
6. Graphs

What Is The Cartesian Coordinate System

In Cartesian co-ordinates the position of a point P is determined by knowing the distances from two 
perpendicular lines passing through the fixed point. Let O be the fixed point called the origin and XOX’ 
and YOY’, the two perpendicular lines through O, called Cartesian or Rectangular co-ordinates axes. 

 
Draw PM and PN perpendiculars on OX and OY respectively. OM (or NP) and ON (or MP) are called the x-
coordinate (or abscissa) and y-coordinate (or ordinate) of the point P respectively.

1. Axes of Co-ordinates 
In the figure OX and OY are called as x-axis and y-axis respectively and both together are known 
as axes of co-ordinates.

2. Origin 
It is point O of intersection of the axes of co-ordinates.

3. Co-ordinates of the Origin 
It has zero distance from both the axes so that its abscissa and ordinate are both zero. Therefore, 
the coordinates of origin are (0, 0).

4. Abscissa 
The distance of the point P from y-axis is called its abscissa. In the figure OM = PN is the Abscissa.

5. Ordinate 
The distance of the point P from x-axis is called its ordinate. ON = PM is the ordinate in the figure.

6. Quadrant 
The axes divide the plane into four parts. These four parts are called quadrants. So, the plane 
consists of axes and quadrants. The plane is called the cartesian plane or the coordinate plane or 
the xy-plane. These axes are called the co-ordinate axes. 
A quadrant is 1/4 part of a plane divided by co-ordinate axes. 

 
(i) XOY is called the first quadrant 
(ii) YOX’ the second. 
(iii) X’OY’ the third. 
(iv) Y’OX the fourth 
as marked in the figure.

RULES OF SIGNS OF CO-ORDINATES

1. In the first quadrant, both co-ordiantes i.e., abscissa and ordinate of a point are positive.



2. In the second quadrant, for a point, abscissa is negative and ordinate is positive.
3. In the third quadrant, for a point, both abscissa and ordinate are negative.
4. In the fourth quadrant, for a point, the abscissa is positive and the ordinate is negative.

 

Cartesian Coordinate System Example Problems With Solutions

Example 1: From the adjoining figure find 

 
(i) Abscissa 
(ii) Ordinate 
(iii) Co-ordinates of a point P 
Solution: (i) Abscissa = PN = OM = 3 units 
(ii) Ordinate = PM = ON = 4 units 
(iii) Co-ordinates of the point P = (Abscissa, ordinate) = (3, 4)

Example 2: Determine 

 
(i) Abscissa (ii) ordinate (iii) Co-ordinates of point P given in the following figure.

Solution: (i) Abscissa of the point P = – NP = –OM = – a 
(ii) Ordinate of the point P = MP = ON = b 



(iii) Co-ordinates of point P = (abscissa, ordinate) 
= (–a, b)

Example 3: Write down the (i) abscissa (ii) ordinate (iii) Co-ordinates of P, Q, R and S as given in the 
figure. 

 
Solution: Point P 
Abscissa of P = 2; Ordinate of P = 3 
Co-ordinates of P = (2, 3) 
Point Q 
Abscissa of Q = – 2; Ordinate of Q = 4 
Co-ordinate of Q = (–2, 4) 
Point R 
Abscissa of R = – 5; Ordinate of R = – 3 
Co-ordinates of R = (–5, –3) 
Point S 
Abscissa of S = 5; Ordinate of S = – 1 
Co-ordinates of S = (5, – 1)

Example 4: Draw a triangle ABC where vertices A, B and C are (0, 2), (2, – 2), and (–2, 2) respectively. 
Solution: Plot the point A by taking its abscissa O and ordinate = 2. 
Similarly, plot points B and C taking abscissa 2 and –2 and ordinates – 2 and 2 respectively. Join A, B 
and C. This is the required triangle. 

Example 5: Draw a rectangle PQRS in which vertices P, Q, R and S are (1, 4), (–5, 4), (–5, –3) and 
(1, – 3) respectively. 
Solution: Plot the point P by taking its abscissa 1 and ordinate – 4. 
Similarly, plot the points Q, R and S taking abscissa as –5, –5 and 1 and ordinates as 4, – 3 and –3 
respectively. 



Join the points PQR and S. PQRS is the required rectangle. 

