B$

$$\Rightarrow \frac{\lambda_A}{\lambda_B} = \frac{T_B}{T_A} \Rightarrow \frac{\lambda_B - \lambda_A}{\lambda_B} = \frac{T_A - T_B}{T_A}$$
$$\Rightarrow \frac{1}{\lambda_B} = \frac{5802 - 1934}{5802} = \frac{3968}{5802} \Rightarrow \lambda_B = 1.5 \ \mu m$$


(d) Wein's displacement law is $\lambda_m T = b$

16.

$$\Rightarrow \lambda_m = \frac{b}{T} = \frac{2.88 \times 10^\circ}{2880} = 1000 \, nm.$$

Energy distribution with wavelength will be as follows

6

From the graph it is clear that U > U.

17. (b) Energy received per second *i.e.*, power $P \propto (T^4 - T_0^4)$

$$\Rightarrow P \propto T^4 \qquad (::T_0 \ll T)$$

Also energy received per sec $(p) \propto \frac{1}{d^2}$

(inverse square law)

$$\Rightarrow P \propto \frac{T^4}{d^2} \Rightarrow \frac{P_1}{P_2} = \left(\frac{T_1}{T_2}\right)^4 \times \left(\frac{d_2}{d_1}\right)^2$$
$$\Rightarrow \frac{P}{P_2} = \left(\frac{T}{2T}\right)^2 \times \left(\frac{2d}{d}\right)^2 = \frac{1}{4} \Rightarrow P_2 = 4P.$$

18. (c) The given arrangement of rods can be redrawn as follows

$$K = \frac{2K_1K_2}{K_1 + K_2}$$

$$K = \frac{2K_1K_2}{K_1 + K_2}$$

$$K_1 = \frac{K_2}{K_1 + K_2}$$

$$K_2 = \frac{K_1 + K_2}{K_2}$$

$$K_3 = \frac{K_1 + K_2}{K_2}$$

19. (b) Rate of cooling
$$(R) = \frac{\Delta \theta}{t} = \frac{A \in \sigma(T^4 - T_0^4)}{mc}$$

$$\Rightarrow R \propto \frac{A}{m} \propto \frac{\text{Area}}{\text{volume}} \propto \frac{r^2}{r^3} \propto \frac{1}{r}$$
$$\Rightarrow \text{Rate } (R) \propto \frac{1}{r} \propto \frac{1}{m^{1/3}} \left[\because m = \rho \times \frac{4}{3} \pi r^3 \Rightarrow r \propto m^{1/3} \right]$$
$$\Rightarrow \frac{R_1}{R_2} = \left(\frac{m_2}{m_1}\right)^{1/3} = \left(\frac{1}{3}\right)^{1/3}$$

20. (b) Radiated power $P = A \operatorname{so} T^4 \implies P \propto A T^4$

From Wein's law, $\lambda_m T = \text{constant} \Rightarrow T \propto \frac{1}{\lambda}$

$$\therefore P \propto \frac{A}{(\lambda_m)^4} \propto \frac{r^2}{(\lambda_m)^4}$$
$$\Rightarrow Q_A : Q_B : Q_C = \frac{2^2}{(300)^4} : \frac{4^2}{(400)^4} : \frac{6^2}{(500)^4}$$

 $\therefore Q_B$ will be maximum.

21. (d) The total energy radiated from a black body per minute.

$$Q \propto T^4 \Rightarrow \frac{Q_2}{Q_1} = \left(\frac{2T}{T}\right)^4 = 16 \Rightarrow Q_2 = 16Q_1$$

If *m* be mass of water taken and *S* be its specific heat capacity, then $Q_1 = ms(20.5 - 20)$ and $Q_2 = ms(\theta - 20)$ $\theta^{\circ}C =$ Final temperature of water $Q_2 = \theta - 20$ 16 $\theta - 20$

$$\Rightarrow \frac{Q_2}{Q_1} = \frac{\theta - 2\theta}{0.5} \Rightarrow \frac{16}{1} = \frac{\theta - 2\theta}{0.5} \Rightarrow \theta = 28^{\circ}C$$

22. (a) Rate of cooling
$$\frac{\Delta \theta}{t} = \frac{A \varkappa (T^4 - T_0^4)}{mc}$$

As surface area, material and temperature difference are same, so rate of loss of heat is same in both the spheres. Now in this case rate of cooling depends on mass.

.

$$\Rightarrow \text{Rate of cooling } \frac{\Delta\theta}{t} \propto \frac{1}{m}$$

-

23.

26.

 $\because m_{solid} > m_{hollow}$. Hence hollow sphere will cool fast.

