Second Year - March 2016

Time: 2½ Hours Cool-off time: 15 Minutes

Part - III

MATHEMATICS (SCIENCE)

Maximum: 80 Scores

General Instructions to Candidates:

- There is a 'cool-off time' of 15 minutes in addition to the writing time of 2½ hrs.
- You are not allowed to write your answers nor to discuss anything with others during the 'cool-off time'.
- Use the 'cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- All questions are compulsory and only internal choice is allowed.
- When you select a question, all the sub-questions must be answered from the same question itself.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

നിർദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിറ്റ് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും. ഈ സമയത്ത് ചോദ്യങ്ങൾക്ക് ഉത്തരം എഴുതാനോ, മറ്റുളളവരുമായി ആശയവിനിമയം നടത്താനോ പാടില്ല.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- എല്ലാ ചോദ്യങ്ങൾക്കും ഉത്തരം എഴുതണം.
- ഒരു ചോദ്യനമ്പർ ഉത്തരമെഴുതാൻ തെരഞ്ഞെടുത്തു കഴിഞ്ഞാൽ ഉപചോദ്യങ്ങളും അതേ ചോദ്യനമ്പരിൽ നിന്ന് തന്നെ തെരഞ്ഞെടുക്കേണ്ടതാണ്.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നൽകിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാകൃങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

	onto			
	not onto			
	and not onto			
(Score: 1)	one-one			
(Scores: 2)	$= 8x^3$ and $g(x) = x^{1/3}$.	(b)		
ned on the set	ation such that $a * b = LCM$ of a and b define	(c)		
(Scores: 2)	. Is * a binary operation? Justify your answer.			
(Score : 1)	$tan^{-1}y = \underline{\hspace{1cm}}.$	(a)	2.	
(Scores: 3)	$\frac{1}{2} + \tan^{-1}\frac{1}{7} = \tan^{-1}\frac{31}{17}$	(b)		
	2 / 1/			
	[1			
	$= \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \text{ then BA} =$	(a)	3.	
	[0 1]			
	(ii) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$			
(Saara + 1)	(iv) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$			
(Score : 1)	$\begin{pmatrix} (V) & 0 & 0 \end{pmatrix}$			
c matrix.	as the sum of a symmetric and a skew-symmetric	(b)		
(Scores: 3)				
(Scores: 2)	$fA = \begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix}.$	(c)		
(Scores . 2)	$\begin{bmatrix} 1 & -2 \end{bmatrix}$	(0)		
	$\begin{bmatrix} x & x-1 \\ +1 & x \end{bmatrix}$ is	(a)	4.	
	(ii) x			
(Score : 1)	(iv) 0			
(=,002002)	2	8	101	
		. 🗸	4 V A	

(a) The function $f: N \to N$, given by f(x) = 2x is

(b) Using properties of determinants, show that

$$\begin{vmatrix} 1 & x & x^2 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{vmatrix} = (1 - x^3)^2$$
 (Scores : 4)

5. (a) Find all points of discontinuity of f, where f is defined by

$$f(x) = \begin{cases} 2x + 3, & x \le 2 \\ 2x - 3, & x > 2 \end{cases}$$
 (Scores: 2)

(b) If $e^{x-y} = x^y$, then prove that

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\log x}{[\log ex]^2}$$
 (Scores: 4)

6. (a) The slope of the tangent to the curve given by

$$x = 1 - \cos \theta$$
, $y = \theta - \sin \theta$ at $\theta = \frac{\pi}{2}$ is

(i) 0

(ii) -1

(iii) 1

(iv) Not defined

(Score: 1)

(b) Find the intervals in which the function $f(x) = x^2 - 4x + 6$ is strictly decreasing.

(Scores: 2)

(c) Find the minimum and maximum value, if any, of the function $f(x) = (2x - 1)^2 + 3$.

(Scores: 2)

OR

(a) Which of the following functions has neither local maxima nor local minima?

(i) $f(x) = x^2 + x$

- (ii) $f(x) = \log x$
- (iii) $f(x) = x^3 3x + 3$
- (iv) f(x) = 3 + |x|

(Score : 1)

(b) Find the equation of the tangent to the curve $y = 3x^2$ at (1, 1). (Scores: 2)

(c) Use differential to approximate $\sqrt{36.6}$.

(Scores: 2)

7.	(a)	The angle between the vectors \vec{a} and \vec{b} such that $ \vec{a} = \vec{b} = \sqrt{2}$ and $\vec{a} \cdot \vec{b} = 1$ is				
		(i) $\frac{\pi}{2}$	(ii)	$\frac{\pi}{3}$		
		(iii) $\frac{\pi}{4}$	(iv)	0	(Score: 1)	
	(b)	Find the unit vector along $\overrightarrow{a} - \overrightarrow{b}$, where	ere \vec{a} =	$\hat{i} + 3\hat{j} - \hat{k}$ and $\vec{b} = 3\hat{i} + 2\hat{j}$	r k.	
					(Scores: 2)	
8.	(a)	If the points A and B are $(1, 2, -1)$ are	nd (2, 1	, -1) respectively, then \overrightarrow{AB} is	S	
		(i) $\hat{i} + \hat{j}$	(ii)	$\hat{i} - \hat{j}$		
		(iii) $2\hat{i} + \hat{j} - \hat{k}$	(iv)	$\hat{i} + \hat{j} + \hat{k}$	(Score: 1)	
	(b) Find the value of λ for which the vectors $2\hat{i} - 4\hat{j} + 5\hat{k}$, $\hat{i} - \lambda\hat{j} + \hat{k}$ and					
		are coplanar.			(Scores: 2)	
۵	(c)	Find the angle between the vectors a	$=$ \hat{i} + \hat{j}	$\hat{j} - \hat{k}$ and $\vec{b} = \hat{i} - \hat{j} + \hat{k}$.	(Scores: 2)	
9.	(a)	Prove that $\int \cos^2 x dx = \frac{x}{2} + \frac{\sin 2x}{4} + \sin 2x$	c.		(Scores: 2)	
	(b)	Find $\int \frac{\mathrm{d}x}{\sqrt{2x-x^2}}$			(Scores: 2)	
	(c)	Find $\int x \cos x dx$.			(Scores: 2)	
4.0	-	π			/5°	
10.	Eva	luate $\int_{0}^{\pi} \log (1 + \cos x) dx.$	•		(Scores: 4)	
		OR				
		5 C				
	Fine	$\int_{0}^{1} (x+1) dx \text{ as limit of a sum.}$			(Scores: 4)	

