+ BOARD, NDA, FOUNDATION

1,1/2,-7/5...

Irrational Numbers

Can't be represented as x = p/q. Where p & q are integers and $q \neq 0$. Decimal representation is non terminating & non-recurring.

Terminating

x = p/qand a ≠ 0 (q is in the form of 2" 5" where m, n are non-negative integers, then it is terminating decimal)

e.g. $\frac{3}{2^2 \times 5}$ =0.15

Non-Terminating

x = p/qand q≠0 (q is not in the form of 2" 5" where m, n are non-negative integers, then it is non-terminating decimal) e.g. $\frac{10}{3}$ = 3. $\overline{3}$

Given positive integers a and b, there exist unique integers q and r satisfying $a = bq + r, 0 \le r < b$.

Euclid division Lemma

If 'a' and 'b' are positive integers such that a = bq + r. then every common divisor of 'a' and 'b' is a common divisor of 'b' and 'r', and vice-versa.

e.g. HCF of 420 & 48

Euclid division

Algorithm

$$420 = 48 \times 8 + 36$$

$$48 = 36 \times 1 + 12$$

$$36 = 12 \times 3 + 0$$

⇒ H.C.F. of 420 & 48 is 12

Rational Numbers

Can be represented as x = p/q, Where p & q are integers and $q \neq 0$. Decimal representation is either terminating or non-terminating & recurring

Fundamental theorem of Arithmetic

Every composite number can be expressed or factorized as a product of primes.

e.g.
$$48 = 2 \times 2 \times 2 \times 2 \times 3$$

 $420 = 2 \times 2 \times 3 \times 5 \times 7$

Application

HCF

e.g. $48 = 2 \times 2 \times 2 \times 2 \times 3$ $420 = 2 \times 2 \times 3 \times 5 \times 7$ $H.C.F = 2 \times 2 \times 3$

e.g. $48 = 2 \times 2 \times 2 \times 2 \times 3$ $420 = 2 \times 2 \times 3 \times 5 \times 7$

L.C.M

 $L.C.M = 2 \times 2 \times 2 \times 2 \times 3 \times 5 \times 7$ = 1680

H.C.F. (48, 420) × L.C.M. (48,420) $= 48 \times 420$

(This is true for 2 numbers only)

Some Important Results :

- 1. Let 'p' be a prime number and 'a' be a positive integer. If 'p' divides a2, then 'p' divides 'a'.
- 2. HCF × LCM = Product of two numbers.
- 3. LCM is always divisible by HCF.

e.g. Check whether 6" can end with the digit 0 for any natural number 'n'.

Sol. Any positive integer ending with the digit zero is divisible by 5 and so its prime factorization must contain the prime 5. $6^{\circ} = (2 \times 3)^{\circ} = 2^{\circ} \times 3^{\circ}$

- The prime in the factorization of 6° is 2 and 3.
- 5 does not occur in the prime factorization of 6" for any n.
- 6" does not end with the digit zero for any natural number n.

NCERT / X / Real Number