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Waves in Optical Systems

Light. Waves or Rays?

Light exhibits a dual nature. In practice, its passage through optical instruments such as

telescopes and microscopes is most easily shown by geometrical ray diagrams but the fine

detail of the images formed by these instruments is governed by diffraction which, together

with interference, requires light to propagate as waves. This chapter will correlate the

geometrical optics of these instruments with wavefront propagation. In Chapter 12 we shall

consider the effects of interference and diffraction.

The electromagnetic wave nature of light was convincingly settled by Clerk–Maxwell in

1864 but as early as 1690 Huygens was trying to reconcile waves and rays. He proposed

that light be represented as a wavefront, each point on this front acting as a source

of secondary wavelets whose envelope became the new position of the wavefront,

Figure 11.1(a). Light propagation was seen as the progressive development of such a

process. In this way, reflection and refraction at a plane boundary separating two optical

media could be explained as shown in Figure 11.1(b) and (c).

Huygens’ theory was explicit only on those contributions to the new wavefront directly

ahead of each point source of secondary waves. No statement was made about propagation

in the backward direction nor about contributions in the oblique forward direction. Each of

these difficulties is resolved in the more rigorous development of the theory by Kirchhoff

which uses the fact that light waves are oscillatory (see Appendix 2, p. 547).

The way in which rays may represent the propagation of wavefronts is shown in

Figure 11.2 where spherically diverging, plane and spherically converging wavefronts are

moving from left to right. All parts of the wavefront (a surface of constant phase) take the

same time to travel from the source and all points on the wavefront are the same optical

distance from the source. This optical distance must take account of the changes of

refractive index met by the wavefront as it propagates. If the physical path length is

measured as x in a medium of refractive index n then the optical path length in the medium

is the product nx. In travelling from one point to another light chooses a unique optical path

which may always be defined in terms of Fermat’s Principle.
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Fermat’s Principle

Fermat’s Principle states that the optical path length has a stationary value; its first order

variation or first derivative in a Taylor series expansion is zero. This means that when an

optical path lies wholly within a medium of constant refractive index the path is a straight

line, the shortest distance between its end points, and the light travels between these points

in the minimum possible time. When the medium has a varying refractive index or the path

crosses the boundary between media of different refractive indices the direction of the path

always adjusts itself so that the time taken between its end points is a minimum. Fermat’s

Principle is therefore sometimes known as the Principle of Least Time. Figure 11.3 shows

examples of light paths in a medium of varying refractive index. As examples of light

meeting a boundary between two media we use Fermat’s Principle to derive the laws of

reflection and refraction.

The Laws of Reflection

In Figure 11.4a Fermat’s Principle requires that the optical path length OSI should be a

minimum where O is the object, S lies on the plane reflecting surface and I is the point on

the reflected ray at which the image of O is viewed. The plane OSI must be perpendicular

to the reflecting surface for, if reflection takes place at any other point S 0 on the reflecting

surface where OSS 0 and ISS 0 are right angles then evidently OS 0 >OS and IS 0 > IS, giving
OS 0I >OSI.
The laws of reflection also require, in Figure 11.4a that the angle of incidence i equals

the angle of reflection r. If the coordinates of O, S and I are those shown and the velocity of

light propagation is c then the time taken to traverse OS is

t ¼ ðx2 þ y2Þ1=2=c

Ray

Converging
wavefront

Diverging
wavefront

Plane wavefront

Figure 11.2 Ray representation of spherically diverging, plane and spherically converging
wavefronts
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Figure 11.3 Light takes the shortest optical path in a medium of varying refractive index. (a) A
light ray from the sun bends towards the earth in order to shorten its path in the denser atmosphere.
The sun remains visible after it has passed below the horizon. (b) A light ray avoids the denser
atmosphere and the road immediately below warm air produces an apparent reflection
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Figure 11.4 The time for light to follow the path OSI is a minimum (a) in reflection, when OSI
forms a plane perpendicular to the reflecting surface and îi ¼ r̂r ; and (b) in refraction, when
n sin i ¼ n 0 sin r 0 (Snell’s Law)
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and the time taken to traverse SI is

t 0 ¼ ½ðX � xÞ2 þ y2�1=2=c

so that the total time taken to travel the path OSI is

T ¼ t þ t 0

The position of S is now varied along the x axis and we seek, via Fermat’s Principle of

Least Time, that value of x which minimizes T, so that

dT

dx
¼ x

cðx2 þ y2Þ1=2
� X � x

c½ðX � xÞ2 þ y2�1=2
¼ 0

But
x

ðx2 þ y2Þ1=2
¼ sin i

and

X � x

½ðX � xÞ2 þ y2�1=2
¼ sin r

Hence

sin i ¼ sin r

and

îi ¼ r̂r

The Law of Refraction

Exactly similar arguments lead to Snell’s Law, already derived on p. 256.