Example 6: Draw a trapezium ABCD in which vertices A, B, C and D are (4, 6), (–2, 3), (–2, –5) and 
(4, –7) respectively. 
Solution: Plot the point A taking its abscissa as 4 and ordinate as 6. 
Similarly plot the point B, C and D taking abscissa as – 2, –2 and 4 and ordinates as 3, – 5, and –7 
respectively. Join A, B, C and D ABCD is the required trapezium. 

 

Pythagoras Theorem



Theorem 1: In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares 
of the other two sides. 
Given: A right-angled triangle ABC in which B = ∠90º. 
To Prove: (Hypotenuse)2 = (Base)2 + (Perpendicular)2. 
i.e., AC2 = AB2 + BC2

Construction: From B draw BD ⊥ AC. 

Proof: In triangle ADB and ABC, we have 
∠ADB = ∠ABC         [Each equal to 90º] 
and, ∠A = ∠A           [Common] 
So, by AA-similarity criterion, we have 
∆ADB ~ ∆ABC 

   [∵ In similar triangles corresponding sides are proportional] 
⇒ AB2 = AD × AC                                ….(i) 
In triangles BDC and ABC, we have 
∠CDB = ∠ABC             [Each equal to 90º] 
and, ∠C = ∠C                 [Common] 
So, by AA-similarity criterion, we have 
∆BDC ~ ∆ABC 

         [∵ In similar triangles corresponding sides are proportional] 
⇒ BC2 = AC × DC                              ….(ii) 
Adding equation (i) and (ii), we get 
AB2 + BC2 = AD × AC + AC × DC 
⇒ AB2 + BC2 = AC (AD + DC) 
⇒ AB2 + BC2 = AC × AC 

⇒ AC2 = AB2 + BC2 
Hence, AC2 = AB2 + BC2 
The converse of the above theorem is also true as proved below.

Theorem 2: (Converse of Pythagoras Theorem). 
In a triangle, if the square of one side is equal to the sum of the squares of the other two sides, then the 
angle opposite to the side is a right angle.

Given: A triangle ABC such that AC2 = AB2 + BC2 

 
Construction: Construct a triangle DEF such that DE = AB, EF = BC and ∠E = 90º,



Proof: In order to prove that B = ∠90º, it is sufficient to show that ∆ABC ~ ∆DEF. 
For this we proceed as follows : 
Since  ∆DEF is a right angled triangle with right angle at E. Therefore, by Pythagoras theorem, we have 
DF2 = DE2 + EF2 
⇒ DF2 = AB2 + BC2         [∵  DE = AB and EF = BC         (By construction)] 
⇒ DF2 = AC2                        [∵  AB2 + BC2 = AC2 (Given)] 
⇒ DF = AC                              ….(i) 
Thus, in  ∆ABC and  ∆DEF, we have 
AB = DE, BC = EF           [By construction] 
and, AC = DF                   [From equation (i)] 
∴ ∆ABC ~ ∆DEF 
⇒ ∠B = ∠E = 90º 
Hence, ∆ABC is a right triangle right angled at B.

Pythagoras Theorem With Examples

Example 1:    Side of a triangle is given, determine it is a right triangle. 
(2a – 1) cm,  cm,  and (2a + 1) cm 
Sol.    Let p = (2a – 1) cm, q =  cm and r = (2a + 1) cm. 
Then, (p2 + q2) = (2a – 1)2 cm2 + (2 )2 cm2 
= {(4a2 + 1– 4a) + 8a}cm2 
= (4a2 + 4a + 1)cm2 
= (2a + 1)2 cm2 = r2. 
(p2 + q2) = r2. 
Hence, the given triangle is right angled.

Example 2:    A man goes 10 m due east and then 24 m due north. Find the distance from the starting 
point. 
Sol.    Let the initial position of the man be O and his final position be B. Since the man goes   10 m due 
east and then 24 m due north. Therefore, ∆AOB is a right triangle right-angled at A such that OA = 10 
m and AB = 24 m. 

 
By Phythagoras theorem, we have 
OB2 = OA2 + AB2 
⇒ OB2 = 102 + 242 = 100 + 576 = 676 
⇒ OB =  = 26 m 
Hence, the man is at a distance of 26 m from the starting point.