(c) Rate of cooling
$$\frac{\Delta\theta}{t} = \frac{A \varkappa (T^{4} - T_{0}^{4})}{mc}$$

 $\Rightarrow t \propto \frac{m}{A}$ [:: $\Delta\theta, t, \sigma, (T^{4} - T_{0}^{4})$ are constant]
 $\Rightarrow t \propto \frac{m}{A} \propto \frac{\text{Volume}}{\text{Area}} \propto \frac{a^{3}}{a^{2}} \Rightarrow t \propto a \Rightarrow \frac{t_{1}}{t_{2}} = \frac{a_{1}}{a_{2}}$
 $\Rightarrow \frac{100}{t_{2}} = \frac{1}{2} \Rightarrow t_{2} = 200 \text{ sec.}$

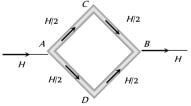
24. (a) According to Newton law of cooling

$$\frac{\theta_1 - \theta_2}{t} = K \left[\frac{\theta_1 + \theta_2}{2} - \theta_0 \right]$$

$$80^{\circ}C \xrightarrow{5 \text{ min}} 64^{\circ}C$$

$$2 \text{ 15 min} \theta = ?$$

For first process : $\frac{3}{(80-64)} = K \left[\frac{80+64}{2} - \theta_0 \right]$...(i)


For second process :
$$\frac{(80-52)}{10} = K \left[\frac{80+52}{2} - \theta_0 \right]$$
 ...(ii)

For third process :
$$\frac{(80-\theta)}{15} = K \left[\frac{80+\theta}{2} - \theta_0 \right] \qquad \dots (iii)$$

On solving equation (i) and (ii) we get $K = \frac{1}{15}$ and $\theta_0 = 24^{\circ}C$. Putting these values in equation (iii) we get $\theta = 42.7^{\circ}C$

25. (c)
$$t = \frac{Ql}{KA(\theta_1 - \theta_2)} = \frac{mLl}{KA(\theta_1 - \theta_2)} = \frac{V\rho Ll}{KA(\theta_1 - \theta_2)}$$

= $\frac{5 \times A \times 0.92 \times 80 \times \frac{5 + 10}{2}}{0.004 \times A \times 10 \times 3600} = 19.1 \, hours.$

(a) Suppose temperature difference between A and B is 100°C and $\theta > \theta$

Heat current will flow from A to B via path ACB and ADB. Since all the rod are identical so $(\Delta \theta)_{-} = (\Delta \theta)_{-}$

(Because heat current $H = \frac{\Delta \theta}{R}$; here R = same for all.)

 $\Rightarrow \theta_A - \theta_C = \theta_A - \theta_D \Rightarrow \theta_C = \theta_D$ *i.e.* temperature difference between *C* and *D* will be zero.

27. (c)
$$\frac{Q}{t} = \frac{KA\Delta\theta}{l} \Rightarrow \frac{mL}{t} = \frac{K(\pi r^2)\Delta\theta}{l}$$

 \Rightarrow Rate of melting of ice $\left(\frac{m}{t}\right) \propto \frac{Kr^2}{l}$
Since for second rod K becomes $\frac{1}{4} th r$ becomes double and
length becomes half, so rate of melting will be twice *i.e.*
 $\left(\frac{m}{t}\right)_2 = 2\left(\frac{m}{t}\right)_1 = 2 \times 0.1 = 0.2 gm / sec.$
28. (c) Heat transferred in one minute is utilised in melting the ice so,
 $\frac{KA(\theta_1 - \theta_2)t}{l} = m \times L$

$$\Rightarrow m = \frac{10^{-3} \times 92 \times (100 - 0) \times 60}{1 \times 8 \times 10^4} = 6.9 \times 10^{-3} \, kg$$

29. (d)
$$\frac{dQ}{dt} = \frac{KA}{l} d\theta = \frac{0.01 \times 1}{0.05} \times 30 = 6 J/sec$$

2'

Heat transferred in on day (86400 sec)

$$\theta = 6 \times 86400 = 518400 J$$

Now
$$Q = mL \implies m = \frac{Q}{L} = \frac{518400}{334 \times 10^3}$$

 $= 1.552 \ kg = 1552g.$

(b) For no current flow between C and D30.

$$\begin{split} & \left(\frac{Q}{t}\right)_{AC} = \left(\frac{Q}{t}\right)_{CB} \Rightarrow \frac{K_1 A(\theta_A - \theta_C)}{l} = \frac{K_2 A(\theta_C - \theta_B)}{l} \\ \Rightarrow \frac{\theta_A - \theta_C}{\theta_C - \theta_B} = \frac{K_2}{K_1} \qquad \dots (i) \\ & \text{Also } \left(\frac{Q}{t}\right)_{AD} = \left(\frac{Q}{t}\right)_{DB} \Rightarrow \frac{K_3 A(\theta_A - \theta_D)}{l} = \frac{K_4 A(\theta_D - \theta_B)}{l} \\ \Rightarrow \frac{\theta_A - \theta_D}{\theta_D - \theta_B} = \frac{K_4}{K_3} \qquad \dots (ii) \end{split}$$

It is given that $\theta_C = \theta_D$, hence from equation (i) and (ii) we

get
$$\frac{K_2}{K_1} = \frac{K_4}{K_3} \implies K_1 K_4 = K_2 K_3$$

31. (d) Rate of cooling
$$R_C = \frac{d\theta}{dt} = \frac{A \, \varepsilon \sigma (T^4 - T_0^4)}{mc}$$

 $\Rightarrow \frac{d\theta}{dt} \propto \frac{A}{V} \propto \frac{r^2}{r^3} \Rightarrow \frac{d\theta}{dt} \propto \frac{1}{r}$

(b) $\frac{dT}{dt} = \frac{\sigma A}{mcJ} (T^4 - T_0^4)$ [In the given problem fall in 32. temperature of body dT = (200 - 100) = 100K, temp. of surrounding T = 0K, Initial temperature of body T = 200K].