11. (a) The area bounded by the curve y = f(x), above the x-axis, between x = a and x = b is

$$(i) \int_{f(a)}^{b} y \, dy$$

(ii)
$$\int_{\mathbf{a}}^{\mathbf{f}(\mathbf{b})} x \, \mathrm{d}x$$

(iii)
$$\int_{a}^{b} x \, dy$$

(iv)
$$\int_{a}^{b} y \, dx$$

(Score: 1)

(b) Find the area of the circle $x^2 + y^2 = 4$ using integration.

- (Scores: 5)
- 12. (a) $y = a \cos x + b \sin x$ is the solution of the differential equation.

$$(i) \quad \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + y = 0$$

(ii)
$$\frac{d^2y}{dx^2} - y = 0$$

(iii)
$$\frac{dy}{dx} + y = 0$$

(iv)
$$\frac{dy}{dx} + x \frac{dy}{dx} = 0$$

(Score: 1)

- (b) Find the solution of the differential equation $x \frac{dy}{dx} + 2y = x^2$ ($x \ne 0$) given that y = 0 when x = 1. (Scores: 5)
- 13. Find the shortest distance between the lines

$$\vec{r} = \hat{i} + \hat{j} + \lambda(2\hat{i} - \hat{j} + \hat{k})$$

$$\vec{r} = 2\hat{i} + \hat{j} - \hat{k} + \mu(3\hat{i} - 5\hat{j} + 2\hat{k})$$

(Scores: 4)

14. (a) Equation of the plane with intercepts 2, 3, 4 on the x, y and z axis respectively is

(i)
$$2x + 3y + 4z = 1$$

(ii)
$$2x + 3y + 4z = 12$$

(iii)
$$6x + 4y + 3z = 1$$

(iv)
$$6x + 4y + 3z = 12$$

(Score: 1)

(b) Find the Cartesian equation of the plane passing through the points A(2, 5, -3), B(-2, -3, 5) and C(5, 3, -3). (Scores: 3)

Con	sider the following L.P.P.				
	•				
	$x + 2y \le 10$				
	$3x + y \le 15$				
	$x, y \ge 0$				
(a)	Draw its feasible region.				(Scores: 3)
(b)	Find the corner points of the f	easible region	1.		(Scores: 2)
(c)	Find the maximum value of Z	7.			(Score : 1)
(a)	If $P(A) = 0.3$, $P(B) = 0.4$, independent events is	then the va	lue of P(A	$\cup B$) where A	A and B are
	(i) 0.48	(ii)	0.51		
	(iii) 0.52	(iv)	0.58		(Score: 1)
(b)	cards are drawn and are four			_	-
	Max Subj	 3x + y ≤ 15 x, y ≥ 0 (a) Draw its feasible region. (b) Find the corner points of the feasible region. (c) Find the maximum value of Z (a) If P(A) = 0.3, P(B) = 0.4, independent events is (i) 0.48 (iii) 0.52 (b) A card from a pack of 52 care 	 Maximize Z = 3x + 2y Subject to the constraints x + 2y ≤ 10 3x + y ≤ 15 x, y ≥ 0 (a) Draw its feasible region. (b) Find the corner points of the feasible region. (c) Find the maximum value of Z. (a) If P(A) = 0.3, P(B) = 0.4, then the value independent events is (i) 0.48 (ii) 0.52 (iv) (b) A card from a pack of 52 cards is lost. From cards are drawn and are found to be diameter. 	 Maximize Z = 3x + 2y Subject to the constraints x + 2y ≤ 10 3x + y ≤ 15 x, y ≥ 0 (a) Draw its feasible region. (b) Find the corner points of the feasible region. (c) Find the maximum value of Z. (a) If P(A) = 0.3, P(B) = 0.4, then the value of P(A independent events is (i) 0.48 (ii) 0.52 (iv) 0.58 (b) A card from a pack of 52 cards is lost. From the remaindent cards are drawn and are found to be diamonds. Find 	 Maximize Z = 3x + 2y Subject to the constraints x + 2y ≤ 10 3x + y ≤ 15 x, y ≥ 0 (a) Draw its feasible region. (b) Find the corner points of the feasible region. (c) Find the maximum value of Z. (a) If P(A) = 0.3, P(B) = 0.4, then the value of P(A∪B) where independent events is (i) 0.48 (ii) 0.51 (iii) 0.52 (iv) 0.58 (b) A card from a pack of 52 cards is lost. From the remaining cards of cards are drawn and are found to be diamonds. Find the probability

OR

A pair of dice is thrown 4 times. If getting a doublet is considered as a success,

(1) find the probability of getting a doublet.

(Score: 1)

(2) hence, find the probability of two successes.

(Scores: 4)