CHAPTER: 1
UNITS, DIMENSIONS AND VECTORS

In science, particularly in physics, we try to make measurements as precisely as
possible. Several times in the history of science, precise measurements have led
to new discoveries or important developments. Obviously, every measurement
must be expressed in some units. For example, if you measure the length of your
room, it is expressed in suitable units. Similarly, if you measure the interval between
two events, it is expressed in some other units. The unit of a physical quantity is
derived, by expressing it in base units fixed by international agreement. The idea
of base units leads us to the concept of dimensions, which as we shall see, has
important applications in physics.

You will learn that physical quantities can generally be divided in two groups:
scalars and vectors. Scalars have only magnitudes while vectors have both
magnitude and direction. The mathematical operations with vectors are somewhat
different from those which you have learnt so far and which apply to scalars. The
concepts of vectors and scalars help us in understanding physics of different natural
phenomena. You will experience it in this course.

OBJECTIVES

After studying this lesson, you should be able to:

® describe the scope of physics, nature of its laws and applications of the
principles of physics in our life;

e identify the number of significant figures in measurements and give their
importance;

e distinguish between the fundamental and derived quantities and give their
SI units;

e write the dimensions of various physical quantities;



e apply dimensional analysis to check the correctness of an equation and
determine the dimensional nature of ‘unknown’ quantities;
e differentiate between scalar and vector quantities and give examples of each;

® add and subtract two vectors and resolve a vector into its components; and

® calculate the product of two vectors.

1.1 PHYSICAL WORLD AND MEASUREMENTS

1.1.1 Physics: Scope and Excitement

The scope of Physics is very wide. It covers a vast variety of natural phenomena.
It includes the study of mechanics; heat and thermodynamics; optics; waves and
oscillations; electricity and magnetism; atomic and nuclear physics; electronics
and computers etc. Of late, need for solutions of quite a few problems has led
to the development of subjects like biophysics, chemical physics, astrophysics,
soil physics, geophysics etc., thus widening the scope of physics further. In
physics, we study large objects such as stars, planets etc.; and tiny objects like
elementary particles; large distances such as 10?° m (size of the universe) as
well as small distances such as 107 m (size of the nucleus of an atom); large
masses such as 107 kg (mass of universe) as well as tiny masses of 10730 kg
(mass of an electron).

Physics is perhaps the most basic of all sciences. All developments in engineering
or technology are nothing but the applications of Physics.

The study of Physics has led to many exciting discoveries, inventions and their
applications for example:
(1) A falling apple led to the understanding of gravitation.

(ii)) Production of electrical energy by hydro, thermal or nuclear power plants
(imagine the life and the world without electricity).

(iii) Receiving messages and visuals from anywhere on the globe by telephone
and television,

(iv) Landing on the moon and the study of planets like Mars and other
astronomical objects with robotic control from the ground,

(v) The study of the outer space with the help of artificial satellites, and satellite
mounted telescopes,

(vi) Lasers and its numerous applications

(vii) High speed computers, and many more.

1.1.2 Nature of Physical Laws

Physicists explore the universe. Their investigations based on scientific process
range from sub-atomic particles to big stars.



Physical laws are typical conclusions based on repeated scientific experiments
and observations over many years and which have been accepted universally
within the scientific community. Physical laws are:

e True at least within their regime of validity.

e Universal. They appear to apply everywhere in the universe.

e Simple. They are typically expressed in terms of a single mathematical
equation.

¢ Absolute. Nothing in the universe appears to affect them.

e Stable. Unchanged since discovered (although they may have some
approximations and/or exceptions).

¢ Omnipotent. Everything in the universe apparently must comply with them.

1.1.3 Physics, Technology and Society

Technology is the application of the principles of physics for the manufacture
of machines, gadgets etc. and improvements in them, which leads to better
quality of our physical life. For example:

(i) Different types of Engines (steam, petrol, diesel etc.) are based on the
laws of thermodynamics.

(il) Means of communication e.g. radio, telephone, television etc. are based
on the propagation of electromagnetic waves.

(iii) Generation of electricity is based on the principle of electromagnetic
induction.

(iv) Nuclear reactors — are based on the phenomenon of controlled nuclear
fission.

(v) Jet aeroplanes and rockets are based on Newton’s second and third laws
of motion.

(vi) X-rays, ultraviolet rays and infrared rays are used in medical science for
diagnostic and healing purposes.

(vii) Mobile phones, calculators and computers are based on the principles of
electronics.

(viii) Lasers are based on the phenomenon of population inversion, and so on.

1.1.4 Need of Measurement

Every new discovery brings in revolutionary change in the structure of society
and life of its people. Can you illustrate this fact with the help of some examples?

Physics, as we know, is a branch of science which deals with nature and natural
phenomena. For complete and proper study of any phenomenon, measurement
of quantities involved is essential. For example, to study the motion of a particle,
measurement of its displacement, velocity, and acceleration at any instant has



to be made accurately. For this, measurement of time and distance has to be
done. Similarly, measurement of volume, pressure and temperature is necessary
to study the state of a gas fully. Measurement of mass, volume and temperature
of a liquid has to be made to study the effect of heat on it. Thus, we find that
measurement of quanties, such as, distance, time, temperature, mass, force etc.
has to be made to study every natural phenomena. This explains the need for
measurement.

1.2 UNIT OF MEASUREMENT

The laws of physics are expressed in terms of physical quantities such as distance,
speed, time, force, volume, electric current, etc. For measurement, each physical
quantity is assigned a unit. For example, time could be measured in minutes,
hours or days. But for the purpose of useful communication among different
people, this unit must be compared with a standard unit acceptable to all. As
another example, when we say that the distance between Mumbai and Kolkata is
nearly 2000 kilometres, we have for comparison a basic unit in mind, called a
kilometre. Some other units that you may be familiar with are a kilogram for
mass and a second for time. It is essential that all agree on the standard units, so
that when we say 100 kilometres, or 10 kilograms, or 10 hours, others understand
what we mean by them. In science, international agreement on the basic units is
absolutely essential; otherwise scientists in one part of the world would not understand
the results of an investigation conducted in another part.

Suppose you undertake an investigation on the solubility of a chemical in water.
You weigh the chemical in tolas and measure the volume of water in cupfuls. You
communicate the results of your investigation to a scientist friend in Japan. Would
your friend understand your results?

It is very unlikely that your friend would understand your results because he/she
may not be familiar with tola and the cup used in your measerments, as they are
not standard units.

Do you now realize the need for agreed standards and units?

Remember that in science, the results of an investigation are considered
established only if they can be reproduced by investigations conducted
elsewhere under identical conditions.