$$\frac{100}{dt} = \frac{\sigma 4\pi r^2}{\frac{4}{3}\pi r^3 \rho c J} (200^4 - 0^4)$$
$$\Rightarrow dt = \frac{r\rho c J}{48\sigma} \times 10^{-6} s = \frac{r\rho c}{\sigma} \cdot \frac{4.2}{48} \times 10^{-6}$$

$$= \frac{7}{80} \frac{r\rho c}{\sigma} \mu s \simeq \frac{7}{72} \frac{r\rho c}{\sigma} \mu s \qquad [\text{As } J = 4.2]$$

(a) Rate of flow of heat is given by $\frac{dQ}{dt} = \frac{\Delta \theta}{l/KA}$ also 33.

$$\frac{dQ}{dt} = L \frac{dm}{dt} \quad \text{(where } L = \text{Latent heat)}$$

 $\Rightarrow \frac{dm}{dt} = \frac{KA}{l} \left(\frac{\Delta \theta}{L}\right).$ Let the desire point is at a distance x from water at $100^{\circ}C$.

$$| \underbrace{ x \ m \longrightarrow | \underbrace{ (3.1 - x) \ m \longrightarrow |}}_{100^{\circ}C} \\ 100^{\circ}C \\ 200^{\circ}C \\ 0^{\circ}C \\ 100^{\circ}C \\ 0^{\circ}C \\ 0^{\circ}C$$

: Rate of ice melting = Rate at which steam is being produced

$$\Rightarrow \left(\frac{dm}{dt}\right)_{Steam} = \left(\frac{dm}{dt}\right)_{Ice} \Rightarrow \left(\frac{\Delta\theta}{Ll}\right)_{Steam} = \left(\frac{\Delta\theta}{Ll}\right)_{Ice}$$
$$\Rightarrow \frac{(200-100)}{540 \times x} = \frac{(200-0)}{80(3.1-x)} \Rightarrow x = 0.4 \ m = 40 \ cm$$

(c) $Q = \sigma A t (T - T)$ 34.

36.

If *T*, *T*, σ and *t* are same for both bodies then Q_{sphere} A_{sphere} $4\pi r^2$ i)

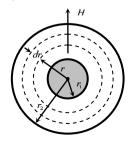
$$\frac{a_{sphere}}{Q_{cube}} = \frac{a_{sphere}}{A_{cube}} = \frac{a_{sphere}}{6a^2} \qquad \dots (i$$

But according to problem, volume of sphere = Volume of cube $(1)^{1/3}$

$$\Rightarrow \frac{4}{3}\pi r^3 = a^3 \Rightarrow a = \left(\frac{4}{3}\pi\right)^{1/3} r$$

Substituting the value of a in equation (i) we get

$$\frac{Q_{sphere}}{Q_{cube}} = \frac{4\pi r^2}{6a^2} = \frac{4\pi r^2}{6\left\{\left(\frac{4}{3}\pi\right)^{1/3}r\right\}^2}$$
$$= \frac{4\pi r^2}{6\left(\frac{4}{3}\pi\right)^{2/3}r^2} = \left(\frac{\pi}{6}\right)^{1/3} : 1$$


35. (d) Equation of thermal conductivity of the given combination $K_{eq} = \frac{l_1 + l_2}{\frac{l_1}{K_1} + \frac{l_2}{K_2}} = \frac{x + 4x}{\frac{x}{K} + \frac{4x}{2K}} = \frac{5}{3}K.$ Hence rate of flow of

through heat the given combination is

$$\frac{Q}{t} = \frac{K_{eq} \cdot A(T_2 - T_1)}{(x + 4x)} = \frac{\frac{5}{3}KA(T_2 - T_1)}{5x} = \frac{\frac{1}{3}KA(T_2 - T_1)}{x}$$

On comparing it with given equation we get $f = \frac{1}{3}$

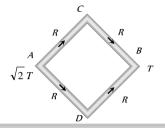
(a) Consider a concentric spherical shell of radius *r* and thickness dr as shown in fig.

The radial rate of flow of heat through this shell in steady state

8.

will be
$$H = \frac{dQ}{dt} = -KA \frac{dT}{dr} = -K(4\pi r^2) \frac{dT}{dr}$$

$$\Rightarrow \int_{r_1}^{r_2} \frac{dr}{r^2} = -\frac{4\pi K}{H} \int_{T_1}^{T_1} dT$$


Which on integration and simplification gives

$$H = \frac{dQ}{dt} = \frac{4\pi K r_1 r_2 (T_1 - T_2)}{r_2 - r_1} \Longrightarrow \frac{dQ}{dt} \propto \frac{r_1 r_2}{(r_2 - r_1)}$$

37. (c) Similar to Q.No.26

1.

Temperature difference between C and D is zero.

Graphical Questions

(c) Rate of cooling
$$\left(-\frac{dT}{dt}\right) \propto$$
 emissivity (e)
From graph, $\left(-\frac{dT}{dt}\right)_x > \left(-\frac{dT}{dt}\right)_y \Rightarrow e_x > e_y$

Further emissivity (e) \propto Absorptive power (a) $\Rightarrow a_x > a_y$ (: good absorbers are good emitters).

2. (b) According to Wien's law
$$\lambda_m \propto \frac{1}{T}$$
 and from the figure
 $(\lambda_m)_1 < (\lambda_m)_3 < (\lambda_m)_2$ therefore $T > T > T$.