Example 3:    Two towers of heights 10 m and 30 m stand on a plane ground. If the distance between 
their feet is 15 m, find the distance between their tops. 
Sol. 



 
By Phythagoras theorem, we have 
AC2 = CE2 + AE2 
⇒ AC2 = 152 + 202 = 225 + 400 = 625 
⇒ AC =  = 25 m.

Example 4:     In Fig., ∆ABC is an obtuse triangle, obtuse angled at B. If AD ⊥ CB, prove that 
AC2 = AB2 + BC2 + 2BC × BD 
Sol.    Given: An obtuse triangle ABC, obtuse-angled at B and AD is perpendicular to CB produced. 
To Prove: AC2 = AB2 + BC2 + 2BC × BD 
Proof: Since ∆ADB is a right triangle right angled at D. Therefore, by Pythagoras theorem, we have AB2 
= AD2 + DB2              ….(i) 

 
Again ∆ADC is a right triangle right angled at D. 
Therefore, by Phythagoras theorem, we have 
AC2 = AD2 + DC2 
⇒ AC2 = AD2 + (DB + BC)2 
⇒ AC2 = AD2 + DB2 + BC2 + 2BC • BD 
⇒ AC2 = AB2 + BC2 + 2BC • BD            [Using (i)] 
Hence, AC2 = AB2 + BC2 + 2BC • BD

Example 5:     In figure, ∠B of ∆ABC is an acute angle and AD ⊥ BC, prove that 
AC2 = AB2 + BC2 – 2BC × BD 
Sol.    Given: A ∆ABC in which ∠B is an acute angle and AD ⊥ BC. 

To Prove: AC2 = AB2 + BC2 – 2BC × BD. 
Proof: Since ∆ADB is a right triangle right-angled at D. So, by Pythagoras theorem, we have 
AB2 = AD2 + BD2          ….(i) 
Again ∆ADC is a right triangle right angled at D. 

 
So, by Pythagoras theorem, we have 
AC2 = AD2 + DC2 
⇒ AC2 = AD2 + (BC – BD)2 
⇒ AC2 = AD2 + (BC2 + BD2 – 2BC • BD) 
⇒ AC2 = (AD2 + BD2) + BC2 – 2BC • BD 
⇒ AC2 = AB2 + BC2 – 2BC • BD            [Using (i)] 
Hence, AC2 = AB2 + BC2 – 2BC • BD



Example 6:     If ABC is an equilateral triangle of side a, prove that its altitude = .

Sol.    ∆ABD is an equilateral triangle. 
We are given that AB = BC = CA = a. 
AD is the altitude, i.e., AD ⊥ BC. 
Now, in right angled triangles ABD and ACD, we have 
AB = AC                  (Given) 
and AD = AD         (Common side) 
∆ABD ≅ ∆ACD     (By RHS congruence) 

⇒ BD = CD ⇒ BD = DC =  =  

 
From right triangle ABD. 
AB2 = AD2 + BD2 

 

 

Example 7:     ABC is a right-angled triangle, right-angled at A. A circle is inscribed in it. The lengths of 
the two sides containing the right angle are 5 cm and 12 cm. Find the radius of the circle.

Sol.    Given that ∆ABC is right angled at A. 
AC = 5 cm and AB = 12 cm 
BC2 = AC2 + AB2 = 25 + 144 = 169 
BC = 13 cm 
Join OA, OB, OC 



 
Let the radius of the inscribed circle be r 
Area of ∆ABC = Area of ∆OAB + Area of ∆OBC + Area of ∆OCA 
⇒ 1/2 × AB × AC 

 
⇒  12 × 5 = r × {12 + 13 + 5} 
⇒  60 = r × 30 ⇒   r = 2 cm

Example 7:     ABCD is a rhombus. Prove that 
AB2 + BC2 + CD2 + DA2 = AC2 + BD2

Sol.    Let the diagonals AC and BD of rhombus ABCD intersect at O. 
Since the diagonals of a rhombus bisect each other at right angles. 
∴ ∠AOB = ∠BOC = ∠COD = ∠DOA = 90º 
and AO = CO, BO = OD. 
Since ∆AOB is a right triangle right-angle at O. 

