CBSE Test Paper 02

Chapter 9 Differential Equations

1. Forming a differential equation representing the given family of curves by eliminating arbitrary constants a and b from $\frac{x}{a}+\frac{y}{b}=1$ yields the differential equation.

a.
$$y'' = 0$$

c.
$$y'' = y^3$$

d.
$$y'' = 2y$$

2. Find the particular solution of the differential equation $\log\left(\frac{dy}{dx}\right)=3x+4y$, given that y = 0 and x = 0.

a.
$$4e^{3x} + 3e^{-4y} + 7 = 0$$

b.
$$4e^{3x} - 3e^{-4y} - 7 = 0$$

c.
$$4e^{3x} + 3e^{-4y} - 7 = 1$$

d.
$$4e^{3x} + 3e^{-4y} - 7 = 0$$

- 3. Order of a differential equation is defined as
 - a. the number of derivative terms
 - b. the order of the lowest order derivative of the dependent variable
 - c. the order of the highest order derivative of the dependent variable
 - d. the number of constant terms
- 4. A function f(x,y) is said to be homogenous function of degree n if

a.
$$f(\lambda x, \lambda y) = \lambda^3 f(x,y)$$

b. None of these

c.
$$f(\lambda x, \lambda y) = \lambda^n f(x,y)$$

d.
$$f(\lambda x,y)=\lambda^n f(x,y)$$

5. Determine order and degree (if defined) of $\frac{d^4y}{dx^4}$ +sin(y"") = 0.

- a. 2, degree undefined
- b. 1, degree undefined
- c. 4, degree undefined
- d. 3, degree undefined
- 6. The degree of the differential equation $\left(\frac{dy}{dx}\right)^3 + \left(\frac{d^2y}{dx^2}\right)^2 = 0$ is _____.
- 7. The differential equation representing the family of curves $y = A \sin x + B \cos x$ is
- 8. The solution of the differential equation $rac{xdy}{dx}+2y=x^2$ is ______.
- 9. Verify that the function is a solution of the corresponding differential equation. $y = x^2 + 2x + c$; $y^1 2x 2 = 0$.
- 10. Find the solution of the differential equation $rac{dy}{dx}=x^3e^{-2y}$.
- 11. Write the degree of the differential equation $\left(rac{dy}{dx}
 ight)^4+3xrac{d^2y}{dx^2}=0.$
- 12. Find the differential equation of all non-vertical lines in a plane.
- 13. Solve the diff. equ. sec^2x .tan y dx + sec^2 y tan x dy = 0.
- 14. Find the general solution of $rac{dy}{dx}+y=1$ (y
 eq 1).
- 15. Solve the following differential equation.

$$(x\log|x|)rac{dy}{dx}+y=2\log|x|$$

- 16. Find the equation of the curve passing through the point $\left(0, \frac{\pi}{4}\right)$ whose diff eq. is sinx $\cos y \, dx + \cos x \cdot \sin y \, dy = 0$.
- 17. Solve the following differential equation $rac{dy}{dx} + y \sec x = an x, \left(0 \le x < rac{\pi}{2}
 ight)$.
- 18. Solve the diff. eq. $rac{dy}{dx} + 2y an x = \sin x$.

CBSE Test Paper 02

Chapter 9 Differential Equations

Solution

1. a.
$$y'' = 0$$
, **Explanation:** $\frac{1}{a} + \frac{1}{b} \frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{-a}{b}$ $\frac{d^2y}{dx^2} = 0$