3. (d)
$$\frac{A_T}{A_{2000}} = \frac{16}{1}$$
 (given)

Area under $e_\lambda - \lambda\,$ curve represents the emissive power of body and emissive power $\propto T^4$

(Hence area under $e_{\lambda} - \lambda$ curve) $\propto T^4$

$$\Rightarrow \frac{AT}{A_{2000}} = \left(\frac{T}{2000}\right)^4 \Rightarrow \frac{16}{1} = \left(\frac{T}{2000}\right)^4 \Rightarrow T = 4000K.$$

- 4. (c) According to Wein's law $\lambda_m \propto \frac{1}{T} \Rightarrow \nu_m \propto T$. As the temperature of body increases, frequency corresponding to maximum energy in radiation (ν) increases this is shown in graph (c).
- 5. (c) According to Wein's displacement law.

6. (b) For
$$\theta$$
-*t* plot, rate of cooling $= \frac{d\theta}{dt} =$ slope of the curve.
At $P, \frac{d\theta}{dt} = \tan \phi_2 = k(\theta_2 - \theta_0)$, where $k =$ constant.

At
$$Q \frac{d\theta}{dt} = \tan \phi_1 = k(\theta_1 - \theta_0) \implies \frac{\tan \phi_2}{\tan \phi_1} = \frac{\theta_2 - \theta_0}{\theta_1 - \theta_0}$$

7. (a) According to Wein's displacement law

$$\lambda_m \propto \frac{1}{T} \implies \lambda_{m_2} < \lambda_{m_1} \quad (:: T_1 < T_2)$$

There fore *I*- λ graph for *T* have lesser wavelength (λ) and so curve for *T* will shift towards left side.

(d) Area under given curve represents emissive power and emissive power $\propto T \implies A \propto T^4$

$$\Rightarrow \frac{A_2}{A_1} = \frac{T_2^4}{T_1^4} = \frac{(273 + 327)^4}{(273 + 27)^4} = \left(\frac{600}{300}\right)^4 = \frac{16}{1}$$

9. (b) According to Newton's law of cooling

$$\theta$$

 θ_i
 θ_0

Rate of cooling \propto Temperature difference

$$\Rightarrow -\frac{d\theta}{dt} \propto (\theta - \theta_0) \Rightarrow -\frac{d\theta}{dt} = \alpha (\theta - \theta_0) \quad (\alpha = \text{ constant})$$
$$\Rightarrow \int_{\theta}^{\theta} \frac{d\theta}{(\theta - \theta_0)} = -\alpha \int_{0}^{t} dt \Rightarrow \theta = \theta_0 + (\theta_i - \theta_0)e^{-\alpha t}$$

This relation tells us that, temperature of the body varies exponentially with time from θ_i to θ_0

Hence graph (b) is correct.

- 10. (a) According to Wein's displacement law $\lambda_m \propto \frac{1}{T}$. Hence, if temperature increases λ_m decreases *i.e.*, peak of the $E \lambda$ curve shift towards left.
- **11.** (c) Rate of loss of heat $(R) \propto$ temperature difference

 $\Rightarrow R \propto (\theta - \theta_0) \Rightarrow R = k(\theta - \theta_0) = k \theta - k \theta_0 \ (k = \text{ constant})$

on comparing it with y = mx + c it is observed that, the graph between R and θ will be straight line with slope =k and intercept $= -k \theta_0$

$$C = -k\theta_0$$

$$d\theta$$

$$R$$

$$Slope = tan\phi = k$$

$$\theta \rightarrow$$

12. (c) $\frac{dQ}{dt} = -KA \frac{d\theta}{dx}$

 $\therefore \frac{dQ}{dt}, K \text{ and } A \text{ are constants for all points}$

 \Rightarrow d heta \propto -dx ; *i.e.* temperature will decrease linearly with *x*.

- 13. (b) Since the curved surface of the conductor is thermally insulated, therefore, in steady state, the rate of flow of heat at every section will be the same. Hence the curve between *H* and *x* will be straight line parallel to *x*-axis.
- 14. (d) According to Stefan's law $E = \sigma T^4$

$$\Rightarrow \log E = \log \sigma + 4 \log T \Rightarrow \log E = 4 \log T + \log \sigma$$

on comparing this equations with y = mx + C

we find that graph between log *E* and log *T* will be a straight line, having positive slope (m = 4) and intercept on log *E* axis equal to $\log \sigma$

15. (c)
$$\frac{d\theta}{dt} = \frac{\varepsilon A \sigma}{mc} 4 \theta_0^3 \Delta \theta$$

For given sphere and cube $\frac{\mathcal{E}A\sigma}{mc} 4\theta_0^3 \Delta\theta$ is constant so for both rate of fall of temperature $\frac{d\theta}{dt}$ = constant

6. (b)
$$\lambda_m T = b$$
 where $b = 2.89 \times 10^{-3} mK$

1

1.

3.

4.

5.

6.

$$T = \frac{b}{\lambda_m} = \frac{2.89 \times 10^{-3}}{1.5 \times 10^{-6}} \approx 2000K$$

17. (b) Wein's law
$$\lambda_m \propto rac{1}{T}$$
 or $v_m \propto T$

_

 $\nu_{\rm i}$ increases with temperature. So the graph will be straight line.