Here we express it as

n sin i ¼ n 0 sin r 0

where i is the angle of incidence in the medium of refractive index n and r 0 is the angle of
refraction in the medium of refractive index n 0ðn 0 > nÞ. In Figure 11.4b a plane boundary

separates the media and light from O (0, y) is refracted at S (x, 0) and viewed at I (X, Y) on

the refracted ray. If v and v 0 are respectively the velocities of light propagation in the media

n and n 0 then OS is traversed in the time

t ¼ ðx2 þ y2Þ1=2=v

and SI is traversed in the time

t 0 ¼ ½ðX � xÞ2 þ Y 2�1=2=v 0
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The total time to travel from O to I is T ¼ t þ t 0 and we vary the position of S along the x

axis which lies on the plane boundary between n and n 0, seeking that value of x which

minimizes T. So

dT

dx
¼ 1

v

x

ðx2 þ y2Þ1=2
� 1

v 0
ðX � xÞ

½ðX � xÞ2 þ Y 2�1=2
¼ 0

where

x

ðx2 þ y2Þ1=2
¼ sin i

and

ðX � xÞ
½ðX � xÞ2 þ Y 2�1=2

¼ sin r 0

But

1

v
¼ n

c

and

1

v 0 ¼
n 0

c

Hence

n sin i ¼ n 0 sin r 0

Rays and Wavefronts

Figure 11.2 showed the ray representation of various wavefronts. In order to reinforce the

concept that rays trace the history of wavefronts we consider the examples of a thin lens

and a prism.

The Thin Lens

In Figure 11.5 a plane wave in air is incident normally on the plane face of a plano convex

glass lens of refractive index n and thickness d at its central axis. Its spherical face has a

radius of curvature R � d. The power of a lens to change the curvature of a wavefront is

the inverse of its focal length f. A lens of positive power converges a wavefront, negative

power diverges the wavefront.

Simple rays optics gives the power of the plano convex lens as

P ¼ 1

f
¼ ðn� 1Þ 1

R

but we derive this result from first principles that is, by considering the way in which the

lens modifies the wavefront.
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At the central axis the wavefront takes a time t ¼ nd=c to traverse the thickness d. At a

distance r from the axis the lens is thinner by an amount r 2=2R (using the elementary

relation between the sagitta, arc and radius of a circle) so that, in the time t ¼ nd=c, points
on the wavefront at a distance r from the axis travel a distance

ðd � r 2=2RÞ

in the lens plus a distance ðr 2=2Rþ zÞ in air as shown in the figure. Equating the times

taken by the two parts of the wave front we have

nd=c ¼ ðn=cÞðd � r 2=2RÞ þ ð1=cÞðzþ r 2=2RÞ
which yields

z ¼ ðn� 1Þr 2=2R
But this is again the relation between the sagitta z, its arc and a circle of radius R=ðn� 1Þ

so, in three dimensions, the locus of z is a sphere of radius R=ðn� 1Þ and the emerging

spherical wavefront converges to a focus at a distance

f ¼ R=ðn� 1Þ

(Problems 11.1, 11.2, 11.3)

The Prism

In Figure 11.6 a section, height y, of a plane wavefront in air is deviated through an angle �
when it is refracted through an isosceles glass prism, base l, vertex angle � and refractive

Plane
wavefront

r

r 2

z

d R /(n−1)

n

2R

Converging wavefront

Figure 11.5 A plane wavefront is normally incident on a plano-convex lens of refractive index n
and thickness d at the central axis. The radius of the curved surface R � d. The wavefront is a surface
of constant phase and the optical path length is the same for each section of the wavefront. At a
radius r from the central axis the wavefront travels a shorter distance in the denser medium and the
lens curves the incident wavefront which converges at a distance R=ðn� 1Þ from the lens
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index n. Experiment shows that there is one, and only one, value of the incident angle i for

which the angle of deviation is a minimum ¼ �min. It is easily shown using ray optics that

this unique value of i requires the passage of the wavefront through the prism to be

symmetric about the central vertical axis as shown in the figure so that the incident angle i

equals the emerging angle i 0. Equating the lengths of the optical paths AVA 0 and BB 0ð¼ nlÞ
followed by the edges of the wavefront section gives the familiar result

sin
�min þ �

2

� �
¼ n sin

�

2

which is used in the standard experiment to determine n, the refractive index of the prism.

Now there is only one value of i which produces minimum deviation and this leads us to

expect that the passage of the wavefront will be symmetric about the central vertical axis

for if a plane mirror (M in the figure) is placed parallel to the emerging wavefront the

wavefront is reflected back along its original path, and if i 6¼ i 0 there would be two values

of incidence, each producing minimum deviation. At i for minimum deviation any rotation

increases i 0.