2. d.
$$4e^{3x} + 3e^{-4y} - 7 = 0$$
, Explanation: $\frac{dy}{dx} = e^{3x}e^{4y}$

$$\int e^{-4y}dy = \int e^{3x}dx$$

$$\frac{-e^{-4y}}{4} = \frac{e^{3x}}{3} + c$$
here $x = y = 0$ gives
$$\frac{-1}{4} = \frac{1}{3} + c$$

$$\therefore c = \frac{-7}{12}$$

$$\therefore \frac{-e^{-4y}}{4} = \frac{e^{3x}}{3} - \frac{7}{12}$$

$$4e^{3x} + 3e^{-4y} - 7 = 0$$

- c. the order of the highest order derivative of the dependent variable
 Explanation: Order of a differential equation is defined as the order of the highest order derivative of the dependent variable present in the differential equation.
- 4. c. $f(\lambda x, \lambda y) = \lambda^n f(x, y)$, **Explanation:** A function is homogenous if we can write in the form of $f(\lambda x, \lambda y) = \lambda^n f(x, y)$ where n is an whole number.
- 5. c. 4, degree undefined, **Explanation:** Order = 4, degree not defined, because the function y" present in the angle of sine function.
- 6. Two

7.
$$\frac{d^2y}{dx^2} + y = 0$$

8.
$$y = \frac{x^2}{4} + cx^{-2}$$

9.
$$y = x^2 + 2x + c$$

$$y^1 = 2x + 2$$

$$y^1 - 2x - 2 = 0$$
 Proved

10. Given differential equation is $rac{dy}{dx}=x^3e^{-2y}$

On separating the variables, we get $e^{2y}dy = x^3dx$

On integrating both sides, we get

$$egin{aligned} \int e^{2y} dy &= \int x^3 dx \ \Rightarrow & rac{e^{2y}}{2} &= rac{x^4}{4} + C_1 \ \Rightarrow 2e^{2y} &= x^4 + 4C_1 \ \therefore & 2e^{2y} &= x^4 + C, ext{ where C = 4 C}_1 \end{aligned}$$

11. According to the question, the given equation is,

$$\left(rac{dy}{dx}
ight)^4 + 3xrac{d^2y}{dx^2} = 0.$$

Here, the highest order derivative is d^2y/dx^2 , whose degree is one. So, the degree of differential equation is 1.

- 12. Since, the family of all non-vertical line is y = mx + c, where $m \neq \tan \frac{\pi}{2}$. On differentiating w.r.t. x, we get $rac{dy}{dx}=m$ again, differentiating w.r.t x, we get $\frac{d^2y}{dx^2}=0$
- 13. $\sec^2 x$. $\tan y \, dx = -\sec^2 y \tan x \, dy$ $\int \frac{\sec^2 x}{\tan x} dx = -\int \frac{\sec^2 y}{\tan y} dx$ $\log(\tan x) = -\log(\tan y) + \log c$ $\log(\tan x. \tan y) = \log c$ a $\tan x \, \tan y = c$
- 14. Given: Differential equation $rac{dy}{dx} + y = 1$ $\Rightarrow \frac{dy}{dx} = 1 - y$ $\Rightarrow dy = (1 - y) dx$ $\Rightarrow dy = -(y-1) dx$ $\Rightarrow \frac{dy}{y-1} = -dx$

Integrating both sides,
$$\Rightarrow \int \frac{dy}{y-1} dx = -\int 1 dx$$

$$\Rightarrow \log|y-1| = -x + \epsilon$$

$$\Rightarrow \log|y-1| = -x+c$$

$$\Rightarrow |y-1| = e^{-x+c}$$
 [:: if $\log x$ = t, then x = e^x]

$$\Rightarrow y - 1 = \pm e^{-x+c}$$

$$\Rightarrow y = 1 \pm e^{-x}e^{c}$$

$$\Rightarrow y = 1 \pm e^c e^{-x}$$

$$\Rightarrow y = 1 + Ae^{-x}$$
, where $A = \pm e^c$

15. We have,

$$|x\log |x| rac{dy}{dx} + y = 2\log |x|$$

On dividing both sides by x log IxI, we get

$$\frac{dy}{dx} + \frac{y}{x \log|x|} = \frac{2}{x}$$

which is a linear differential equation which is in the form of $rac{dy}{dx} + Py = Q$,