Assertion and Reason

(a) According to Kirchoff's law $\frac{e_{\lambda}}{a_{\lambda}} = E_{\lambda}$

If for a particular wave length $E_{\lambda} = 1 \implies e_{\lambda} = a_{\lambda}$ *i.e.*, aborptivity of a body is equal to it's emissivity. This statement also reveals that a good radiator is also a good absorber and vice versa.

2. (c) According to Weins law $\lambda_m T$ = constant *i.e.*, peak emission

wavelength $\lambda_m \propto \frac{1}{T}$. Also μ as T increases λ_m decreases. Hence assertion is true but

reason is false.

τ

- (b) During the day when water is cooler than the land, the wind blows off the water onto the land (as warm air rises and cooler air fills the place). Also at night, the effect is reversed (since the water is usually warmer than the surrounding air on land). Due to this wind flow the temperature near the sea coast remains moderate.
- (c) Heat is carried away from a fire sideways mainly by radiations. Above the fire, heat is carried by both radiation and by convection of air. The latter process carries much more heat.

- (e) Assertion is false because at absolute zero (U K), heat is neither radiates nor absorbed. Reason is the statement of Stefan's law, as $E \propto T^4$.
- (a) Woolen fibres encloses a large amount of air in them. Both wool and air are the bad conductors of heat and the coefficient of thermal conductivity is small. So, they prevent any loss of heat from our body.

 (d) Equivalent thermal conductivity of two equally thick plates in series combination is given by

If $K_1 < K_2$

then $K_1 < K < K_2$

Hence assertion and reason both are false.

- 8. (c) Hollow metallic closed container maintained at a uniform temperature can act as source of black body. It is also well-known that all metals cannot act as black body because if we take a highly metallic polished surface. It will not behave as a perfect black body.
- **9.** (b) This is in accordance with the Stefan's law $E \propto T^4$.
- 10. (c) At a high temperature (6000 *K*), the sun acts like a perfect blackbody emitting complete radiation. That's why the radiation coming from the sun's surface follows Stefan's law $E = \sigma T^4$.
- **n.** (a) From Wein's displacement law, temperature $(T) \propto 1 / \lambda_m$ (where λ_m is the maximum wavelength). Thus temperature of a body is inversely proportional to the wavelength. Since blue star has smaller wavelength and red star has maximum wavelength, therefore blue star is at higher temperature then red star.

12. (b) From the definition heat flow,
$$Q = \frac{KA \cdot \Delta \theta t}{l}$$

Thermal conductivity $K = \frac{\theta \times l}{A \times \Delta \theta \times t}$

$$\Rightarrow K = \frac{J \times m}{m^2 \times K \times \sec} = \frac{watt}{m \times K}$$

If thermal conductivity of a substance is high, it will pass more heat.

- 13. (c) The thermal conductivity of brass is high *i.e.*, brass is a good conductor of heat. So, when a brass tumbler is touched, heat quickly flows from human body to tumbler. Consequently, the tumbler appears colder, on the other hand wood is a bad conductor. So, heat does not flow from the human body to the wooden tray in this case. Thus it appears comparatively hotter.
- 14. (b) Light radiations and thermal radiations both belongs to electromagnetic spectrum. Light radiations belongs to visible region while thermal radiation belongs to infrared region of *EM* spectrum. Also *EM* radiations requires no medium for propagation.
- 15. (a) When the temperature of the atmosphere reaches below 0° C, then the water vapours present in air, instead of condensing, freeze directly in the form of minute particles of ice. Many particles coalesce and take cotton-like shape which is called snow. Thus snow contains air packets in which convection currents cannot be formed. Hence snow is a good heat insulator. In ice there is no air, so it is a bad insulator.
- 16. (e) In the process of convection, the liquid at the bottom, becoming lighter, rises up. Thus the basis of convection is the difference in weight and upthrust. In weightlessness, this difference does not exist. So convection is not possible.
- 17. (b) Both assertion and reason are true but reason is not correctly explaining the assertion.

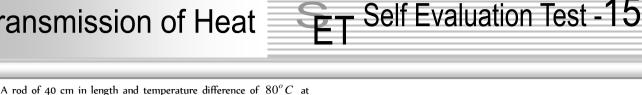
- 18. (c) The 98.4°F is the standard body temperature of a man. If a man touch a iron or wooden ball at 98.4° F, no heat transfer takes place between ball and man, so both the balls would feel equally hot for the man.
- **19.** (c) According to Wien's displacement law the $\lambda_m \propto \frac{1}{T}$.

Hence assertion is true but reason is false.

20. (e) It is not necessary that all black coloured object are black bodies. For example, if we take a black surface which is highly polished, it will not behave as a perfect black body.

A perfectly black body absorbs all the radiations incident on it.

21. (b) By definition,
$$R = \frac{(\theta_1 - \theta_2)}{Q/t} = \frac{l}{KA} \Rightarrow R \propto \frac{1}{K}$$


23.

 (c) Actually, the process of radiation does not require any material for transmission of heat.

> Thermal radiation travels with the velocity of light and hence the fastest mode of the transfer. Thermal radiation is always transmitted in a straight line.

- (c) Two thin blankets put together are more warm because an insulating layer of air (as air is good insulator of heat) is enclosed between two blankets due to which it gives more warmness.
- 24. (a) When the animals feel cold, they curl their bodies into a ball so as to decrease the surface area of their bodies. As total energy radiated by body varies directly as the surface area of the body, the loss of heat due to radiation would be reduced.