β

α α′

θ

A A′

V

i

y y ′

l

i ′

B B′

Central
vertical
axis

M

Central
vertical
axis

Mirror

Figure 11.6 A plane wavefront suffers minimum deviation ð�minÞ when its passage through a prism
is symmetric with respect to the central vertical axis ði ¼ i 0Þ. The wavefront obeys the Optical
Helmholtz Condition that ny tan� is a constant where n is the refractive index, y is the width of the
wavefront and � is shown. (Here � ¼ � 0Þ
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However, the real argument for symmetry from a wavefront point of view depends on the

optical Helmholtz equation which we shall derive on p. 321. This states that for a plane

wavefront the product ny tan� remains constant as it passes through an optical system

irrespective of the local variations of the factors n, y and tan�. Now the wavefront has the

same width on entry into and exit from the prism so y ¼ y 0 and although n changes at the

prism faces the initial and final medium for the wavefront is air where n ¼ 1.

Hence, from the optical Helmholtz equation tan� ¼ tan� 0 in Figure 11.6. It is evident

that as long as its width y ¼ y 0 the wavefront section will turn through a minimum angle

when the physical path length BB 0 followed by its lower edge is a maximum with respect

to AVA 0, the physical path length of its upper edge.

Ray Optics and Optical Systems

An optical system changes the curvature of a wavefront. It is formed by one or more optical

surfaces separating media of different refractive indices. In Fig. 11.7 rays from the object

point L0 pass through the optical system to form an image point L 0. When the optical

surfaces are spherical the line joining L0 and L 0, which passes through the centres of

curvature of the surfaces, is called the optical axis. This axis cuts each optical surface at its

pole. If the object lies in a plane normal to the optical axis its perfect image lies in a

conjugate plane normal to the optical axis. Conjugate planes cut the optical axis at

conjugate points, e.g. L0 and L 0. In Figure 11.7 the plane at þ1 has a conjugate focal

plane cutting the optical axis at the focal point F. The plane at �1 has a conjugate focal

plane cutting the optical axis at the focal point F 0.

Paraxial Rays

Perfect geometrical images require perfect plane and spherical optical surfaces and in a real

optical system a perfect spherical optical surface is obtained by using only that part of the

wavefront close to the optical axis. This means that all angles between the axis and rays are

very small. Such rays are called paraxial rays.

Positive
curvature

Negative
curvature

Optic axisPole

Direction of
incident light

L0 F F ′ L ′

+ ∞− ∞

Figure 11.7 Optical system showing direction of incident light from left to right and optical
surfaces of positive and negative curvature. Rays from L 0 pass through L 0 and this defines L 0 and L 0

as conjugate points. The conjugate point of F is at þ1, the conjugate point of F 0 is at �1
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Sign Convention

The convention used here involves only signs of lengths and angles. The direction of

incident light is positive and is always taken from left to right. Signs for horizontal and

vertical directions are Cartesian. If AB ¼ l then BA ¼ �l. The radius of curvature of a

surface is measured from its pole to its centre so that, in Figure 11.7, the convex surface

presented to the incident light has a positive radius of curvature and the concave surface

has a negative radius of curvature.

The Cartesian convention with origin O at the right angles of Figure 11.8 gives the angle

between a ray and the optical axis the sign of its tangent.

If the angle between a ray and the axis is � then, for paraxial rays

sin� ¼ tan� ¼ �

and

cos� ¼ 1

so that Snell’s Law of Refraction

n sin i ¼ n 0 sin r 0

becomes

ni ¼ n 0r 0

Power of a Spherical Surface

In Figure 11.9(a) and (b) a spherical surface separates media of refractive indices n and n 0.
Any ray through L0 is refracted to pass through its conjugate point L 0. The angles are

exaggerated so that the base of h is very close to the pole of the optical surface which is

taken as the origin. In Figure 11.9(a) the signs of R, l 0 and � 0 are positive with l and �
negative. In Figure 11.9(b) R, l, l 0 , � and � 0 are all positive quantities. In both figures

Snell’s Law gives

ni ¼ n 0r 0

0
++

+

+

−
−

−

−Direction of
incident light

Figure 11.8 Sign convention for lengths is Cartesian measured from the right angles at O. Angles
take the sign of their tangents. O is origin of measurements
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i.e.

nð�� �Þ ¼ n 0ð�� � 0Þ
or

n 0� 0 � n� ¼ ðn 0 � nÞ� ¼ n 0 � n

R

� �
h ¼ Ph ð11:1Þ

Thus

n 0

l 0
� n

l
¼ n 0 � n

R
¼ P ð11:2Þ

where P is the power of the surface. For n 0 > n the power P is positive and the surface

converges the wavefront. For n 0 < n, P is negative and the wavefront diverges. When the

radius of curvature R is measured in metres the units of P are dioptres.

