

DPP No. 11

Total Marks : 29

Max. Time : 31 min.

Topics : Fundamentals of Mathematics, Quadratic Equation, Complex Number									
Comp Single	e of Questions prehension (no negative marking) Q.1 to Q.3 le choice Objective (no negative marking) Q.4, 5, 6, 7 ective Questions (no negative marking) Q.8,9	M.M., Min. (3 marks, 3 min.) [9, 9] (3 marks, 3 min.) [12, 12] (4 marks, 5 min.) [8, 10]							
COM	IPREHENSION (Q. No. 1 to 3) Consider the equation $ 2x - 1 - 2 x - 2 = \lambda$								
1.	If the above equation has only one solution, then λ belo (A) {–3, 3} (B) [–3, 3] (C) (–3,	-							
2.	If the above equation has more than one solutions then $(A) \{-3, 3\}$ $(B) [-3, 3]$ $(C) (-3, 3)$	-							
3.	If λ = 6, then the above equation has (A) only one solution (B) only two solutions. (C) no so	olution. (D) more than two solutions.							
4.	If the roots of the equation $x^2 + 2 cx + ab = 0$ are real and unequal, then the roots of the equation $x^2 - 2 (a + b) x + (a^2 + b^2 + 2 c^2) = 0$ are :(B) real and equal(A) real and unequal(B) real and equal(C) imaginary(D) rational								
5.	If $-3 + 5i$ is a root of the equation $x^2 + px + q = 0$, then the ordered pair (p, q) is $(p, q \in R)$ (A) $(-6, 34)$ (B) $(6, 34)$ (C) $(34, -6)$ (D) $(34, 6)$								
6.	If the quadratic equation $ax^2 + bx + a^2 + b^2 + c^2 - ab - bc - ca = 0$, where a, b, c are distinct reals, has imaginary roots then : (A) $2(a - b) + (a - b)^2 + (b - c)^2 + (c - a)^2 > 0$ (B) $2(a - b) + (a - b)^2 + (b - c)^2 + (c - a)^2 < 0$ (C) $2(a - b) + (a - b)^2 + (b - c)^2 + (c - a)^2 = 0$ (D) none								
7.	If the quadratic equations $ax^2 + 2cx + b = 0$ & $ax^2 + 2bx + c = 0$ (b \neq c) have a common root, then a + 4b + 4c is equal to : (A) -2 (B) -2 (C) 0 (D) 1								
8.	Solve the equation : $ x+1 - x + 3 x-1 - 2 x-2 = x+2$								
9.	Solve the equation : $\left \frac{x+1}{x}\right + x+1 = \frac{(x+1)^2}{x}$								

Answers Key

1.	(C)	2.	(A)	3.	(C)	4.	(C) 5 .	(B)
6.	(A)	7.	(C)	8.	x ∈ [2,	,∞)	∪ {−2}	

9. $x \in \{-1\} \cup (0, \infty)$