- its two ends. Another rod B of length 60 cm and of temperature difference $90^{\circ}C$, having the same area of cross-section. If the rate of flow of heat is the same, then the ratio of their thermal conductivities will be (a) 3:4 (b) 4:3
 - (c) 1:2 (d) 2:1

1.

- Two vessels of different materials are similar in size in every respect. 2. The same quantity of ice filled in them gets melted in 20 minutes and 40 minutes respectively. The ratio of thermal conductivities of [AFMC 1998] the materials is (a) 5:6 (b) 6:5
 - (d) 2:1 (c) 3:1
- 3. In a steady state of thermal conduction, temperature of the ends A and *B* of a 20 *cm* long rod are $100^{\circ}C$ and $0^{\circ}C$ respectively. What will be the temperature of the rod at a point at a distance of 6 *cm* from the end *A* of the rod
 - (a) $-30^{\circ}C$ (b) 70° C
 - (c) $5^{o}C$ (d) None of the above
- Four rods of silver, copper, brass and wood are of same shape. They 4. are heated together after wrapping a paper on it, the paper will burn first on (a) Silver (b) Copper
 - (c) Brass (d) Wood
- The two opposite faces of a cubical piece of iron (thermal 5. conductivity = 0.2 CGS units) are at $100^{\circ}C$ and $0^{\circ}C$ in ice. If the area of a surface is $4cm^2$, then the mass of ice melted in 10 minutes will be

(a)	30 <i>gm</i>	(b)	300 <i>gm</i>
(c)	5 <i>gm</i>	(d)	50 <i>gm</i>

Wein's constant is 2892×10^{-6} MKS unit and the value of λ_m 6. from moon is 14.46 microns. What is the surface temperature of moon

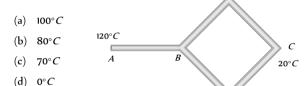
(a)	100 <i>K</i>	(b)	300 K
		(•	

((c)) 400 <i>K</i>	(d)	200 <i>I</i>	5

If at temperature $T_1 = 1000K$, the wavelength is $1.4 \times 10^{-6} m$, 7.

then at what temperature the wavelength will be $2.8 \times 10^{-6} m$

- (a) 2000*K* (b) 500*K*
- (c) 250*K* (d) None of these
- 8. The wavelength of maximum intensity of radiation emitted by a star is 289.8 nm. The radiation intensity for the star is : (Stefan's constant $5.67 \times 10^{-8} W m^{-2} K^{-4}$, constant $b = 2898 \mu m K$)-
 - $5.67 \times 10^8 W/m^2$ (b) $5.67 \times 10^{12} W/m^2$ (a)
 - $10.67 \times 10^7 W/m^2$ (d) $10.67 \times 10^{14} W/m^2$ (c)
- Two friends A and B are waiting for another friend for tea. A took 9. the tea in a cup and mixed the cold milk and then waits. B took the tea in the cup and then mixed the cold milk when the friend comes. Then the tea will be hotter in the cup of


(a) A (b) *B*

10.

- (c) Tea will be equally hot in both cups
- (d) Friend's cup

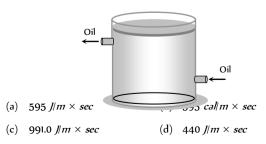
There are two spherical balls A and B of the same material with same surface, but the diameter of A is half that of B. If A and B are heated to the same temperature and then allowed to cool, then

- Rate of cooling is same in both (a)
- (b) Rate of cooling of *A* is four times that of *B*
- Rate of cooling of *A* is twice that of *B* (c)
- Rate of cooling of *A* is $\frac{1}{4}$ times that of *B* (d)
- Five identical rods are joined as shown in figure. Point A and C are 11. maintained at temperature $120^{\circ}C$ and $20^{\circ}C$ respectively. The temperature of junction *B* will be

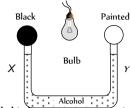
Can we boil water inside the earth satellite by convection 12.

(a) Yes

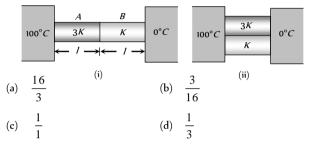
13.


14.

- (b) No
- (c) Nothing can be said
- (d) In complete information is given
- In the following figure, two insulating sheets with thermal resistances *R* and 3*R* as shown in figure. The temperature θ is



The top of insulated cylindrical container is covered by a disc having emissivity 0.6 and thickness 1 cm. The temperature is maintained by circulating oil as shown in figure. If temperature of upper surface of disc is $127^{\circ}C$ and temperature of surrounding is $27^{\circ}C$, then the radiationeAMCES 2001 surroundings the will be (Take


$$\sigma = \frac{17}{3} \times 10^{-8} W / m^2 K^4)$$

15. The following figure shows two air-filled bulbs connected by a Utube partly filled with alcohol. What happens to the levels of alcohol in the limbs X and Y when an electric bulb placed midway between the bulbs is lighted

- (a) The level of alcohol in $\lim X$ falls while that in limb Y rises
- (b) The level of alcohol in limb X rises while that in limb Y falls
- (c) The level of alcohol falls in both limbs
- (d) There is no change in the levels of alcohol in the two limbs
- **16.** Two conducting rods A and B of same length and cross-sectional area are connected (i) In series (ii) In parallel as shown. In both combination a temperature difference of $100^{\circ}C$ is maintained. If thermal conductivity of A is 3K and that of B is K then the ratio of heat current flowing in parallel combination to that flowing in series combination is