l

l

i

i

i

n

n

α

α

α′

α′

θ

θ

h

h

R

R

L0

L0

L′C

C

R, l, l ′, α, α′ are positive

R, l ′, α′, are positive
l, α are negative

l ′

l ′

L ′

i ′

i ′

n ′

n ′

(a)

(b)

Figure 11.9 Spherical surface separating media of refractive indices n and n 0. Rays from L 0 pass
through L 0. Snell’s Law gives the power of the surface as

P ¼ n 0

l 0
� n

l
¼ n 0 � n

R
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Magnification by the Spherical Surface

In Figure 11.10 the points QQ 0 form a conjugate pair, as do L0L
0. The ray QQ 0 passes

through C the centre of curvature, L0Q is the object height y, L 0Q 0 is the image height y 0 so

ni ¼ n 0r 0

gives

ny=l ¼ n 0y 0=l 0

or

nyh=l ¼ n 0y 0h=l 0

that is

ny� ¼ n 0y 0� 0 ð11:3Þ
This is the paraxial form of the optical Helmholtz equation.

The Transverse Magnification is defined as

MT ¼ y 0=y ¼ nl 0=n 0l:

The image y 0 is inverted so y and y 0 (and l and l 0) have opposite signs.

The Angular Magnification is defined as

M� ¼ � 0=�

Note that

MT ¼ n=n 0M�

which, being independent of y, applies to any point on the object so that the object in the

plane L0Q is similar to the image in the plane L 0Q 0.

α′α

n n ′
y ′

L′

Q′

Q

lL 0
i ′

l ′

y

i
h

C

Figure 11.10 Magnification by a spherical surface. The paraxial form of the optical Helmholtz
equation is ny� ¼ n 0y 0� 0 so Transverse Magnification MT ¼ y 0=y ¼ nl 0=ln 0 Angular Magnification
M� ¼ � 0=�. Note that the image is inverted so y and y 0 (and l and l 0) have opposite signs
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A series of optical surfaces separating media of refractive indices n, n 0n 00 yields the

expression

ny� ¼ n 0y 0� 0 ¼ n 00y 00� 00

which is the paraxial form of the optical Helmholtz equation.

Power of Two Optically Refracting Surfaces

If Figure 11.11 the refracting surfaces have powers P1 and P2, respectively. At the first

surface equation (11.1) gives

n1�1 � n� ¼ P1h1

and at the second surface

n 0� 0 � n1�1 ¼ P2h2

Adding these equations gives

n 0� 0 � n� ¼ P1h1 þP2h2

If the object is located at �1 so that � ¼ 0 we have

n 0� 0 ¼ P1h1 þP2h2

or

� 0 ¼ 1

n 0 ðP1h1 þP2h2Þ

Object
space

Image
spaceFirst refractive

surface
Second refractive
surface

− ∞
α = 0 α1

α1α′

n ′n1n

h1

h2

2

1

Figure 11.11 Two optically refracting surfaces of power P 1 and P 2 have a combined power of

P ¼ 1

h 1

ðP 1h1 þP 2h2Þ
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This gives the same image as a single element of power P if

� 0 ¼ 1

n 0 ðP1h1 þP2h2Þ ¼ 1

n 0Ph1

where

P ¼ 1

h1
ðP1h1 þP2h2Þ ð11:4Þ

is the total power of the system. This is our basic equation and we use it first to find the

power of a thin lens in air.

Power of a Thin Lens in Air (Figure 11.12)

Equation (11.2) gives

n 0

l 0
� n

l
¼ n 0 � n

R
¼ P

for each surface, so that in Figure 11.12

P1 ¼ ðn1 � 1Þ=R1

and

P2 ¼ ð1� n1Þ=R2

From equation (11.4)

P ¼ 1

h1
ðP1h1 þP2h2Þ

with

h1 ¼ h2

h

α = 0

n = 1

h1 = h2

n ′ = 1
f  ′

n1

R1 R2

α′
F ′

Figure 11.12 A thin lens of refractive index n1, and radii of surface curvatures R 1 and R2 has a
power

P ¼ ðn 1 � 1Þ 1

R1

� 1

R2

� �
¼ 1

f 0

where f 0 is the focal length. In the figure R1 is positive and R2 is negative
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we have

P ¼ P1 þP2

so the expression for the thin lens in air with surfaces of power P1 and P2 becomes

P ¼ 1

l 0
� 1

l
¼ ðn1 � 1Þ 1

R1

� 1

R2

� �
¼ 1

f 0

where f 0 is the focal length.

Applying this result to the plano convex lens of p. 311 we have R1 ¼ 1 and R2 negative

from our sign convention. This gives a positive power which we expect for a converging

lens.

Effect of Refractive Index on the Power of a Lens

Suppose, in Figure 11.13, that the object space of the lens remains in air ðn ¼ 1Þ but that
the image space is a medium of refractive index n 0

2 6¼ 1. How does this affect the focal

length in the medium n 0
2?