Measurements in Indian Traditions

Practices of systematic measurement are very old in India. The following quote
from Manusmriti amply illustrates this point :

“The king should examine the weights and balance every six months to ensure
true measurements and to mark them with royal stamp.” —Manusmriti, 8th Chapter,
sloka—403.




In Harappan Era, signs of systematic use of measurement are found in
abundance : the equally wide roads, bricks having dimensions in the ratio 4 : 2
: 1, Ivory scale in Lothal with smallest division of 1.70 mm, Hexahedral weights
0f 0.05,0.1,0.2,0.5, 1, 2, 5, 10, 20, 50, 100, 200 and 500 units (1 unit =20 g)

In Mauriyan Period, the following units of length were prevalent

8 Parmanu = 1 Rajahkan
8 Rajahkan =1 Liksha
8 Liksha =1 Yookamadhya

8 Yookamadhya =1 Yavamadhya
8 Yavamadhya =1 Angul
8 Angul = 1 Dhanurmushthi

In Mughal Period, Shershah and Akbar tried to re-establish uniformity of
weights and measures. Akbar introduced gaz of 41 digits for measuring length.
For measuring area of land, bigha was the unit. 1 bigha was 60 gaz x 60 gaz.

Units of mass and volume were also well obtained in Ayurveda.

1.2.1 The SI Units

With the need of agreed units in mind, the 14th General Conference on Weights
and Measures held in 1971, adopted seven base or fundamental units. These
units form the ST system. The name SI is abbreviation for Systeme International
d’Unités for the International System of units. The system is popularly known as
the metric system. The SI units along with their symbols are given in Table 1.1.

Table 1.1 : Base SI Units

Quantity Unit Symbol
Length metre m
Mass kilogram kg
Time second S
Electric Current ampere A
Temperature kelvin K
Luminous Intensity candela cd
Amount of Substance mole mol

The mile, yard and foot as units of length are still used for some purposes in India
as well in some other countries. However, in scientific work we always use SI
units.

As may be noted, the SI system is a metric system. It is quite easy to handle
because the smaller and larger units of the base units are always submultiples
or multiples of ten. These multiples or submultiples are given special names.
These are listed in Table 1.2.



Table 1.2 : Prefixes for powers of ten

Power of ten Prefix Symbol Example

10-8 atto a attometre (am)
1015 femto f femtometre (fm)
1012 pico p picofarad (pF)
107 nano n nanometre (nm)
106 micro u micron (um)
1073 milli m milligram (mg)
1072 centi G centimetre (cm)
10! deci d decimetre (dm)
10! deca da decagram (dag)
10? hecto h hectometre (hm)
103 kilo k kilogram (kg)
10¢ mega M megawatt (MW)
10° giga G gigahertz (GHz)
10'2 tera T terahertz (THz)
10 peta P peta kilogram (Pkg)
108 exa E exa kilogram (Ekg)

Just to get an idea of the masses and sizes of various objects in the universe, see
Table 1.3 and 1.4. Similarly, Table 1.5 gives you an idea of the time scales involved

in the universe.

Table 1.3 : Order of magni-

tude of some masses

Mass kg
Electron 10
Proton 107
Amino acid 10%
Hemoglobin 102
Flu virus 10
Giant amoeba 108
Raindrop 106
Ant 1072
Human being 102
Saturn 5 rocket 106
Pyramid 101
Earth 10
Sun 10%

Milky Way galaxy  10*

Universe 10%

Table 1.4 : Order of magnitude

of some lengths

Length m
Radius of proton 10
Radius of atom 1071
Radius of virus 1077
Radius of giant amoeba 10+
Radius of walnut 1072
Height of human being 10°
Height of highest

mountain 10*
Radius of earth 107
Radius of sun 10°
Earth-sun distance 10"
Radius of solar system 1013
Distance to nearest star 106
Radius of Milky Way

galaxy 10!
Radius of visible universe 10%




Table 1.5 : Order of magnitude of some time intervals

Interval S

Time for light to cross nucleus 102
Period of visible light 10°%
Period of microwaves 10710
Half-life of muon 10
Period of highest audible sound 10
Period of human heartbeat 10°
Half-life of free neutron 10°
Period of the Earth’s rotation (day) 103
Period of revolution of the Earth (year) 107
Lifetime of human beings 10°
Half-life of plutonium-239 1012
Lifetime of a mountain range 10
Age of the Earth 107
Age of the universe 10"

1.2.2 Standards of Mass, Length and Time

Once we have chosen to use the SI system of units, we must decide on the set of
standards against which these units will be measured. We define here standards
of mass, length and time.

(i) Mass : The SI unit of mass is kilogram. The
standard kilogram was established in 1887. It is
the mass of a particular cylinder made of
platinum-iridium alloy, which is an unusually
stable alloy. The standard is kept in the
International Bureau of Weights and Measures in
Paris, France. The prototype kilograms made of
the same alloy have been distributed to all countries
the world over. For India, the national prototype
is the kilogram no. 57. This is maintained by the

National Physical Laboratory, New Delhi (Fig. ~ Fig. 1.1 : Prototype of
1.1). kilogram

(ii) Length : The SI unit of length is metre. It is defined in terms of a natural
phenomenon: One metre is defined as the distance travelled by light in
vacuum in a time interval of 1/299792458 second.

This definition of metre is based on the adoption of the speed of light in
vacuum as 299792458 ms!



(iii) Time : One second is defined as the time required for a Cesium - 133
(333Cs) atom to undergo 9192631770 vibrations between two hyperfine
levels of its ground state.

This definition of a second has helped in the development of a device called
atomic clock (Fig. 1.2). The cesium clock maintained by the National Physical
Laboratory (NPL) in India has an uncertainty of = 1 X 107'? s, which
corresponds to an accuracy of one picosecond in a time interval of one second.

Cesium Atomic Clock
(S60,000)

Cesium Beam Tube

Fig. 1.2 : Atomic Clock

As of now, clock with an uncertainty of 5 parts in 10'* have been developed. This
means that if this clock runs for 10> seconds, it will gain or lose less than 5
seconds. You can convert 103 s to years and get the astonishing result that this
clock could run for 6 million years and lose or gain less than a second. This is not
all. Researches are being conducted today to improve upon this accuracy
constantly. Ultimately, we expect to have a clock which would run for 10'8 second
before it could gain or lose a second. To give you an idea of this technological
achievement, if this clock were started at the time of the birth of the universe, an
event called the Big Bang, it would have lost or gained only two seconds till now.

Role of Precise Measurements in New Discoveries

A classical example of the fact that precise measurements may lead to new
discoveries are the experiments conducted by Lord Rayleigh to determine
density of nitrogen.