Where,
$$P=rac{1}{x\log|x|}$$
 and $Q=rac{2}{x}$

we know that,

$$ext{IF} = e^{\int P dx} = e^{\int rac{1}{x \log |x|}}$$

put
$$\log |x| = t \Rightarrow \frac{1}{x} dx = dt$$

$$\therefore \int rac{1}{x \log |x|} dx = \int rac{ ilde{dt}}{t} = \log |t| = \log |\log x|$$

IF =
$$\log |x|$$
 [: $e^{\log |x|}$ = x]

The solution of linear differential equation is given by

$$y \times \text{IF} = \int (Q \times \text{IF}) dx + C$$

$$\therefore y imes \log |x| = \int rac{2}{x} \log |x| dx + C$$

put
$$\log |x| = t \Rightarrow \frac{1}{x} dx = dt$$

$$\therefore \int rac{\log |x|}{x} dx = \int t dt = rac{t^2}{2} = rac{(\log |x|)^2}{2}$$

$$\Rightarrow y \log |x| = rac{2(\log |x|)^2}{2} + C$$

On dividing both sides by log |x|, we get

$$\therefore \quad y = \log|x| + \frac{C}{\log|x|}$$

which is the required solution of differential equation.

16. Given diff eq. is $\sin x \cos y \, dx + \cos x \cdot \sin y \, dy = 0$.

 $\sin x \cos y \, dx = -\cos x \cdot \sin y \, dy$

$$\Rightarrow \int rac{sinx}{cosx} dx = - \int rac{siny}{cosy} dy$$

$$\Rightarrow \int \tan x dx = -\int \tan y dy$$

$$\Rightarrow$$
 log(sec x) = -log(sec y) + log c

$$\Rightarrow$$
 log(sec x.sec y) = log c

when x = 0,
$$y=rac{x}{4}$$
 , therefore we get, $c=\sqrt{2}$

put the value of c in (1), we get, $\sec x \cdot \sec y = \sqrt{2}$

17. We have,

$$\frac{dy}{dx} + y\sec x = \tan x$$

which is a linear differential equation of first order and is of the form

$$\frac{dy}{dx} + Py = Q$$
 ...(i)

Here, $P = \sec x$ and $Q = \tan x$

$$\therefore \quad \text{IF} = e^{\int Pdx} = e^{\int \sec x dx} = e^{\log|\sec x + \tan x|}$$

$$[\because \int \sec x dx = \log|\sec x + \tan x|]$$

$$\Rightarrow$$
 IF = sec x + tan x

The general solution is
$$y imes ext{IF} = \int (Q imes ext{IF}) dx + C$$

$$y(\sec x + \tan x) = \int \tan x \cdot (\sec x + \tan x) dx$$

$$\Rightarrow y(\sec x + \tan x) = \int \sec x \tan x dx + \int \tan^2 x dx$$

$$\Rightarrow y(\sec x + \tan x) = \sec x + \int (\sec^2 x - 1) dx$$

$$\Rightarrow$$
 y(sec x + tan x) = sec x + tan x - x + C $\left[\because \int \sec^2 x dx = \tan x\right]$

On dividing both sides by (sec $x + \tan x$), we get

$$y = 1 - \frac{x}{\sec x + \tan x} + \frac{C}{\sec x + \tan x}$$

18.
$$\frac{dy}{dx} + 2y\tan x = \sin x$$

Given diff eq is the form of

$$\frac{dy}{dx} + Py = Q$$

$$P = 2 \tan x, Q = \sin x$$

$$I.F = e^{\int Pdx}$$

$$=e^{\int 2\tan x dx}$$

$$=e^{2\log\sec x}$$

$$=e^{\log \sec^2 x}$$

$$= \sec^2 x$$

Solution is,

$$y imes \sec^2 x = \int \sin x \sec^2 x dx + c$$

$$=\int \sec x \cdot \tan x dx + c$$

$$y \times \sec^2 x = \sec x + c$$

$$y = \frac{\sec x + c}{\sec^2 x}$$

$$y = rac{\sec x + c}{\sec^2 x}$$
 $y = rac{1}{\sec x} + rac{c}{\sec^2 x}$

$$y = \cos x + c.\cos^2 x$$