 
∴ AB2 = OA2 + OB2 

         [∵ OA = OC and OB = OD] 
⇒ 4AB2 = AC2 + BD2                      ….(i) 
Similarly, we have 
4BC2 = AC2 + BD2                    ….(ii) 
4CD2 = AC2 + BD2                    ….(iii) 
and, 4AD2 = AC2 + BD2           ….(iv) 
Adding all these results, we get 
4(AB2 + BC2 + AD2) = 4(AC2 + BD2) 
⇒ AB2 + BC2 + AD2 + DA2 = AC2 + BD2

Example 8:     P and Q are the mid-points of the sides CA and CB respectively of a ∆ABC, right angled 
at C. Prove that: 
(i) 4AQ2 = 4AC2 + BC2 
(ii) 4BP2 = 4BC2 + AC2 
(iii) (4AQ2 + BP2) = 5AB2

Sol.     

 



(i)  Since ∆AQC is a right triangle right-angled at C. 
∴ AQ2 = AC2 + QC2 
⇒ 4AQ2 = 4AC2 + 4QC2         [Multiplying both sides by 4] 
⇒ 4AQ2 = 4AC2 + (2QC)2 
⇒ 4AQ2 = 4AC2 + BC2 [∵  BC = 2QC] 
(ii)  Since ∆BPC is a right triangle right-angled at C. 
∴ BP2 = BC2 + CP2 
⇒ 4BP2 = 4BC2 + 4CP2      [Multiplying both sides by 4] 
⇒ 4BP2 = 4BC2 + (2CP)2 
⇒ 4BP2 = 4BC2 + AC2 [∵  AC = 2CP] 
(iii)  From (i) and (ii), we have 
4AQ2 = 4AC2 + BC2 and, 4BC2 = 4BC2 + AC2 
∴ 4AQ2 + 4BP2 = (4AC2 + BC2) + (4BC2 + AC2) 
⇒ 4(AQ2 + BP2) = 5 (AC2 + BC2) 
⇒ 4(AQ2 + BP2) = 5 AB2 
[In ∆ABC, we have AB2 = AC2 + BC2]

Example 9:     From a point O in the interior of a ∆ABC, perpendicular OD, OE and OF are drawn to the 
sides BC, CA and AB respectively. Prove that : 
(i) AF2 + BD2 + CE2 = OA2 + OB2 + OC2 – OD2 – OE2 – OF2 
(ii) AF2 + BD2 + CE2 = AE2 + CD2 + BF2

Sol.      

 
Let O be a point in the interior of ∆ABC and let OD ⊥ BC, OE ⊥ CA and OF ⊥ AB. 
(i)  In right triangles ∆OFA, ∆ODB and ∆OEC, we have 
OA2 = AF2 + OF2 
OB2 = BD2 + OD2 
and, OC2 = CE2 + OE2 
Adding all these results, we get 
OA2 + OB2 + OC2 = AF2 + BD2 + CE2 + OF2 + OD2 + OE2 
⇒ AF2 + BD2 + CE2 = OA2 + OB2 + OC2 – OD2 – OE2 – OF2 
(ii)  In right triangles ∆ODB and ∆ODC, we have 
OB2 = OD2 + BD2 
and, OC2 = OD2 + CD2 
OB2 – OC2 = (OD2 + BD2) – (OD2 + CD2) 
⇒ OB2 – OC2 = BD2 – CD2        ….(i) 
Similarity, we have 
OC2 – OA2 = CE2 – AE2             ….(ii) 
and, OA2 – OB2 = AF2 – BF2            ….(iii) 
Adding (i), (ii) and (iii), we get 
(OB2 – OC2) + (OC2 – OA2) + (OA2 – OB2) 
= (BD2 – CD2) + (CE2 – AE2) + (AF2 – BF2) 
⇒ (BD2 + CE2 + AF2) – (AE2 + CD2 + BF2) = 0 
⇒ AF2 + BD2 + CE2 = AE2 + CD2 + BF2

Example 10:     In a right triangle ABC right-angled at C, P and Q are the points on the sides CA and 
CB respectively, which divide these sides in the ratio 2 : 1. Prove that 
(i) 9 AQ2 = 9 AC2 + 4 BC2 



(ii) 9 BP2 = 9 BC2 + 4 AC2 
(iii) 9 (AQ2 + BP2) = 13 AB2 
Sol.    It is given that P divides CA in the ratio 2 : 1. Therefore, 

      ….(i) 
Also, Q divides CB in the ratio 2 : 1. 