In one experiment, he passed the air bubbles through liquid ammonia over red
hot copper contained in a tube and measured the density of pure nitrogen so
obtained. In another experiment, he passed air directly over red hot copper
and measured the density of pure nitrogen. The density of nitrogen obtained in
second experiment was found to be 0.1% higher than that obtained in the first




case. The experiment suggested that air has some other gas heavier than
nitrogen present in it. Later he discovered this gas — Argon, and got Nobel
Prize for this discovery.

Another example is the failed experiment of Michelson and Morley. Using
Michelson’s interferometer, they were expecting a shift of 0.4 fringe width in
the interference pattern obtained by the superposition of light waves travelling
in the direction of motion of the earth and those travelling in a transverse
direction. The instrument was hundred times more sensitive to detect the shift
than the expected shift. Thus they were expecting to measure the speed of
earth with respect to ether and conclusively prove that ether existed. But when
they detected no shift, the world of science entered into long discussions to
explain the negative results. This led to the concepts of length contraction,
time dilation etc and ultimately to the theory of relativity.

Several discoveries in nuclear physics became possible due to the new technique
of spectroscopy which enabled detection, with precision, of the traces of new
atoms formed in a reaction.

1.2.3 Significant Figures

When a student measures the length of a line as 6.8 cm, the digit 6 is certain,
while 8 is uncertain as a little less or more than 0.8 cm is reported as 0.8 cm.
Normally those digits in measurement that are known with certainly plus the
first uncertain digit, are called significant figures.

Thus, there are two significant figures in 1.4 cm. The number of significant
figures in any quantity depends upon the accuracy of the measuring instrument.
More the number of significant number of figures, less is the percentage of error
in the measurement of the quantity. If there are lesser number of significant
figures (in a measurement) more will be the percentage error in the measurement.

The number of significant figures of a quantity may be found by the following
rules:

(i) All non-zero digits are significant. For example, 315.58 has five significant
figures.

(ii)) All zeros between two non-zero digits are significant. For example,
5300405.003 has ten significant figures.

(iii) All zeros which are to the right of a decimal point and also to the right
of a non-zero digit are significant. For example, 50.00 has four significant
figures, and so has .04050. It should be noted that in .04050, the first zero
to the right of the decimal is not significant but, the last zero is significant.



(iv) All zeros to the right of a decimal point and to the left of a non-zero digit
in a decimal fraction are not significant. For example, .00043 has only two
significant figures but 2.00023 has 6 significant figures. It is also to be noted
that zero conventionally placed to the left of a decimal point is not
significant.

(v) All zero to the right of last of non-zero digit are significant, if they come
from some measurement. For example, if the distance between two objects
is 4050m (measured to the nearest metre), then 4050 m contains 4
significant figures.

(vi) The number of significant figures does not vary with the change in unit.
For example, if the length of an object is 348.6 cm, it has 4 significant
figures. If the length is expressed in metre, then it is equal to 3.486 m. It
still has 4 significant figures.

(vii) In a whole number all zeros to the right of the last non zero number are
not significant, for example 5000 has only one significant figure.

Importance of significant figures in measurement.

As stated earlier, the accuracy of the measurement determines the number of
significant figures in the quantity. Suppose the diameter of a coin is 2 cm. If
a student measures the diameter with a metre scale which can read up to .1
cm only (i.e. cannot read less than 0.1 cm) the student will report the diameter
to be 2.0 cm i.e. upto 2 significant figures only. If the diameter is measured by
an instrument which can read upto .01 cm only (or which cannot measure less
than .01cm), viz a Vernier Callipers, he will report the diameter as 2.00 cm i.e.
upto 3 significant figure. Similarly if the measurement is made by an instrument
like a screw gauge which can measure upto .001 cm only (i.e. cannot measure
less than .001 cm), the diameter will be recorded as 2.000 cm i.e. upto 4
significant figures. Thus any measurement should be recorded keeping in view
the accuracy of the measuring instrument.

Importance of significant figures in expressing the result of calculations

Suppose a student measures the side of a cube with the help of a metre scale
which comes to be 3.2 cm. He calculates the volume of this cube mathematically
and reports it to be (3.2x 3.2x 3.2) cubic centimetre or 32.768 cm>. The reported
result is mathematically correct but is not correct in scientific measurement. The
correct volume should be recorded as 33 cm?. This is because there are only
two significant figures in the length of the side of the cube, hence the volume
should also have two significant figures, whereas there are 5 significant figures
in 32.768 which is not correct.



Significant figures in addition, subtraction, multiplication and division

(@

(ii)

Addition and subtraction — Suppose we have to add three quantities, 2.7
m, 3.68 m and 0.486 m. In these quantities, the first measurement is known
upto one decimal place only, hence the sum of these numbers will be definite
upto one decimal place only. Therefore, the correct sum of these numbers
should not be written as 6.848 m but 6.8 m.

Similarly, to find the sum of quantities like 2.65 x 103 cm and 2.63x 10 cm,
all quantities should be converted to the same power of 10. These quantities
will then be, 2.65x 10% cm and .263x 10° cm. Since, the first number is
known upto 2 decimal places, their sum will also be upto 2 decimal places.
Hence 2.65x 10%cm + .263x 10° cm = 2.91x 10 cm.

The same is done with subtraction. For example the result of subtracting
2.38 cm from 4.6 cm will be 2.2 cm, not 2.22 cm.

Multiplication and division — Suppose the length of a plate is measured
as 3.003 m and its width as 2.26 m. According to Mathematical Calculation,
the area of the plate will be 6.78678 mZ. But, it is not correct in scientific
measurement. There are six significant figures in this result. But, the least
number of significant figures (in the width) are only 3. Hence, the
multiplication should also be writen upto 3 significant figures. Therefore,
the correct area would be 6.79 m?.

The same method is applied for division also. For example, dividing 248.57
by 56.9 gives 4.3685413. But, the result should be recorded upto 3
significant figures only as the least number of significant figures in the given
numbers is only 3. Hence, the result will be 4.37.

Similarly, if a body travels a distance of 1452 m in 142 seconds, its speed

2
m per second or

according to mathematical calculations will be 142

10.225352 m s~!, but in scientific measurements it should be 10.2 m s~ !,

as there are only 3 significant figures in the number for time.

(iii) Value of constants used in Calculation

If the radius (r) of a circle is 3.35 cm, to calculate its area (7r2) the value
of m should be taken upto two places of decimal (i.e T =3.14, not 3.1416).
Hence, the area of this circle wr? = (3.14%x 3.35x3.35) cm? = 35.2 cm?,
not 35.23865 cm?.