If P is the power of the lens in air we have

n 0
2�

0 � n� ¼ Ph1 ð11:5Þ
and for

� ¼ 0

we have

� 0 ¼ Ph1=n
0
2 ¼ h1=n

0
2 f

0

where f 0 is the focal length in air.

If f 02 is the focal length in the medium n 0
2 then

f 02�
0 ¼ h1

h1

n1

f2′

n2′

α′

α = 0

n = 1

≠ 1

Figure 11.13 The focal length of a thin lens measured in the medium n 0
2 is given by f 02 ¼ n 0

2 f
0

where f 0 is the focal length of the lens measured in air
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so

� 0 ¼ h1=f
0
2 ¼ h1=n

0
2 f

0

giving

f 02 ¼ n 0
2 f

0

Thus, the focal length changes by a factor equal to the refractive index of the medium in

which it is measured and the power is affected by the same factor.

If the lens has a medium n0 in its object space and a medium ni in its image space then

the respective focal lengths f0 and f i in these spaces are related by the expression

f i=f0 ¼ �ni=n0 ð11:6Þ

where the negative signs shows that f0 and f i are measured in opposite directions ð f0 is

negative and f i is positive).

Principal Planes and Newton’s Equation

There are two particular planes normal to the optic axis associated with every lens element

of an optical system. These planes are called principal planes or unit planes because

between these planes there is unit transverse magnification so the path of every ray between

them is parallel to the optic axis. Moreover, any complex optical system has two principal

planes of its own. In a thin lens the principal planes coincide.

The principal planes of a single lens do not, in general, coincide with its optical surfaces;

focal lengths, object and image distances are measured from the principal planes and not

from the optical surfaces. In Figure 11.14, PH and P 0H 0 define the first and second

L

F

L0

P

fx
l

P ′

Q Q ′

n
y

H H ′

F ′
L′

L ′
x ′

y ′

l ′

f ′

n ′

α′
α

α
α′

0

Second focal plane
conjugate to − ∞

First focal plane
conjugate to + ∞

Figure 11.14 Between the principal planes PH and P 0H 0 of a lens or lens system there is unit
magnification and rays between these planes are parallel to the optic axis. Newton’s equation defines
x x 0 ¼ f f 0. The optical Helmholtz equation is ny� ¼ constant for paraxial rays and ny tan� ¼
constant for rays from 1
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principal planes, respectively, of a lens or optical system and PF and P 0F 0 are respectively
the first and second focal lengths. The object and image planes cut the optic axis in L0 and

L 0
0, respectively.

The ray LH parallel to the optic axis proceeds to H 0 and thence through F 0 the second

focal point. The rays LH and H 0F 0 meet at H 0 and therefore define the position of the

second principal plane, P 0H 0. The position of the first principal plane may be found in a

similar way.

If Figure 11.14, the similar triangles FL0L and FPQ give y=y 0 ¼ x=f where, measured

from P, only y is algebraically positive. The similar triangles F 0L 0
0L

0 and F 0P 00H 0 give

y=y 0 ¼ f 0=x 0;

where, measured from P 0, only y 0 is algebraically negative.

We have, therefore,

x=f ¼ f 0=x 0;

where x and f are negative and x 0 and f 0 are positive.

Thus,

xx 0 ¼ f f 0

This is known as Newton’s equation.

If l, the object distance, and l 0, the image distance, are measured from the principal

planes as in Figure 11.14, then

l ¼ f þ x and l 0 ¼ f 0 þ x 0

and Newton’s equation gives

xx 0 ¼ ðl� f Þðl 0 � f 0Þ ¼ ll 0 � l 0f � l f 0 þ f f 0 ¼ f f 0

so that

f 0

l 0
þ f

l
¼ 1

But from n f 0 ¼ �n 0f (equation (11.6)) we have

n 0

l 0
� n

l
¼ n 0

f 0
¼ �n

f
¼ P

the power of the lens.

Optical Helmholtz Equation for a Conjugate Plane at Infinity

Suppose now that the object is no longer located at L0L but at infinity so that the ray LH

originates at one point from the distant object while the ray LFQ comes from a point on the

object much more distant from the optic axis.

Optical Helmholtz Equation for a Conjugate Plane at Infinity 321



We still have from triangle F 0P 0H 0 that

y ¼ f 0 tan� 0

and from triangle FPQ that

y 0 ¼ f tan�

so

f tan�

f 0 tan� 0 ¼
y

y 0
and

f

f 0
y tan� ¼ y 0 tan� 0

But

f

f 0
¼ �n

n 0

so

ny tan� ¼ �n 0y 0 tan� 0

(Note that �; � 0 and y 0 are negative.)