∴       ….(ii) 

 
(i)  Applying pythagoras theorem in right-angled triangle ACQ, we have 
AQ2 = QC2 + AC2 

⇒ AQ2 =  BC2 + AC2              [Using (ii)] 
⇒ 9 AQ2 = 4 BC2 + 9 AC2            ….(iii) 
(ii)  Applying pythagoras theorem in right triangle BCP, we have 
BP2 = BC2 + CP2 
⇒ BP2 = BC2 + AC2               [Using (i)] 
⇒ 9 BP2 = 9 BC2 + 4 AC2             ….(iv) 
(iii)  Adding (iii) and (iv), we get 
9 (AQ2 + BP2) = 13 (BC2 + AC2) 
⇒ 9 (AQ2 + BP2) = 13 AB2 [∵  BC2 = AC2 + AB2]

Example 11:     In a ∆ABC, AD ⊥ BC and AD2 = BC × CD. Prove ∆ABC is a right triangle. 
Sol.     

 
In right triangles ADB and ADC, we have 
AB2 = AD2 + BD2             ….(i) 
and, AC2 = AD2 + DC2           ….(ii) 
Adding (i) and (ii), we get 
AB2 + AC2 = 2 AD2 × BD2 + DC2 
⇒ AB2 + AC2 = 2BD × CD + BD2 + DC2         [∵  AD2 = BD × CD (Given)] 
⇒ AB2 + AC2 = (BD + CD)2 = BC2 
Thus, in ∆ABC, we have 
AB2 = AC2 + BC2 
Hence, ∆ABC, is a right triangle right-angled at A.

Example 12:      The perpendicular AD on the base BC of a ∆ABC intersects BC at D so that DB = 3 
CD. Prove that 2AB2 = 2AC2 + BC2.



Sol.    We have, 

 
DB = 3CD 
BC = BD + DC 
The perpendicular AD on the base BC of a ∆ABC intersects BC at D so that DB = 3 CD. Prove that 
2AC2 + BC2. 
We have, 
DB = 3CD 
∴ BC = BD + DC 
⇒ BC = 3 CD + CD 

⇒ BD = 4 CD ⇒  CD =  BC 

∴ CD =  BC  and BD = 3CD =  BC           ….(i) 
Since ∆ABD is a right triangle right-angled at D. 
∴ AB2 = AD2 + BD2           ….(ii) 
Similarly, ∆ACD is a right triangle right angled at D. 
∴ AC2 = AD2 + CD2         ….(iii) 
Subtracting equation (iii) from equation (ii)  we get 
AB2 – AC2 = BD2 – CD2 

⇒ AB2 – AC2 =         

⇒ AB2 – AC2 =  BC2 –  BC2 

⇒ AB2 – AC2 =  BC2 
⇒ 2(AB2 – AC2) = BC2 
⇒ 2AB2 = 2AC2 + BC2.

Example 13:      ABC is a right triangle right-angled at C. Let BC = a, CA = b, AB = c and let p be the 
length of perpendicular from C on AB, prove that 
(i) cp = ab 

(ii)  
Sol.    (i)  Let CD ⊥ AB. Then, CD = p. 

 

∴ Area of ∆ABC =  (Base × Height) 

⇒  Area of ∆ABC =  (AB × CD) =   cp 
Also, 

Area of ∆ABC =  (BC × AC) =  ab 

∴  cp =  ab 
⇒  cp = ab 
(ii)  Since ∆ABC is right triangle right-angled at C. 
∴ AB2 = BC2 + AC2 
⇒  c2 = a2 + b2 



          

 

 

 

Distance Between Two Points

Distance Formula

(1) Distance between two points on X-axis :

The coordinate axes in the coordinate plane can be treated as number lines. 
If P(x1, 0) and Q(x2, 0) are two points on X-axis, the distance between them is taken as 
PQ = |x1-x2| ……….(i) 



 
(2) Distance between two points on Y-axis: 
If the points A(0, y1) and B(0, y2) are two points on Y-axis, the distance between them is taken as 
AB = |y1-y2| ……….(ii) 

(3) Distance between P(x1, y1) and Q(x2, y2):

Let P(x1, y1) and Q(x2, y2) be two given points in the coordinate plane. 
Let M and N be the feet of perpendiculars from P(x1, y1) and Q(x2, y2) respectively to X-axis. 