(iv) If a measured quantity is multiplied by a constant, all the digits in the

product are significant that are obtained by multiplication. For example, if
the mass of a ball is 32.59 g the mass of 10 similar balls will be 32.59x 10
= 325.90 g. Note that there are five significant figures in the number.



1.2.4. Derived Units

We have so far defined three basic units for the measurement of mass, length and
time. For many quantities, we need units which we get by combining the basic
units. These units are called derived units. For example, combination of the units
of length and time gives us the derived unit of speed or velocity, m s™'. Another
example is the interaction of the unit of length with itself. We get derived units of
area and volume as m? and m?, respectively.

Now are would like you to list all the physical quantities that you are familiar
with and the units in which they are expressed.

Some derived units have been given special names. Examples of most common
of such units are given in Table 1.6.

Table 1.6 : Examples of derived units with special names

Quantity Name Symbol Unit Symbol
Force newton N kg m s
Pressure pascal Pa N m=
Energy/work joule J Nm

Power watt ' Js!

One of the advantages of the SI system of units is that they form a coherent set in
the sense that the product or division of the SI units gives a unit which is also the
SI unit of some other derived quantity. For example, product of the SI units of
force and length gives directly the SI unit of work, namely, newton-metre (Nm)
which has been given a special name joule. Some care should be exercised in
the order in which the units are written. For example, Nm should be written in
this order. If by mistake we write it as mN, it becomes millinewton, which is
something entirely different.

Remember that in physics, a quantity must be written with correct units.
Otherwise, it is meaningless and, therefore, of no significance.

Example 1.1 : Anand, Rina and Kaif were asked by their teacher to measure the
volume of water in a beaker.

Anand wrote : 200; Rina wrote : 200 mL; Kaif wrote : 200 Lm
Which one of these answers is correct?

Solution : The first one has no units. Therefore, we do not know what it means.
The third is also not correct because there is no unit like Lm. The second one is
the only correct answer. It denotes millilitre.

Note that the mass of a book, for example, can be expressed in kg or g. You
should not use gm for gram because the correct symbol is g and not gm.



Nomenclature and Symbols

() Symbols for units should not contain a full stop and should remain the
same in the plural. For example, the length of a pencil should be expressed
as 7cm and not 7cm. or 7cms.

(ii)) Double prefixes should be avoided when single prefixes are available,
e.g., for nanosecond, we should write ns and not mus; for pico farad we
write pF and not ppf.

(iii) When a prefix is placed before the symbol of a unit, the combination of
prefix and symbol should be considered as one symbol, which can be
raised to a positive or a negative power without using brackets, e.g., us
I, cm?, mAZ%

us™! = (10°%s)"! (and not 10°s™")

(iv) Do not write cm/s/s for cm s2. Similarly 1 poise = 1 g s”'cm™ and not 1
g/s/cm.

(v) When writing a unit in full in a sentence, the word should be spelt with
the letter in lower case and not capital, e.g., 6 hertz and not 6 Hertz.

(vi) For convenience in reading of large numbers, the digits should be written
in groups of three starting from the right but no comma should be used:
1 532; 1 568 320.

Albert Abraham Michelson
(1852-1931)

German-American Physicst, inventor and experimenter
devised Michelson’s interferometer with the help of which,
in association with Morley, he tried to detect the motion of
earth with respect to ether but failed. However, the failed
experiment stirred the scientific world to reconsider all old theories and led

to a new world of physics.

He developed a technique for increasing the resolving power of telescopes
by adding external mirrors. Through his stellar interferometer along with
100” Hookes telescope, he made some precise measurements about stars.

Now, it is time to check your progress. Solve the following questions. In case
you have any problem, check answers given at the end of the lesson.



INTEXT QUESTIONS 1.1

Discuss the nature of laws of physics.
How has the application of the laws of physics led to better quality of life?

What is meant by significant figures in measurement?

Lol

Find the number of significant figures in the following quantity, quoting the
relevant laws:

(1) 426.69 (ii) 4200304.002  (iii) 0.3040 (iv) 4050 m (v) 5000

5. The length of an object is 3.486 m, if it is expressed in centimetre (i.e. 348.6
cm) will there be any change in number of significant figures in the two cases.

6. What are the four applications of the principles of dimensions? On what
principle are the above based?

7. The mass of the sun is 2 X 10°° kg. The mass of a proton is 2 X 10-*" kg. If the
sun was made only of protons, calculate the number of protons in the sun?

8. Earlier the wavelength of light was expressed in angstroms. One angstrom
equals 108 cm. Now the wavelength is expressed in nanometers. How many
angstroms make one nanometre?

9. A radio station operates at a frequency of 1370 kHz. Express this frequency
in GHz.

10. How many decimetres are there in a decametre? How many MW are there in
one GW?

1.3 DIMENSIONS OF PHYSICAL QUANTITIES

Most physical quantities you would come across in this course can be expressed
in terms of five basic dimensions : mass (M), length (L), time (T), electrical
current (I) and temperature (). Since all quantities in mechanics can be expressed
in terms of mass, length and time, it is sufficient for our present purpose to deal
with only these three dimensions. Following examples show how dimensions of
the physical quantities are combinations of the powers of M, Land T :

(i) Volume requires 3 measurements in length. So it has 3 dimensions in length
(L3.

(ii) Density is mass divided by volume. Its dimensional formula is ML,

(iii) Speed is distance travelled in unit time or length divided by time. Its
dimensional formula is LT



(iv) Acceleration is change in velocity per unit time, i.e., length per unit time per
unit time. Its dimensionsal formula is LT,

(v) Force is mass multiplied by acceleration. Its dimensions are given by the
formula MLT.

Similar considerations enable us to write dimensions of other physical quantities.

Note that numbers associated with physical quantities have no significance in
dimensional considerations. Thus if dimension of x is L, then dimension of 3x will
alsobe L.

Write down the dimensions of momentum, which is product of mass and velocity
and work which is product of force and displacement.

Remember that dimensions are not the same as the units. For example, speed
can be measured in m s or kilometre per hour, but its dimensions are always
given by length divided by time, or simply LT-!.

Dimensional analysis is the process of checking the dimensions of a quantity, or
acombination of quantities. One of the important principles of dimensional analysis
is that each physical quantity on the two side of an equation must have the
same dimensions. Thus if x = p + ¢, then p and g will have the same dimensions
as x. This helps us in checking the accuracy of equations, or getting the dimensions
of a quantity using an equation. The following examples illustrate the use of
dimensional analysis.