This form of the Helmholtz equation applies when one of the conjugate planes is at

infinity and is to be compared with the general unrestricted form of the Helmholtz equation

for paraxial rays

ny� ¼ n 0y 0� 0

The infinite conjugate form ny tan� ¼ constant is valid when applied to the prism of p. 312

because the plane wavefront originated at infinity.

(Problems 11.4, 11.5, 11.6, 11.7, 11.8)

The Deviation Method for (a) Two Lenses and (b) a Thick Lens

Figure 11.11 illustrated how the deviation of a ray through two optically refracting surfaces

could be used to find the power of a thin lens. We now apply this process to (a) a

combination of two lenses and (b) a thick lens in order to find the power of these systems

and the location of their principal planes. We have already seen in equation (11.5), which

may be written

n 0
1�

0 � n1� ¼ P1y ð11:7Þ

where P1 is the power of the first lens in Figure 11.15a or the power of the first refracting

surface in Figure 11.15b. If the incident ray is parallel to the optic axis, then � ¼ 0 and we

have

n 0
1�

0 ¼ P1y1 ð11:8Þ
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At the second lens or refracting surface

n2�2 � n 0
1�

0
1

so

n 0
2�

0
2 � n 0

1�
0
1 ¼ P2y2 ð11:9Þ

Equation (11.8) plus equation (11.9) gives

n 0
2�

0
2 ¼ P1y1 þP2y2 ð11:10Þ

Now the incident ray strikes the principal plane P 0 at a height y1 so, extrapolating the ray

from F 0, the focal point of the system, through the plane P 0
2 to the plane P 0, we have

n 0
2�

0
2 ¼ Py1 ð11:11Þ

where P is the power of the complete system.

α1

y2

y1

y1 y2

P1

P1 P2

P1 P2

y1 − y2

y1 − y2

d

d

n1n1

n1 n1 = n2 n2

n2

′    α2

α1′

α1′

′

α2′

α2′

′ P2
′

P2
′

′ ′

P1
′

′

P ′

F ′P ′

F ′

(a)

(b)

Figure 11.15 Deviation of a ray through (a) a system of two lenses and (b) a single thick lens. P 0 is
a principal plane of the system. All the significant optical properties may be derived via this method
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From equations (11.10) and (11.11) we have

Py1 ¼ P1y1 þP2y2 ð11:12Þ
Moreover, Figure 11.15 shows that, algebraically

y2 ¼ y1 � d� 0
1

which, with equation (11.8) gives

y2 ¼ y1 � d

n 0
1

P1y1 ¼ y1 � �ddP1y1; ð11:13Þ

where

�dd ¼ d=n 0
1

This, with equation (11.12), gives

P ¼ P1 þP2 � �ddP1P2 ð11:14Þ

where P is the power of the whole system.

From Figure 11.15 we have algebraically

P 0
2P

0 ¼ � y1 � y2

� 0
2

which with equations (11.11) and (11.13) gives

P 0
2P

0 ¼ �n 0
2
�ddP1

P
ð11:15Þ

For a similar ray incident from the right we can find

P1P ¼ n1
�ddP2

P

where P is the first principal plane (not shown in the figures).

A more significant distance for the thick lens of Figure 11.15(b) is P2F
0 the distance

between the second refracting surface and the focal point F 0.
Now

P2F
0 ¼ P 0F 0 � P 0P 0

2

which with

P 0F 0 ¼ n 0
2=P ð11:16Þ
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gives

P2F
0 ¼ n 0

2

P
� n 0

2
�ddP1

P

¼ n 0
2

P
ð1� �ddP1Þ ð11:17Þ

We shall see in the following section that the factor 1� �ddP1 and the power P of the

system arise quite naturally in the matrix treatment of this problem.

The Matrix Method

Tracing paraxial rays through an optical system involves the constant repetition of two

consecutive processes and is particularly suited to matrix methods.

A refracting R process carries the ray from one medium across a refracting surface into a

second medium from where it is taken by a transmitting T process through the second

medium to the next refracting surface for R to be repeated. Both R and T processes and

their products are represented by 2 � 2 matrices.

An R process is characterized by

n 0� 0 � n� ¼ P1y ð11:7Þ

which changes n� but which leaves y unaffected.

We write this in the form

��� 0 � ��� ¼ P1y ð11:18Þ
where

��� i ¼ ni� i

The reader should review Figure 11.8 for the sign convention for angles.

A T process is characterized by

y 0 ¼ y� �dd 0 ��� 0 ð11:19Þ

which changes y but leaves ��� unaffected. The thick lens of the last section demonstrates the

method particularly well and reproduces the results we have already found.

