

DPP No. 87

Total Marks : 31

Max. Time : 32 min.

Topic : Parabola

Type of Questions		М.М.	, Min.
Single choice Objective (no negative marking) Q.1,2,3	(3 marks, 3 min.)	[9,	9]
Multiple choice objective (no negative marking) Q.4,5	(5 marks, 4 min.)	[10,	8]
Subjective Questions (no negative marking) Q.6,7,8	(4 marks, 5 min.)	[12,	15]

1. The parabola having its focus at (3, 2) and directrix along the y-axis has its vertex at-

(1) $(2, 2)$ (1) $(2, -)$ (0) $(2, -)$ (1) $(3, -)$	(A) (2, 2)	(B) $\left(\frac{3}{2}, 2\right)$	$(C) \left(\frac{1}{2}, 2\right)$	(D) $\left(\frac{2}{3}, 2\right)$
---	------------	-----------------------------------	-----------------------------------	-----------------------------------

- **2.** Through the vertex 'O' of the parabola $y^2 = 4ax$, variable chords OP and OQ are drawn at right angles. If the variable chord PQ intersects the axis of x at R, then distance OR:
 - (A) varies with different positions of P and Q
 - (B) equals the semi latus rectum of the parabola
 - (C) equals latus rectum of the parabola
 - (D) equals double the latus rectum of the parabola
- 3. Area of the triangle formed by the tangents at the points (4, 6), (10, 8) and (2, 4) on the parabola $y^2 2x = 8y 20$, is (in sq. units) (A) 4 (B) 2 (C) 1 (D) 8
- 4. The equation of tangents drawn to the parabola $y^2 + 12x = 0$ from the point (3, 8) is/are (A) 3x - y - 1 = 0 (B) x - 2y + 13 = 0 (C) x + 3y - 27 = 0 (D) none of these
- 5. The equation $y^2 + 3 = 2(2x + y)$ represents a parabola with the vertex at :

(A) $\left(\frac{1}{2}, 1\right)$ & axis parallel to x – axis	(B) $\left(1, \frac{1}{2}\right)$ & axis parallel to x-axis
(C) $\left(\frac{1}{2}, 1\right)$ & focus at $\left(\frac{3}{2}, 1\right)$	(D) $\left(\frac{1}{2}, 1\right)$ & axis parallel to y-axis

- 6. The focal distance of a point on a parabola $y^2 = 8x$ is 8. Find it
- 7. Two tangents to the parabola $y^2 = 8x$ meet the tangent at its vertex in the points P and Q. If PQ = 4 units, find the locus of the point of intersection of the two tangents.
- 8. Find the equations of common tangents to the parabola $y^2 = 16x$ and the circle $x^2 + y^2 = 8$.

Answers Key

1. (B) **2.** (C) **3.** (B) **4.** (A)(C) **5.** (A)(C) **6.** (6, $4\sqrt{3}$), (6, $-4\sqrt{3}$) **7.** $y^2 = 8(x + 2)$] **8.** $x \pm y + 4 = 0$