1.3.1 Applications of Dimensions (or dimensional equations)

There are four applications of dimensions (or dimensional equations)

(i) Derivation of a relationship between different physical quantities (or
formula);

(ii)) Checking up of accuracy of a formula (or relationship between different
physical quantities);

(iii) Conversion of one system of units into another; and
(iv) Derivation of units of a physical quantity
The above applications are based on the principle that the dimensions of physical

quantities on the two sides of a relation/equation/formula must be the same. This
is called ‘the Principle of Homogeneity of Dimensions’.



1
Example 1.2 : You know that the kinetic energy of a particle of mass m is ) mv?

while its potential energy is mgh, where v is the velocity of the particle, 4 is its
height from the ground and g is the acceleration due to gravity. Since the two
expressions represent the same physical quantity i.e, energy, their dimensions
must be the same. Let us prove this by actually writing the dimensions of the two
expressions.

1
Solution : The dimensions of 3 mv? are ML.(LT-")?, or ML?T2. (Remember that

the numerical factors have no dimensions.) The dimensions of mgh are M.LT 2L,
or ML?T. Clearly, the two expressions are the same and hence represent the
same physical quantity.

Let us take another example to find an expression for a physical quantity in terms
of other quantities.

Example 1.3 : Experience tells us that the distance covered by a car, say x,
starting from rest and having uniform acceleration depends on time ¢ and
acceleration a. Let us use dimensional analysis to find expression for the distance
covered.

Solution : Suppose x depends on the mth power of ¢ and nth power of a. Then
we may write

Xxoc oa"

Expressing the two sides now in terms of dimensions, we get
L' o T (LT?)",

or, L'oc Tm2n 11,

Comparing the powers of L and T on both sides, you will easily getn =1, and m
= 2. Hence, we have

xoc 2a', or xo< af’.

This is as far as we can go with dimensional analysis. It does not help us in getting
the numerical factors, since they have no dimensions. To get the numerical factors,
we have to get input from experiment or theory. In this particular case, of course,
we know that the complete relation is x = (1/2)ar>.

Besides numerical factors, other quantities which do not have dimensions
are angles and arguments of trigonometric functions (sine, cosine, etc),
exponential and logarithmic functions. In sin x, x is said to be the argument of
sine function. In e*, x is said to be the argument of the exponential function.

Now take a pause and attempt the following questions to check your progress.



INTEXT QUESTIONS 1.2

1. Experiments with a simple pendulum show that its time period depends on its
length (/) and the acceleration due to gravity (g). Use dimensional analysis to
obtain the dependence of the time period on / and g .

2. Consider a particle moving in a circular orbit of radius r with velocity v and
acceleration a towards the centre of the orbit. Using dimensional analysis,
show that a o< V/r .

3. You are given an equation: mv = Ft, where m is mass, v is speed, F'is force
and ¢ is time. Check the equation for dimensional correctness.

1.4 VECTORS AND SCALARS

1.4.1 Scalar and Vector Quantities

In physics we classify physical quantities in two categories. In one case, we need
only to state their magnitude with proper units and that gives their complete
description. Take, for example, mass. If we say that the mass of a ball is 50 g, we
do not have to add anything to the description of mass. Similarly, the statement
that the density of water is 1000 kg m= is a complete description of density. Such
quantities are called scalars. A scalar quantity has only magnitude; no direction.

On the other hand, there are quantities which require both magnitude and direction
for their complete description. A simple example is velocity. The statement that
the velocity of a train is 100 km h™! does not make much sense unless we also tell
the direction in which the train is moving. Force is another such quantity. We
must specify not only the magnitude of the force but also the direction in which
the force is applied. Such quantities are called vectors. A vector quantity has
both magnitude and direction.

Some examples of vector quantities which you come across in mechanics are:
displacement (Fig. 1.3), acceleration, momentum, angular momentum and torque
etc.

What is about energy? Is it a scalar or a vector?

To get the answer, think if there is a direction associated with energy. If not, it is
a scalar.



1.4.2 Representation of Vectors

A vector is represented by a line with an arrow indicating its direction. Take
vector AB in Fig. 1.4. The length of the line represents its magnitude on some
scale. The arrow indicates its direction. Vector CD is a vector in the same direction
but its magnitude is smaller. Vector EF
is a vector whose magnitude is the same
as that of vector CD, but its direction

Displacement

Vector
/

is different. In any vector, the initial
point, (point Ain AB), is called the tail
of the vector and the final point, (point

. . . Actual path of
B in AB) with the arrow mark is called a particle

its tip (or head).

. . . Fig. 1.3 : Displacement vector
A vector is written with an arrow over g I

the letter representing the vector, for
example, A . The magnitude of vector

A is simply Aor| A |. In print, a vector is

indicated by a bold letter as A.
Two vectors are said to be equal if their
magnitudes are equal and they point in /

the same direction. This means that all
vectors which are parallel to each other
have the same magnitude and point in the
same direction are equal- Three vectors Fig. 1. 4 Directions and magnitudes of

A, B and C shown in Fig. 1.5 are equal. vectors
We say A =B = C. But D is not equal to
A.

A vector (here D) which has the same

magnitude as A but has opposite x

direction, is called negative of A, or
—A. Thus, D = -A. —L
C
For respresenting a physical vector D \

quantitatively, we have to invariably

choose a proportionality scale. For Fig. 1.5 : Three vectors are equal but fourth
instance, the vector displacement vector D is not equal.

between Delhi and Agra, which is

about 300 km, is represented by choosing a scale 100 km = 1 cm, say. Similarly,
we can represent a force of 30 N by a vector of length 3cm by choosing a scale
10N = 1cm.



From the above we can say that if we translate a vector parallel to itself, it remains
unchanged. This important result is used in addition of vectors. Let us sec how.

1.4.3 Addition of Vectors

You should remember that only vectors of the same kind can be added. For
example, two forces or two velocities can be added. But a force and a velocity
cannot be added.

Suppose we wish to add vectors A and B. First redraw vector A [Fig. 1.6 (a)].
For this draw a line (say pq) parallel to vector A. The length of the line i.e. pg
should be equal to the magnitude of the vector. Next draw vector B such that its
tail coincides with the tip of vector A. For this, draw a line g from the tip of A
(i.e., from the point g ) parallel to the direction of vector B. The sum of two
vectors then is the vector from the tail of A to the tip of B, i.e. the resultant will
be represented in magnitude and direction by line pr. You can now easily prove
that vector addition is commutative. That is, A + B =B + A, as shown in Fig.
1.6 (b). In Fig. 1.6(b) we observe that pgr is a triangle and its two sides pg and
grrespectively represent the vectors A and B in magnitude and direction, and the
third side pr, of the triangle represents the resultant vector with its direction from
p to r. This gives us a rule for finding the resultant of two vectors :

(a) (b)

Fig. 1.6 : Addition of vectors A and B

If two vectors are represented in magnitude and direction by the two
sides of a triangle taken in order, the resultant is represented by the
third side of the triangle taken in the opposite order. This is called
triangle law of vectors.