 
∴ M and N are respectively (x1, 0) and (x2, 0). 
MN = |x1-x2| ……….(i) 
Let R and S be the feet of perpendiculars from P(x1, y1) and Q(x2, y2) to Y-axis. 
R and S are respectively (0, y1) and (0, y2). 
RS = |y1-y2| ……….(ii) 
Let PR and QN intersect in T. 
Clearly in ∆PQT, ∠PTQ is a right angle. 
Using Pythagoras’ theorem we have, 
PQ2 = PT2 + QT2 = MN2 + RS2 
because QTRS and PTNM are rectangles. 
Now, by (i) and (ii), we have 
PQ2 = MN2 + RS2 
=|x1-x2|2 + |y1-y2|2 
= (x1-x2)2 + (y1-y2)2 

∴  
Formula (iii) gives the distance between two points whose coordinates are (x1, y1) and (x2, y2). The 
distance between the points P and Q is also denoted by d(P, Q). 

 
Thus, d(P, Q) = PQ 

= d(P(x1, y1), Q(x2, y2)) =  
If P and Q lie on X-axis then also formula remains same. 



Here, M = P and N = O. 
R = O and S = Q. 
MN = OP = |x1-0| = |x1| = |x1-y1| (y1 = 0) 
RS = OQ = |0-y2| = |x2-y2| (x2 = 0)

∴ 

 
[Note : P may lie on Y-axis 
Here x1 = 0. 
Here also PS = |y1-y2| (P = R) 
MN = = |0-x2| = |x2-y2| 
Similarly if P lies on X-axis, the formula remains same.] 
If PQ is parallel to any axis then x1 = x2 or y1 = y2 and formula remains same.

‘Distance’ is also known as a ‘Metric’. Metric plays an important role in all kinds of geometry, including 
Euclidean geometry. In fact the nature of Metric defines the type of geometry. The following properties 
of Metric are not only interesting but also very useful. 
(1) d(A, B) = AB ≥ 0 i.e. the distance between two points is a non-negative real number. 
(2) d(A, B) = AB = 0, if and only if A = B. 
(3) d(A, B) = d(B, A) i.e. AB = BA. 
(4) If A(x1, y1), B(x2, y2), C(x3, y3) are three points in coordinate plane, then 
d(A, B) + d(B, C) ≥ d(A, C) i.e. AB + BC ≥ AC. 
If, A, B, C are collinear points and A—B—C then, AB + BC = AC. 
If, A, B, C are non-collinear points or collinear but B—A—C or A—C—B, then AB + BC > AC 
The formula for PQ can also be written as PQ2 = (x1-x2)2 + (y1-y2)2. While solving the examples, this 
form of distance formula is advantageous. We have to be careful that at the end when we find the 
distance ‘PQ’ we have to take the positive square root of the expression for PQ2.

Distance Between Two Points With Examples

Example 1:    Find the distance between two points 
(i) P(–6, 7) and Q(–1, –5) 
(ii) R(a + b, a – b) and S(a – b, –a – b) 

Sol.    (i) Here,  x1 = – 6, y1 = 7 and x2 = – 1, y2 = – 5 

∴   

 



(ii) We have, 

 

(iii) We have, 

 

 

Example 2:    If the point (x, y) is equidistant from the points (a + b, b – a) and (a – b, a + b), prove 
that bx = ay.

Sol.    Let P(x, y), Q(a + b, b – a) and R (a – b, a + b) be the given points. Then 
PQ = PR             (Given) 

 
⇒ {x – (a + b)}2 + {y – (b – a)}2 = {x – (a – b)}2 + {y – (a + b)}2 
⇒ x2 – 2x (a + b) + (a + b)2 + y2 – 2y (b – a) + (b – a)2 = x2 + (a – b)2 – 2x(a – b) + y2 – 2 (a + b) 
+ (a + b)2 
⇒ –2x (a + b) – 2y (b – a) = – 2x (a – b) – 2y (a + b) 
⇒ ax + bx + by – ay = ax – bx + ay + by 
⇒ 2bx = 2ay ⇒ bx = ay

Example 3:    Find the value of x, if the distance between the points (x, – 1) and (3, 2) is 5.