2*mm.* The outer and inner temperature are $40^{\circ}C$ and $20^{\circ}C$ respectively. Thermal conductivity of glass in MKS system is 0.2. The heat flowing in the room per second will be

(a)	3×10^4 joules	(b)	2×10^{4}	joules
-----	------------------------	-----	-------------------	--------

- (c) 30 *joules* (d) 45 *joules*
- 18. The spectrum from a black body radiation is a

[MP PMT 1989; RPET 2000]

- (a) Line spectrum
- (b) Band spectrum
- (c) Continuous spectrum
- (d) Line and band spectrum both
- 19. The Wien's displacement law express relation between

[CBSE PMT 2002]

- (a) Frequency and temperature
- (b) Temperature and amplitude
- (c) Wavelength and radiating power of black body
- (d) Wavelength corresponding to maximum energy and temperature
- **20.** A black body is heated from $27^{\circ}C$ to $127^{\circ}C$. The ratio of their energies of radiations emitted will be

21. A body takes T minutes to cool from $62^{\circ}C$ to $61^{\circ}C$ when the surrounding temperature is $30^{\circ}C$. The time taken by the body to cool from $46^{\circ}C$ to $45.5^{\circ}C$ is

[MP PET 1999]

[AIIMS 2001]

- (a) Greater than T minutes
- (b) Equal to *T* minutes
- (c) Less than *T* minutes
- (d) Equal to T/2 minutes
- **22.** A partition wall has two layers A and B in contact, each made of a different material. They have the same thickness but the thermal conductivity of layer A is twice that of layer B. If the steady state temperature difference across the wall is 60K, then the corresponding difference across the layer A is

[SCRA 1994; JIPMER 2001]

(SET -15)

(a)	10 K	(b)	20 K
(d)	10 K	(0)	20 K

- (c) 30K (d) 40K
- 23. Water and turpentine oil (specific heat less than that of water) are both heated to same temperature. Equal amounts of these placed in identical and the place of the plac

- (a) Their cooling curves will be identical
- (b) *A* and *B* will represent cooling curves of water and oil respectively
- (c) *B* and *A* will represent cooling curves of water and oil respectively
- (d) None of the above

S Answers and Solutions

2.

1. (a)
$$\frac{dQ}{dt} = \frac{KA(\theta_1 - \theta_2)}{d}$$

 $\Rightarrow \frac{K_1 \Delta \theta_1}{l_1} = \frac{K_2 \Delta \theta_2}{l_2}$ ($\because \frac{dQ}{dt}$ and *A* are same)
 $\Rightarrow \frac{K_1 \times 80}{40} = \frac{K_2 \times 90}{60} \Rightarrow \frac{K_1}{K_2} = \frac{3}{4}$

(d)
$$\frac{Q}{t} = \frac{KA(\theta_1 - \theta_2)}{l} \implies \frac{mL}{t} = \frac{KA(\theta_1 - \theta_2)}{l}$$

 $\Rightarrow K \propto \frac{1}{t} \qquad (\because \text{ remaining quantities are same})$

$$\Rightarrow \frac{K_1}{K_2} = \frac{t_2}{t_1} = \frac{40}{20} = \frac{2}{1}.$$

3. (b) In steady state, temperature gradient = constant

Transmission of Heat 749_

$$\begin{array}{c} | \overleftarrow{\leftarrow 6 \ cm \rightarrow} 20 \ cm & \xrightarrow{} \\ | \overleftarrow{\leftarrow 6 \ cm \rightarrow} | \\ | 100^{\circ}C \ A & X & B \\ \hline \end{array} \begin{array}{c} 00^{\circ}C \\ \Rightarrow \\ \hline \frac{(\theta_A - \theta_x)}{6} = \frac{(\theta_A - \theta_B)}{20} \Rightarrow (100 - \theta) = \frac{6}{20} \times (100 - 0) \\ \Rightarrow \\ \theta_x = 70^{\circ}C \end{array}$$

 (d) In conducting rod given heat transmits so burning temperature does not reach soon. In wooden rod heat doesn't conducts.

5. (b)
$$Q = mL = KA \frac{(\theta_1 - \theta_2)}{l}t \implies m = \frac{1}{L} \times KA \frac{(\theta_1 - \theta_2)}{l} \times t$$

 $= \frac{1}{80} \times 0.2 \times 4 \times \frac{(100 - 0)}{\sqrt{4}} \times 10 \times 60 \quad (\because l^2 = 4 \implies l = \sqrt{4})$
 $= \frac{0.2 \times 4 \times 100 \times 600}{80 \times 2} = 300 \ gm$

6. (d)
$$\lambda_m T = 2892 \times 10^{-6} \Rightarrow T = \frac{2892 \times 10^{-6}}{14.46 \times 10^{-6}} = 200 \text{ K}$$

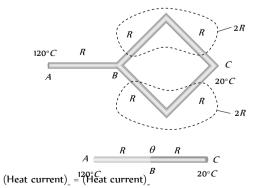
7. (a)
$$\lambda_m \propto \frac{1}{T} \Rightarrow \lambda m_1 T_1 = \lambda m_2 T_2$$

 $\Rightarrow T_2 = \frac{\lambda m_1 T_1}{\lambda m_2} = \frac{1.4 \times 10^{-6} \times 1000}{2.8 \times 10^{-6}} = 2000K$

8. (a) We know $\lambda_{\max}T = b$

$$\Rightarrow T = \frac{b}{\lambda_{\text{max}}} = \frac{2898 \times 10^{-6}}{289.8 \times 10^{-9}} = 10^4 \, K$$

According to Stefan's Law


$$E = \sigma T^4 = (5.67 \times 10^{-8})(10^4)^4 = 5.67 \times 10^8 W/m^2$$

9. (a) The rate of heat loss is proportional to the difference in temperature. The difference of temperature between the tea in cup A and the surrounding is reduced, so it loses less heat. the tea in cup B loses more heat because of large temperature difference. Hence the tea in cup A will be hotter.