The sum of two or more vectors is called the resultant vector. In Fig. 1.6(b), pr
is the resultant of A and B. What will be the resultant of three forces acting along
the three sides of a triangle in the same order? If you think that it is zero, you are
right.



Let us now learn to calculate resultant of more
than two vectors.

The resultant of more than two vectors, say
A, B and C, can be found in the same manner
as the sum of two vectors. First we obtain the
sum of A and B, and then add the resultant of
the two vectors, (A + B), to C. Alternatively,
you could add B and C, and then add A to (B
+ C) (Fig. 1.7). In both cases you get the same
vector. Thus, vector addition is associative.
Thatis, A+ B+ C)=(A+B) +C.

Fig. 1.7 : Addition of three
vectors in two different orders
If you add more than three vectors, you will
discover that the resultant vector is the vector from the tail of the first vector
to the tip of the last vector.

Many a time, the point of application of vectors is the same. In such situations, it
1s more convenient to use parallelogram law of vector addition. Let us now learn
about it.

1.4.4 Parallelogram Law of Vector Addition

Let A and B be the two vectors and let O be the angle between them as shown in
Fig. 1.8. To calculate the vector sum, we complete the parallelogram. Here side
PQ represents vector A, side PS represents B and the diagonal PR represents the
resultant vector R. Can you recognize that the diagonal PR is the sum vector A +
B? It is called the resultant of vectors A and B. The resultant makes an angle o
with the direction of vector A. Remember that vectors PQ and SR are equal to
A, and vectors PS and QR are equal, to B. To get the magnitude of the resultant
vector R, drop a perpendicular RT as shown. Then in terms of magnitudes

S A

Fig. 1.8: Parallelogram law of addition of vectors



(PR)* = (PT)*+ (RT)?
= (PQ + QT)* + (RT)?
= (PQ)? + (QT)* + 2PQ.QT + (RT)?
= (PQ)* + [(QT)? + (RT)?] + 2PQ.QT (1.1)
= (PQ)* + (QR)* + 2PQ.QT
= (PQ)* + (QR)* + 2PQ.QR (QT / QR)
R? =A?+ B*+2AB.cosH

Therefore, the magnitude of R is

IR| = JA> 4B’ +2AB.cosO (1.2)

For the direction of the vector R, we observe that

RT RT ___Bsing
PT ~PQ+QT = A+BcosH

tanot = (1.3)

So, the direction of the resultant can be expressed in terms of the angle it makes
with base vector.

Special Cases

Now, let us consider as to what would be the resultant of two vectors when they
are parallel?

To find answer to this question, note that the angle between the two parallel
vectors is zero and the resultant is equal to the sum of their magnitudes and in the
direction of these vectors.

Suppose that two vectors are perpendicular to each other. What would be the
magnitude of the resultant? In this case, 8 = 90° and cos 6 = 0.

Suppose further that their magnitudes are equal. What would be the direction of
the resultant?

Notice that tan oo = B/A = 1. So what is o?

Also note that when 6 = &, the vectors become anti-parallel. In this case o = 0.
The resultant vector will be along A or B, depending upon which of these vectors
has larger magnitude.

Example 1.4: A cart is being pulled by Ahmed north-ward with a force of
magnitude 70 N. Hamid is pulling the same cart in the south-west direction with
a force of magnitude 50 N. Calculate the magnitude and direction of the resulting
force on the cart.



Solution :

Here, magnitude of first force, say, A =70 N.
The magnitude of the second force, say, B = 50 N.
Angle 0 between the two forces = 135 degrees.

So, the magnitude of the resultant is given by
Eqn. (1.2) :

Fig. 1.9: Resultant of forces
R = \/(70)2 +(50)* +2x70%x50x cos(135) inclined at an angle

= /4900 + 2500 - 7000 x sin45
=495N

The magnitude of R =49.5 N.

The direction is given by Eqn. (1.3):

B sin6 50 xsin (135) 50% cos 45
A+Bcosd ~ 70+50cos (135) ~ 70 _50sin 45

Therefore, o = 45.0° (from the tables). Thus R makes an angle of 45° with 70 N
force. That is, R is in North-west direction as shown in Fig. 1.9.

tan o, = 1.00

1.4.5 Subtraction of Vectors

How do we subtract one vector from another? BN .

If yourecall that the difference of two vectors, N B

A - B, is actually equal to A + (-B), then you »Q

can adopt the same method as for addition of 5
A —

two vectors. It is explained in Fig. 1.10. Draw
vector —B from the tip of A. Join the tail of A P
with the tip of —B. The resulting vector is the 0

difference (A — B).
( ) Fig. 1.10 : Subtraction of vector B

You may now like to check your progress. from vector A

INTEXT QUESTIONS 1.3

Given vectors T» and /g

1. Make diagrams to show how to find the following vectors:
(a)B-A, (b) A+2B, (c) A-2B and (d) B - 2A.



2. Two vectors A and B of magnitudes 10 units and 12 units are anti-parallel.
Determine A + B and A - B.

3. Two vectors A and B of magnitudes A = 30 units and B = 60 units respectively
are inclined to each other at angle of 60 degrees. Find the resultant vector.

1.5 MULTIPLICATION OF VECTORS

1.5.1 Multiplication of a Vector by a Scalar

If we multiply a vector A by a scalar &, the product is a vector whose magnitude
is the absolute value of k times the magnitude of A. This means that the magnitude
of the resultant vector is k |A|. The direction of the new vector remains unchanged
if k is positive. If k is negative, the direction of the new vector is opposite to its
original direction. For example, vector 3A is thrice the magnitude of vector A,
and it is in the same direction as A. But vector —3A is in a direction opposite to
vector A, although its magnitude is thrice that of vector A.

1.5.2 Scalar Product of Vectors

The scalar product of two vectors A and B is written as A.B and is equal to AB
cos0, where 0 is the angle between the vectors. If you look carefully at Fig. 1.11,
you would notice that B cosO is the projection of vector B along vector A.
Therefore, the scalar product of A and

B is the product of magnitude of A with

the length of the projection of B along

A. Another thing to note is that even if B
we take the angle between the two

vectors as 360 — 0, it does not matter 5 -

because the cosine of both angles is the > A >
same. Since a dot between the two

vectors indicates the scalar product, it

is also called the dot product.