Sol.    Let P(x, – 1) and Q(3, 2) be the given points, Then, 
PQ = 5           (Given) 

 
⇒ (x – 3)2 + 9 = 52 
⇒ x2 – 6x + 18 = 25   ⇒  x2 – 6x – 7 = 0 
⇒ (x – 7) (x + 1) = 0   ⇒  x = 7 or x = – 1

Example 4:     Show that the points (a, a), (–a, –a) and (– √3 a, √3 a) are the vertices of an 
equilateral triangle. Also find its area.

Sol.    Let A (a, a), B(–a, –a) and C(– √3 a, √3 a) be the given points. Then, we have 

 

 

 

 

 

 

 
Clearly, we have 
AB = BC = AC 
Hence, the triangle ABC formed by the given points is an equilateral triangle. 
Now, 

Area of ∆ABC =   (side)2 

⇒ Area of ∆ABC =  × AB2 

⇒ Area of ∆ABC =  × (2√2 a)2 sq. units = 2√3 a2 sq. units



Example 5:     Show that the points (1, – 1), (5, 2) and (9, 5) are collinear.

Sol.    Let A (1, –1), B (5, 2) and C (9, 5) be the given points. Then, we have Clearly, AC = AB + BC 

 

 

 
Hence, A, B, C are collinear points.

Example 6:     Show that four points (0, – 1), (6, 7), (–2, 3) and (8, 3) are the vertices of a rectangle. 
Also, find its area.

Sol.    Let A (0, –1), B(6, 7), C(–2, 3) and D (8, 3) be the given points. Then, 

 

 

 

 
∴ AD = BC and AC = BD. 
So, ADBC is a parallelogram, 

 

 

 
Clearly, AB2 = AD2 + DB2 and CD2 = CB2 + BD2 
Hence, ADBC is a rectangle. 
Now, Area of rectangle ADBC = AD × DB 
= (4√5 × 2√5 ) sq. units = 40 sq. units

Example 7:     If P and Q are two points whose coordinates are (at2, 2at) and (a/t2, 2a/t) respectively 

and S is the point (a, 0). Show that      is independent of t.

Sol.    We have, 

 

 

 

 

 
which is independent of t. 

 



 

Example 8:     If two vertices of an equilateral triangle be (0, 0), (3, √3 ), find the third vertex.

Sol.    O(0, 0) and A(3, √3) be the given points and let B(x, y) be the third vertex of equilateral ∆OAB. 
Then, OA = OB = AB 
⇒  OA2 = OB2 = AB2 

 
We have, OA2 = (3 – 0)2 + (√3 – 0)2 = 12, 
OB2 = x2 + y2 
and, AB2 = (x – 3)2+ (y – √3)2 
⇒  AB2 = x2 + y2 – 6x – 2 y + 12 
∴ OA2 = OB2 = AB2 
⇒  OA2 = OB2 and OB2 = AB2 
⇒  x2 + y2 = 12 
and, x2 + y2 = x2 + y2 – 6x – 2 √3y + 12 
⇒  x2 + y2 = 12 and 6x + 2 √3y = 12 
⇒  x2 + y2 = 12 and 3x + √3y = 6 

 
⇒  3x2 + (6 – 3x)2 = 36 
⇒  12x2 – 36x = 0     ⇒     x = 0, 3 
∴  x = 0  ⇒   √3y = 6 

 
and, x = 3 ⇒   9 + √3 y = 6 

 
Hence, the coordinates of the third vertex B are (0, 2 √3) or (3, – √3).

Example 9:     Find the coordinates of the circumcentre of the triangle whose vertices are (8, 6), (8, – 
2) and (2, – 2). Also, find its circum radius.

Sol.    Recall that the circumcentre of a triangle is equidistant from the vertices of a triangle. Let A (8, 
6), B(8, –2) and C(2, – 2) be the vertices of the given triangle and let P (x, y) be the circumcentre of 
this triangle. Then, 
PA = PB = PC ⇒   PA2 = PB2 = PC2 



 
Now, PA2 = PB2 
⇒  (x – 8)2 + (y – 6)2 = (x – 8)2 + (y + 2)2 
⇒  x2 + y2 – 16x – 12y + 100 = x2 + y2 – 16x + 4y + 68 
⇒  16y = 32 ⇒   y = 2 
and, PB2 = PC2 
⇒  (x – 8)2 + (y + 2)2 = (x – 2)2 + (y + 2)2 
⇒  x2 + y2 – 16x + 4y + 68 = x2 + y2 – 4x + 4y + 8 
⇒  12x = 60 ⇒   x = 5 
So, the coordinates of the circumcentre P are (5, 2). 
Also, Circum-radius = PA = PB = PC 

Example 10:     If the opposite vertices of a square are (1, – 1) and (3, 4), find the coordinates of the 
remaining angular points.

