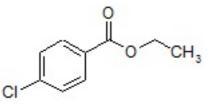
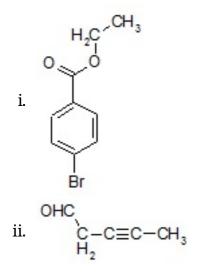
CBSE TEST PAPER-05

Class - 12 Chemistry (Aldehydes, Ketones and Carboxylic Acids)

- 1. Benzene reacts with CH₃COCl in the presence of AlCl₃ to give:
 - a. C₆H₅COCH₃
 - b. C_6H_5COCl
 - c. $C_6H_5CH_3$
 - d. C₆H₅Cl
- 2. CH₃CH(OCH₃)CHO is called
 - a. None of these
 - b. alpha Methoxypropionaldehyde and 2 Methoxypropanal
 - c. Methoxypropionaldehyde
 - d. 2 Methoxypropanal
- 3. Which of the following has most acidic hydrogen?
 - a. 2, 3 Hexanedione
 - b. 2, 5 Hexanedione
 - c. 2, 4 Hexanedione
 - d. 3 Hexanone
- 4. Methyl ketones are usually characterized by:
 - a. Benedict's reagent
 - b. Iodoform test
 - c. Schiff's test
 - d. Tollen's reagent
- 5. Give IUPAC names of the following compound:


 $H_2 - CH_3$

- a. None of these
- b. Phenylpropan 1 al
- c. 1 Phenylpropan 1 one
- d. Phenylpropan 1 one


6. Write the IUPAC name of the following ketones and aldehyde. If possible, also give common name.

or Ph-CH=CH-CHO

- 7. Name the following compound according to IUPAC system of nomenclature. $(CH_3)_3CCH_2COOH$
- 8. Name the following compound according to IUPAC system of nomenclature. CH₃COCH₂COCH₃
- 9. Draw the structural formula of hex-2-en-4-ynoic acid.
- 10. Write IUPAC name of

11. Write IUPAC names of the following:

- 12. Show conversion of Toluene to Benzaldehyde.
- 13. An organic compound A, which has a characteristic odour, on treatment with con.NaOH forms two compounds B and C. Compound B has molecular formula C₇H₈O which on oxidation gives back A. Compound C is the sodium salt of an acid. C, when heated with soda lime yields an aromatic hydrocarbon D. Deduce the structures of A,

B, C and D.

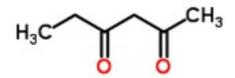
- 14. How will you prepare:
 - a. Acetic anhydride and
 - b. Acetyl chloride from acetic acid?Write the reaction involved in each case.
- 15. Arrange the following compounds in increasing order of their boiling points: CH₃CH₂OH, CH₃OCH₃, CH₃CH₂CH₃

CBSE TEST PAPER-05

Class - 12 Chemistry (Aldehydes, Ketones and Carboxylic Acids) **Solutions**

1. (a) $C_6H_5COCH_3$

Explanation: $C_6H_6 + CH_3COCl \xrightarrow{AlCl_3} C_6H_5COCH_3$


This is known as friedal craft acylation reaction. AlCl₃ act as a lewis acid and will

generate CH_3CO^+ carbocation and this will attack benzene to give $C_6H_5COCH_3$

- 2. (b) alpha Methoxypropionaldehyde and 2 Methoxypropanal **Explanation:** This is alpha Methoxypropionaldehyde(common name) and 2 – Methoxypropanal (IUPAC name)
- 3. (c) 2, 4 Hexanedione

Explanation: 2,4-hexanedione will have active methylene group.

The structure of 2,4-hexanedione is

-CH₂ group present between the two carbonyl group is active methylene group, these hydrogens are highly acidic as their conjugate base is highly stable.

4. (b) Iodoform test

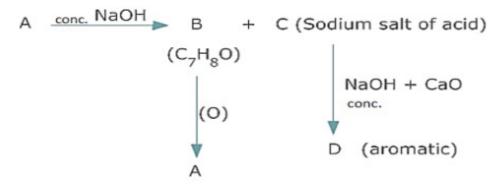
```
Explanation: CH_3COR + I_2 + NaOH 
ightarrow CHI_3 + RCOO^-Na^+
```

Iodoform test is characteristic test given by methyl ketones. CHI formed is yellow precipitate.

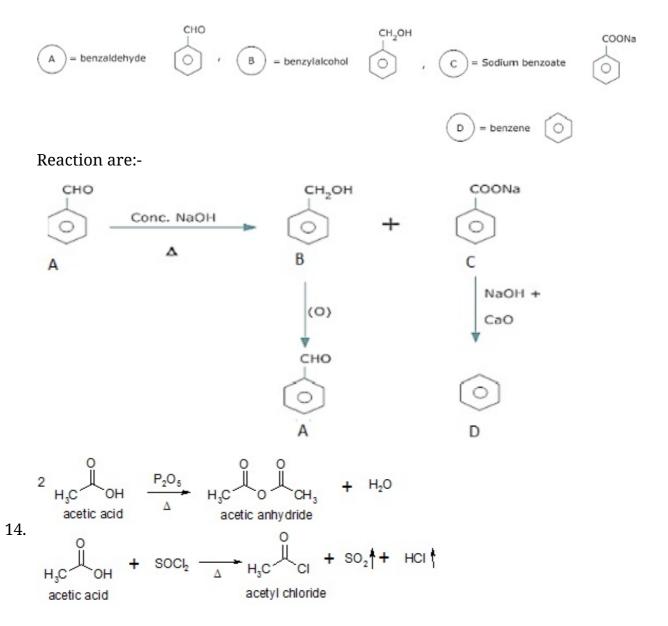
5. (c) 1 - Phenylpropan - 1 - one


here functional group is ketone so numbering will start from functional group. at 1 position phenyl group is attached so, 1-phenyl will be subsituent name written first, followed by word root which is 'prop' and finally suffix 'one'

6. **IUPAC Name:** 3-Phenylprop-2-enal **Common Name:** β -Phenylacrolein


- 7. 3,3-Dimethylbutanoic acid
- 8. Pentane-2,4-dione

9.
$$CH_3-C\equiv C-CH=CH-\overset{O}{\overset{\parallel}{U}}-OH$$


- 10. Ethyl-4-chlorobenzoate
- 11. i. Ethyl-4-bromobenzoate
 - ii. Pent-3-yn-1-al
- 12. Controlled oxidation of Toluene with CrO_3 gives Benzaldehyde.

13. This is Cannizzaro Reaction

The molecular formula of (B) and characteristic odour of (A) suggests that (A) is an aromatic aldehyde, C_6H_5 CHO and (B) is alcohol, C_6H_5 CH₂OH. As (C) is a sodium salt of an acid & gives hydrocarbon (D) on heating with soda lime, (C) is sodium benzoate and (D) is benzene. In this reaction, Benzaldehyde undergoes self oxidation and reduction(disproportionation). Therefore:-

15. The molecular masses of the given compounds are in the range 44 to 46. CH₃CH₂OH undergoes extensive intermolecular hydrogen-bonding resulting in the association of molecules; therefore, it has the highest boiling point. Whereas, CH₃CH₂CH₃ being an alkane will have the weak van der Waals force between its molecules, thus will have the lowest boiling point. CH₃CHO being an aldehyde will be more polar than the ketone CH₃COCH₃, and its molecule will have more strong dipole-dipole interaction as compared to those between CH₃COCH₃ molecules. As the forces of attraction vary in the order van der Waals