Remember that the scalar product of two vectors is a scalar quantity.

Fig. 1.11: Projection of B on A

A familiar example of the scalar product is the work done when a force F acts on
abody moving at an angle to the direction of the force. If d is the displacement of
the body and 6 is the angle between F and d, then the work done by the force is
Fdcos6.

Since dot product is a scalar, it is commutative: A.B = B.A = ABcos®0. It is also
distributive: A.(B+ C) =A.B +A.C.

1.5.3 Vector Product of Vectors

Suppose we have two vectors A and B inclined at an angle 6. We can draw a
plane which contains these two vectors. Let that plane be called  ( (Fig. 1.12 a)



(b)

Fig.1.12 (a) : Vector product of Vectors; (b) Direction of the product vector C =A x B
is given by the right hand rule. If the right hand is held so that the curling fingers
point from A to B through the smaller angle between the two, then the thumb
strectched at right angles to fingers will point in the direction of C.

which is perpendicular to the plane of paper here. Then the vector product of
these vectors, written as A X B, is a vector, say C, whose magnitude is AB sin0
and whose direction is perpendicular to the plane . The direction of the vector
C can be found by right-hand rule (Fig. 1.12 b). Imagine the fingers of your
right hand curling from A to B along the smaller angle between them. Then the
direction of the thumb gives the direction of the product vector C. If you follow
this rule, you can easily see that direction of vector B X A is opposite to that of
the vector A X B. This means that the vector product is not commutative.
Since a cross is inserted between the two vectors to indicate their vector product,
the vector product is also called the cross product.

A familiar example of vector product is the angular momentum possessed by a
rotating body.

To check your progress, try the following questions.

INTEXT QUESTIONS 1.4

1. Suppose vector A is parallel to vector B. What is their vector product? What
will be the vector product if B is anti-parallel to A?

1 . . .
2. Suppose we have a vector A and a vector C = Py B. How is the direction of
vector A X B related to the direction of vector A x C.

3. Suppose vectors A and B are rotated in the plane which contains them. What
happens to the direction of vector C = A X B.

4. Suppose you were free to rotate vectors A and B through arbitrary amounts
keeping them confined to the same plane. Can you make vector C=A XB to
point in exactly opposite direction?



5. If vector A is along the x-axis and vector B is along the y-axis, what is the
direction of vector C =A X B? What happens to C if A is along the y-axis and
B is along the x-axis?

6. A and B are two mutually perpendicular vectors. Calculate (a) A . B and (b)
A x B.

1.6 RESOLUTION OF VECTORS

Resolution of vectors is converse of addition of vectors. Here we calculate
components of a given vector along any set of coordinate axes. Suppose we have
vector A as shown in Fig. 1.13 and we need to find its components along x and
y-axes. Let these components be called A and A respectively. Simple trigonometry
shows that

A =Acos@ (1.4)
and Ay =Asin®, (1.5)

where O is the angle that A makes with the x - axis. What about the components
of vector A along X and Y-axes (Fig. 1.13)? If the angle between the X-axis and
A is ¢, then

A =Acos¢
and A, =Asin¢.
yﬂ

Fig. 1.13 : Resolution of vector A along two sets of coordinates (x, y) and (X, Y)

It must now be clear that the components of a vector are not fixed quantities;
they depend on the particular set of axes along which components are required.
Note also that the magnitude of vector A and its direction in terms of its
components are given by

A=JA+A” = (Al TAS (1.6)



and tan 0 = Ay /A, tan ¢ = A, /A,. (1.7)
So, if we are given the components of a vector, we can combine them as in these
equations to get the vector.

1.7 UNIT VECTOR

At this stage we introduce the concept of a unit vector. As the name suggests, a
unit vector has unitary magnitude and has a specified direction. It has no units
and no dimensions. As an example, we can write vector A as A fi where a cap on
n (i.e. i ) denotes a unit vector in the direction of A. Notice that a unit vector has
been introduced to take care of the direction of the vector; the magnitude has
been taken care of by A. Of particular importance are the unit vectors along
coordinate axes. Unit vector along x-axis is denoted by {, along y-axis by j and
along z-axis by k . Using this notation, vector A, whose components along x and
y axes are respectively A and A, can be written as

A :AX§+ij. (1.8)
Another vector B can similarly be written as
B:BX§+Byj'. (1.9
The sum of these two vectors can now be written as
A+B :(AX+BX)§+(Ay+By)j (1.10)
By the rules of scalar product you can show that
i.i=1, j.j=1, k.k=1, i.j=0, i.k=0, and j.k=0 (1.11)
The dot product between two vectors A and B can now be written as
A.B=(A{+A j)®B i+B j)
=AB (i.-D+AB (. j’)+AyBX G-D +AB, G-
=AB +AB, (1.12)
Here, we have used the results contained in Eqn. (1.11).

Example 1.4: On a coordinate system (showing all the four quadrants) show the
following vectors:

A=4i+0j,B=0i+5j,C=4i+5],
D = 6i-4].

Find their magnitudes and directions.



Solution : The vectors are given in component
form. The factor multiplying i is the x component
and the factor multiplying j is the y component.
All the vectors are shown on the coordinate grid
(Fig. 1.14).

The components of A are A =4, A =0. So, the

magnitude of A =4. Its direction is tan {A_VJ in

accordance with Eqn. (1.7). This quantity is zero,

since A = 0. This makes it to be along the x-axis, as it is. Vector B has x-component

=0, so it lies along the y-axis and its magnitude is 5.

Let us consider vector C. Here, C_ =4 and C = 5. Therefore, the magnitude of
CisC= /g y5* = /41 - The angle that it makes with the x-axis is tan™' (C /C ) =

51.3 degrees. Similarly, the magnitude of Dis D = /g . Its direction is tan™' (D /
D) = tan™' (0.666) = —33.7° (in the fourth quadrant).

Example 1.5: Calculate the product C . D for the vectors given in Example 1.4.
Solution : The dot product of C with D can be found using Eqn. (1.12):
C.D=CD +CD, =4x6+5x(-4)=24-20=4.

The cross product of two vectors can also be written in terms of the unit vectors.
For this we first need the cross product of unit vectors. For this remember that
the angle between the unit vectors is a right angle. Consider, for example, i XJ .
Sine of the angle between them is one. The magnitude of the product vector is
also 1. Its direction is perpendicular to the xy - plane containing i and j , which
is the z-axis. By the right hand rule, we also find that this must be the positive z-
axis. And what is the unit vector in the positive z - direction. The unit vector k .
Therefore,

ixj=k. (1.13)
Using similar arguments, we can show,

jxk=i,kxi=j,jxi=-k,kxj=-i,ixk=-j, (114
and ixi=jxj=kxk=0. (1.15)
Example 1.6: Calculate the cross product of vectors C and D given in Example
(1.4).