In Figure 11.16 note that

n2�2 � n 0
1�

0
1

that is

���2 ¼ ��� 0
1

We express equations (11.18) and (11.19) in a suitable 2 � 2 matrix form by writing them

as separate pairs.
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For R we have

��� 0
1 ¼ ���1 þP1y1

where P1 is the power of the first refracting surface and

y 01 ¼ 0���1 þ 1y1

so, in matrix form we have

��� 0
1

y 01

� �
¼ 1 P1

0 1

� �
���1

y1

� �
¼ R1

���1

y1

� �

This carries the ray across the first refracting surface.

For T we have
���2 ¼ 1��� 0

1 þ 0y 01
y2 ¼ � �dd 0

1 ���
0
1 þ 1y 01

where ���2 ¼ ��� 0
1, so

���2

y2

� �
¼ 1 0

��dd 0
1 1

� �
��� 0
1

y 01

� �
¼ T12

��� 0
1

y 01

� �

This carries the ray through the lens between its two refracting surfaces.

At the second refracting surface we repeat R to give

��� 0
2 ¼ 1���2 þP2 y2

y 02 ¼ 0���2 þ 1y2

or

��� 0
2

y 02

� �
¼ 1 P2

0 y2

� �
¼ R2

���2

y2

� �

d

n1 n1 = n2
n2′ 

y1 = y1′ 

′ 

′ 

y2 = y2′ 

α1

α1

α1

′ α2

′ α2

α2

21

Figure 11.16 The single lens of Figure 11.15 is used to demonstrate the equivalence of the
deviation and matrix methods for determining the important properties of a lens system. The matrix
method is easily extended to a system of many optical elements
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Therefore

��� 0
2

y 02

� �
¼ R2

���2

y2

� �
¼ R12T12

��� 0
1

y 01

� �
¼ R2T12R1

���1

y1

� �

¼ 1 P2

0 1

� �
1 0

� �dd 0
1 1

� �
1 P1

0 1

� �
���1

y1

� �

which, after matrix multiplication, gives

��� 0
2

y 02

� �
¼ 1� �dd 0

1P2 P1 þP2 � �dd 0
1P1P2

� �dd 0
1 1� �dd 0

1P1

" #
���1

y1

� �

Writing

R2T12R1 ¼ a11 a12

a21 a22

� �

we see that a12 is the power P of the thick lens (equation (11.14)) and that a22 apart from

the factor n02=P is the distance between the second refracting surface and the second focal

point. The product of the coefficient a11 and n1=P gives the separation between the first

focal point and the first refracting surface. Note, too, that a11 and a22 enable us to locate

the principal planes with respect to the refracting surfaces.

The order of the matrices for multiplication purposes is the reverse of the progress of the

ray through R1T12R2, etc.

If the ray experiences a number J of such transformations, the general result is

��� 0
J

y 0J

� �
¼ RJTJ�1;J RJ�1 . . .R2T12R1

���1

y1

� �

The product of all these 2�2 matrices is itself a 2�2 matrix.

It is important to note that the determinant of each matrix and of their products is unity,

which implies that the column vector represents a property which is invariant in its passage

through the system.

The components of the column vector are, of course, ���1y1; that is, n� and y and we

already know that for paraxial rays the Helmholtz equation states that the product ny�
remains constant throughout the system.

(Problems 11.9, 11.10, 11.11)

Problem 11.1
Apply the principle of p. 311 to a thin bi-convex lens of refractive index n to show that its power is

P ¼ ðn� 1Þ 1

R1

� 1

R2

� �

where R 1 and R2, the radii of curvature of the convex faces, are both much greater than the thickness

of the lens.
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Problem 11.2
A plane parallel plate of glass of thickness d has a non-uniform refractive index n given

by n ¼ n 0 � �r 2 where n0 and � are constants and r is the distance from a certain line perpendicular

to the sides of the plate. Show that this plate behaves as a converging lens of focal length 1=2�d.

Problem 11.3
For oscillatory waves the focal point F of the converging wavefront of Figure 11.17 is located where

Huygens secondary waves all arrive in phase: the point F 0 vertically above F receives waves whose

total phase range �� depends on the path difference AF 0–BF 0. When F 0 is such that �� is 2� the

resultant amplitude tends to zero. Thus,

F

F′
P

B

A

θ

Figure 11.17

the focus is not a point but a region whose width x depends on the wavelength � and the angle �
subtended by the spherical wave. If PF 0 is perpendicular to BF the phase at F 0 and P may be

considered the same. Show that the width of the focal spot is given by x ¼ �=sin �. Note that sin � is
directly related to the f=d ratio for a lens (focal length/diameter) so that x defines the minimum size

of the image for a given wavelength and a given lens.