10. (c) Rate of cooling
$$R_C = \frac{A \varkappa \sigma (T^4 - T_0^4)}{mc} = \frac{A \varkappa \sigma (T^4 - T_0^4)}{V \rho C}$$

 $\Rightarrow R_C \propto \frac{A}{V} \propto \frac{1}{r} \propto \frac{1}{(\text{Diameter})} \quad (\because m = \rho V)$

Since diameter of A is half that of B so it's rate of cooling will be doubled that of B

11. (c) If thermal resistance of each rod is considered *R* then, the given combination can be redrawn as follows

$$\frac{(120-20)}{R} = \frac{(120-\theta)}{R} \Rightarrow \theta = 70^{\circ}C$$

(b) No, In convection the hot liquid at the bottom becomes lighter and hence it rises up. In this way the base of the convection is the difference in weight and upthrust. In the state of weightlessness this difference does not occur, so convection is not possible.

12.

17.

14. (d) For the two sheets H = H (H = Rate of heat flow)

$$\Rightarrow \frac{(100-\theta)}{R} = \frac{(\theta-20)}{3R} \Rightarrow \theta = 80^{\circ}C$$

15. (a) Rate of heat loss per unit area due to radiation *i.e.* emissive power $e = \partial \sigma (T^4 - T_0^4)$

$$= 0.6 \times \frac{17}{3} \times 10^{-8} \times [(400)^4 - (300)^4]$$
$$= 3.4 \times 10^{-8} \times (175 \times 10^8) = 3.4 \times 175 = 595 J / m^2 \times \text{sec}$$

16. (a) Black bulb absorbs more heat in comparison with painted bulb. So air in black bulb expands more. Hence the level of alcohol in limb X falls while that in limb Y rises.

(a) Heat current
$$H = \frac{\Delta\theta}{R} \Rightarrow \frac{H_P}{H_S} = \frac{R_S}{R_P}$$

In first case : $R_S = R_1 + R_2 = \frac{l}{(3K)A} + \frac{l}{KA} = \frac{4}{3}\frac{l}{KA}$
In second case : $R_P = \frac{R_1R_2}{R_1 + R_2} = \frac{\frac{l}{(3K)A} \times \frac{l}{KA}}{\left(\frac{l}{(3K)A} + \frac{l}{KA}\right)} = \frac{l}{4KA}$
 $\therefore \frac{H_P}{H_S} = \frac{\frac{4l}{3KA}}{\frac{l}{4KA}} = \frac{16}{3}$
(b) $\frac{Q}{t} = \frac{KA(\theta_1 - \theta_2)}{l} = \frac{0.2 \times 10 \times 20}{2 \times 10^{-3}} = 2 \times 10^4 \, J \,/\,\mathrm{sec}$

19. (d)

17.

20. (d)
$$\frac{Q_1}{Q_2} = \frac{T_1^4}{T_2^4} = \left(\frac{273 + 27}{273 + 127}\right)^4 = \left(\frac{300}{400}\right)^4 = \frac{81}{256}$$

21. (b) In first step

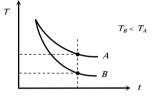
$$\frac{62-61}{T} = K \left[\frac{62-61}{2} - 30^{\circ} \right] \Rightarrow \frac{1}{T} = K [81.5] \qquad \dots (i)$$

In second step, suppose process takes $T'\min$ then

$$\frac{46-45.5}{T'} = K \left[\frac{46-45.5}{2} - 30 \right] \frac{0.5}{T'} = K [15.75] \quad \dots (ii)$$

On diving equation (i) and (ii) $\frac{2T'}{T} = 2 \implies T' = T$

22. (b) Suppose conductivity of layer *B* is *K*, then it is 2*K* for layer *A*. Also conductivity of


combination layers A and B is K,

$$= \frac{2 \times 2K \times K}{(2K + K)} = \frac{4}{3} K$$
Hence $\left(\frac{Q}{t}\right)_{Combination} = \left(\frac{Q}{t}\right)_{A}$

$$= \frac{4}{3} \frac{KA \times 60}{2x} = \frac{2K \cdot A \times (\Delta \theta)_{A}}{x} \Rightarrow (\Delta \theta)_{A} = 20K$$

- **23.** (b) As we know, Rate of cooling $\propto \frac{1}{\text{specific heat}(c)}$
 - $:: c_{oil} < c_{Water}$

 \Rightarrow (Rate of cooling)_{oil} > (Rate of cooling)_{Water}

It is clear that, at a particular time after start cooling, temperature of oil will be less than that of water.

So graph B represents the cooling curve of oil and A represents the cooling curve of water