Solution : We have
CxD=@i+5])x6i-4])
=24 (ixi)=16({ xj§)+30( x1i)=20( xj)



Using the results contained in Eqns. (1.13 — 1.15), we can write

CxD=-16 k -30 k =—-46 k

So, the cross product of C and D is a vector of magnitude 46 and in the negative
z direction. Since C and D are in the xy-plane, it is obvious that the cross product
must be perpendicular to this plane, that is, it must be in the z-direction.

3.

INTEXT QUESTIONS 1.5

A vector A makes an angle of 60 degrees with the x-axis of the xy-system of
coordinates. If its magnitude is 50 units, find its components in x, y directions.
If another vector B of the same magnitude makes an angle of 30 degrees with
the X-axis of the XY- system of coordinates. Find its components now. Are
they same as before?

Two vectors A and B are given respectively as 3 i — 45 and 2§ + 6] .

Sketch them on the coordinate grid. Find their magnitudes and the angles
that they make with the x-axis (see Fig. 1.14).

Calculate the dot and cross product of the vectors given in the above question.

You now know that each term in an equation must have the same dimensions.
Having learnt vectors, we must now add this: For an equation to be correct,
each term in it must have the same character: either all of them be vectors
or all of them be scalars.

WHAT YOU HAVE LEARNT

~—The number of significant figures determines the accuracy of a measurement.

Every physical quantity must be measured in some unit and also expressed
in this unit. The SI system has been accepted and followed universally for
scientific reporting.

Base SI units for mass, length and time are respectively kg, m and s. In
addition to base units, there are derived units.

Every physical quantity has dimensions. Dimensional analysis is a useful
tool for checking correctness of equations.

In physics, we deal generally with two kinds of quantities, scalars and vectors.
A scalar has only magnitude. A vector has both direction and magnitude.

Vectors are added according to the parallelogram rule.
The scalar product of two vectors is a scalar.

The vector product of two vectors is a vector perpendicular to the plane
containing the two vectors.

Vectors can be resolved into components along a specified set of coordinates
axes.



10.

B ANSWERS TO INTEXT QUESTIONS

@5 (i) 10 (iii) 4 (iv) 4 V)1
No, in both cases, the number of significant figures will be 4.
Mass of the sun =2 x 10*° kg
Mass of a proton = 2 X 107" kg
30
2x10 kg _1057 .

No of protons in the sun = =
( P 2x10% kg

1 angstrom = 103 cm = 10" m
1 nanometer (nm) = 10~ m
1 nm/1 angstrom = 10° m /10°m = 10so I nm= 10 A

1370 kHz = 1370 x 10° Hz = (1370 x 10% )/10° GHz = 1.370 x 10 GHz
1 decameter (dam) = 10 m
1 decimeter (dm) = 10 m

1 dam = 100 dm

I MW =10°W

IGW=10°W

1 GW = 10° MW

Dimension of length=L

Dimension of time =T

Dimensions of g = LT

Let time period 7 be proportional to [* and gP

Then, writing dimensions on both sides T = L* (LT?)P = L*# T2
Equating powers of L and T,
o+P=0,2p=-1=pP=-12and o= 1/2

l
So,toc\/: .
8



2. Dimension of a = LT
Dimension of v=LT"!
Dimension of r=L
Let a be proportional to v* and *
Then dimensionally,

LT?=(LT")*LF=LB T
Equating powers of L and T,

a+PB=1l0=2,=a=-1
So, oo Vr

3. Dimensions of mv=MLT"!
Dimensions of Ft = MLT2 T! = MLT"!

Dimensions of both the sides are the same, therefore, the equation is

dimensionally correct.
1.3
1. Suppose
b -A
J
AR
B-A
(a) . (b)
A
B
- >
) —2A
@




1.4
1.

2.

3.

A B

10 units 12 units
B =—12 units
A =10 units

A+B =10+ (-12)

= —2 units
also
A = 10 units —B =+ 12 units
A =B =22 units

A =30 units

|A+B| =77 units

If A and B are parallel, the angle 6 between them is zero. So, their cross
product

AXB=ABsino=0.
If they are antiparallel then the angle between them is 180°. Therefore,
A X B = AB sin 6 = 0, because sin 180° = 0.

If magnitude of B is halved, but it remains in the same plane as before,
then the direction of the vector product C = A X B remains unchanged.
Its magnitude may change.

Since vectors A and B rotate without change in the plane containing them,
the direction of C = A X B will not change.



3.

Suppose initially the angle between A and B is between zero and 180°. Then
C =A xB will be directed upward perpendicular to the plane. After rotation
through arbitrary amounts, if the angle between them becomes > 180°, then
C will drop underneath but perpendicular to the plane.

If A is along x-axis and B is along y-axis, then they are both in the xy plane.
The vector product C = A x B will be along z-direction. If A is along y-
axis and B is along x-axis, then C is along the negative z-axis.

(a) A. B = |A] |B|] cos 6 = 0 when 6 = 90°
(b) AXx B =|A| [B| sin 6 = |A| [B| as sin 6 = 1 at 6 = 90°

When A makes an angle of 60° with the x-axis:
A, = A cos 60 =50 . Y2 = 25 units
Ay = Assin 60 = 50.N3/2 = 50 . 0.866
= 43.3 units
When A makes an angle of 30° with the x-axis
A, =50 cos 30 = 50 . 0.866 = 43.3 units
Ay =50 sin 30 = 50 . %2 = 25 units
The components in the two cases are obviously not the same.
The position of vectors on the coordinate grid is shown in Fig. 1.14.
Suppose A makes an angle 6 with the x-axis, then
tan 0 = — 4/3 = 0 = tan '(— 4/3)
= —53° 6" or 306° 54’
after taking account of the quadrant in which the angle lies.
If B makes an angle ¢ with the x-axis, then
tan ¢ = 6/-2 = -3 = ¢ = tan"'(-3)
= 108° 24’
The dot product of A and B:

A.B = (3i — 4]).(=2i +6])
= 6(i.1) = 24(j.j) = =30

because i.j = j.i =0,and i.i = j.j =1

The cross product of A and B:

AXB=0Gi-4)x(2i+6)

=18(ix )+8( xi)=18kKk -8k =10 k

on using Egs.(1.14) and (1.15). So, the cross product is in the direction
of z-axis, since A and B lie in the xy plane.