Problem 11.4
As an object moves closer to the eye its apparent size grows with the increasing angle it subtends at

the eye. A healthy eye can accommodate (that is, focus) objects from infinity to about 25 cm, the

closest ‘distance of distinct vision’. Beyond this ‘near point’ the eye can no longer focus and a

magnifying glass is required. A healthy eye has a range of accommodation of 4 dioptres (1/1 to

1/0.25 m). If a man’s near point is 40 cm from his eye, show that he needs spectacles of power equal

to 1.5 dioptres. If another man is unable to focus at distances greater than 2 m, show that he needs

diverging spectacles with a power of �0:5 dioptres.

Problem 11.5
Figure 11.18 shows a magnifying glass of power P with an erect and virtual image at l 0. The angular
magnification

M� ¼ �=�

¼ angular size of image seen through the glass at distance l 0

angular size of object seen by the unaided eye at d o
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where do is the distance of distinct vision. Show that the transverse magnification MT ¼ l 0=l where l
is the actual distance (not do) at which the object O is held. Hence show that M� ¼ do=l and use the

thin lens power equation, p. 318, to show that

M� ¼ doðPþ 1=l 0Þ ¼ Pdo þ 1

when l 0 ¼ d o. Note thatM� reduces to the value Pdo when the eye relaxes by viewing the image at1.

l

l

y
γ β0

d0 = l ′

y ′

Lens power P

Eye

Figure 11.18

Problem 11.6
A telescope resolves details of a distant object by accepting plane wavefronts from individual points

on the object and amplifying the very small angles which separate them. In Figure 11.19, � is the

angle between two such wavefronts one of which propagates along the optical axis. In normal

adjustment the astronomical telescope has both object and image at 1 so that the total power of the

system is zero. Use equation (11.14) to show that the separation of the lenses must be f o þ f e where

f o and f e are respectively the focal lengths of the object and eye lenses.
If 2y is the width of the wavefront at the objective and 2y 0 is the width of the wavefront at the eye

ring show that

M� ¼ � 0

�

����
���� ¼ f o

f e

����
���� ¼ D

d

Eye ring
Eye

Plane
wavefronts Object lens

f0 fe

Eye lens Eye

I
α

y

Dα

α α′
α′ y ′

2

d
2

Rays from virtual
image at ∞

Figure 11.19
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where D is the effective diameter of the object lens and d is the effective diameter of the eye lens.

Note that the image is inverted.

Problem 11.7
The two lens microscope system of Figure 11.20 has a short focus objective lens of power Po and a

magnifying glass eyepiece of power P e. The image is formed at the near point of the eye (the

distance d o of Problems 11.4 and 11.5). Show that the magnification by the object lens is

M o ¼ �Po x
0 where the minus sign shows that the image is inverted. Hence use the expression for

the magnifying glass in Problem 11.5 to show that the total magnification is

M ¼ M oM e ¼ �PoP edo x
0

The length x 0 is called the optical tube length and is standardized for many microscopes at 0.14 m.

Object

f0

fe

d0

I1

I2

f0′
fe′

x ′

Eye

Eye

Figure 11.20
Problem 11.8
Microscope objectives are complex systems of more than one lens but the principle of the oil

immersion objective is illustrated by the following problem. In Figure 11.21 the object O is

embedded a distance R=n from the centre C of a glass sphere of radius

Glass

0 C

P

n

I

Air

Figure 11.21
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R and refractive index n. Any ray OP entering the microscope is refracted at the surface of the sphere

and, when projected back, will always meet the axis CO at the point I. Use Snell’s Law to show that

the distance IC¼ nR.

Problems 11.9, 11.10, 11.11
Using the matrix method or otherwise, find the focal lengths and the location of the principal plane

for the following lens systems (a), (b) and (c). The glass in all lenses has a refractive index of n ¼ 1:5
and all measurements have the same units. Ri is a radius of curvature.

0.3

(a)

R1 = −1 R2 = ∞

R3 = −1

R2 = −0.5

R1 = ∞ R4 = ∞

0.15 0.2 0.15

(b)

R2 = −0.5

R3 = +0.5R1 = ∞ R4 = ∞

0.15 0.150.6

(c)

Summary of Important Results

Power of a Thin Lens

P ¼ ðn� 1Þ 1

R1

� 1

R2

� �
¼ 1

f

where n is the refractive index of the lens material, R1 and R2 are the radii of curvature of

the lens surfaces and f is the focal length.

Power of two thin lenses separated a distance d in Air

P ¼ P1 þP2 � dP1P2

where P1 and P2 are the powers of the thin lenses.
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Power of a thick lens of thickness d and refractive index n

P ¼ P1 þP2 � d=nP1 P2

where P1 and P2 are the powers of the refracting surfaces of the lens.

Optical Helmholtz Equation

For a plane wavefront (source at 1) passing through an optical system the product

ny tan� ¼ constant

where n is the refractive index, y is the width of the wavefront section and � is the angle

between the optical axis and the normal to the wavefront.

For a source at a finite distance, this equation becomes, for paraxial rays,

ny� ¼ constant
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