Sol.    Let A(1, – 1) and C(3, 4) be the two opposite vertices of a square ABCD and let B(x, y) be the 
third vertex. 

 
Then, AB = BC 
⇒  AB2 = BC2 
⇒  (x – 1)2 + (y + 1)2 = (3 – x)2 + (4 – y)2 
⇒  x2 – 2x + 1 + y2 + 2y + 1 = 9 – 6x + x2 + 16 – 8y + y2 
⇒  x2 + y2 – 2x + 2y + 2 = x2 + y2 – 6x – 8y + 25 
⇒  4x + 10y = 23 

⇒  x =                  ….(1) 
In right-angled triangle ABC, we have 
AB2 + BC2 = AC2 
⇒  (x – 3)2 + (y – 4)2 + (x – 1)2 + (y + 1)2 = (3 –1)2 + (4 + 1)2 
⇒  x2 + y2 – 4x – 3y – 1 = 0                 …. (2) 
Substituting the value of x from (1) and (2), 
we get 

+ y2 – (23 – 10y) – 3y – 1 = 0 
⇒  4y2 – 12y + 5 = 0   ⇒   (2y – 1) (2y – 5) = 0 

⇒  y =     or   

Putting y =    and y = respectively in (1) we get 



x =    and x =     respectively. 

Hence, the required vertices of the square are  .

Example 11:     Prove that the points (–3, 0), (1, –3) and (4, 1) are the vertices of an isosceles right 
angled triangle. Find the area of this triangle.

Sol.    Let A (–3, 0), B (1, –3) and C (4, 1) be the given points. Then, 

 

 

 

 
Clearly, AB = BC. Therefore, ∆ABC is isosceles. 
Also, AB2 + BC2 = 25 + 25 = (5)2 = CA2 
⇒  ∆ABC is right-angled at B. 
Thus, ∆ABC is a right-angled isosceles triangle. 

Now, Area of ∆ABC =  (Base × Height) 

=  (AB × BC) 

⇒   Area of ∆ABC =  × 5 × 5 sq. units 

=   sq. units.

Example 12:     If P (2, – 1), Q(3, 4), R(–2, 3) and S(–3, –2) be four points in a plane, show that PQRS 
is a rhombus but not a square. Find the area of the rhombus.

Sol.     The given points are P(2, –1), Q(3, 4), R(–2, 3) and S(–3, –2). 
We have, 

 

 

 

 

 

 
∴  PQ = QR = RS = SP = units 
and, PR ≠ QS 



 
This means that PQRS is a quadrilateral whose sides are equal but diagonals are not equal. 
Thus, PQRS is a rhombus but not a square. 

Now, Area of rhombus PQRS =  × (Product of lengths of diagonals) 

⇒  Area of rhombus PQRS =  × (PR × QS) 
⇒  Area of rhombus PQRS 

Example 13:     Find the coordinates of the centre of the circle passing through the points (0, 0), (–2, 
1) and (–3, 2). Also, find its radius.

Sol.     Let P (x, y) be the centre of the circle passing through the points O(0, 0), A(–2,1) and B(–3,2). 
Then,  OP = AP = BP 

 
Now, OP = AP   ⇒    OP2 = AP2 
⇒  x2 + y2 = (x + 2)2 + (y – 1)2 
⇒  x2 + y2 = x2 + y2 + 4x – 2y + 5 
⇒  4x – 2y + 5 = 0           ….(1) 
and, OP = BP  ⇒   OP2 = BP2 
⇒  x2 + y2 = (x + 3)2 + (y – 2)2 
⇒  x2 + y2 = x2 + y2 + 6x – 4y + 13 
⇒  6x – 4y + 13 = 0          ….(2) 
On solving equations (1) and (2), we get 

x =    and   y =   

Thus, the coordinates of the centre are    

 

 

 


