1. Rational and Irrational number

• The numbers, which can be written in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$, are called rational numbers. Rational numbers can be positive as well as negative. Rational numbers include all integers and fractions.

For example

$$-\frac{2}{7}, \frac{41}{366}, 2 = \frac{2}{1}$$
, etc.

• Rational numbers on number line

Rational numbers can be represented on number line in the similar manner like fractions and integers.

Negative rational numbers are marked to the left of 0 while positive rational numbers are marked to the right of 0.

Example:

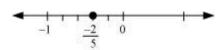
Represent $-\frac{2}{5}$ on number line.

Solution:

The given rational number is negative. Therefore, it will lie to the left of 0.

The space between -1 and 0 is divided into 5 equal parts. Therefore, each part represents $-\frac{1}{5}$.

Marking $-\frac{2}{5}$ at 2 units to the left of 0, we obtain the number line as shown below.



- Two positive rational numbers can be compared as in fractions.
- Two negative rational numbers can be compared by ignoring their negative signs and then reversing their order.

Example: Compare $-\frac{2}{3}$ and $-\frac{1}{5}$

Solution: To compare $-\frac{2}{3}$ and $-\frac{1}{5}$, we first compare $\frac{2}{3}$ and $\frac{1}{5}$.

HCF
$$(3, 5) = 15$$

$$\therefore \frac{2}{3} = \frac{2 \times 5}{3 \times 5} = \frac{10}{15} \text{ and } \frac{1}{5} = \frac{1 \times 3}{5 \times 3} = \frac{3}{15}$$
Now, $\frac{10}{15} > \frac{3}{15}$

$$\Rightarrow \frac{2}{3} > \frac{1}{5}$$

$$\Rightarrow -\frac{2}{3} < -\frac{1}{5}$$

• Rational numbers between two rational numbers can be found by first converting them to rational numbers with same denominator.

Example: Find 4 rational numbers between $-\frac{2}{3}$ and $-\frac{1}{5}$.

Solution:

$$\begin{aligned}
&-\frac{2}{3} \times \frac{5}{5} = -\frac{10}{15} \\
&= \frac{1}{5} \times \frac{3}{3} = -\frac{3}{15} \\
&\therefore \frac{10}{15} < -\frac{9}{15} < -\frac{8}{15} < -\frac{7}{15} < -\frac{6}{15} < -\frac{3}{15}
\end{aligned}$$

Thus, four rational numbers between $-\frac{3}{2}$ and $-\frac{1}{5}$ are $-\frac{9}{15}$, $-\frac{8}{15}$, $-\frac{7}{15}$ and $-\frac{6}{15}$

- There are unlimited rational numbers between two rational numbers.
- Decimal expansion of a rational number can be of two types:
 - (i) Terminating
 - (ii) Non-terminating and repetitive

In order to find decimal expansion of rational numbers we use long division method.

For example, to find the decimal expansion of $\frac{1237}{25}$.

We perform the long division of 1237 by 25.

Hence, the decimal expansion of $\frac{1237}{25}$ is 49.48. Since the remainder is obtained as zero, the decimal number is terminating.

• Every number of the form \sqrt{p} , where p is a prime number is called an irrational number. For example, $\sqrt{3}$, $\sqrt{11}$, $\sqrt{12}$ etc.

Theorem: If a prime number p divides a^2 , then p divides a, where a is a positive integer.

Example:

Prove that $\sqrt{7}$ is an irrational number.

If possible, suppose $\sqrt{7}$ is a rational number.

Then, $\sqrt{7} = \frac{p}{q}$, where p, q are integers, $q \neq 0$.

If HCF $(p, q) \neq 1$, then by dividing p and q by HCF(p, q), $\sqrt{7}$ can be reduced as

$$\sqrt{7} = \frac{a}{b}$$
 where HCF $(a, b) = 1$... (1)

$$\Rightarrow \sqrt{7b} = a$$

$$\Rightarrow 7b^2 = a^2$$

$$\Rightarrow a^2$$
 is divisible by 7

⇒
$$a^2$$
 is divisible by 7
⇒ a is divisible by 7
⇒ $a = 7c$, where c is an integer ... (2)

$$\Rightarrow a = 7c$$
, where \tilde{c} is an integer

$$\therefore \sqrt{7}c = b$$

$$\Rightarrow 7b^2 = 49c^2$$

$$\Rightarrow b^2 = 7c^2$$

$$\Rightarrow b^2$$
 is divisible by 7

$$\Rightarrow b$$
 is divisible by 7 ... (3

⇒ b^2 is divisible by 7 ⇒ b is divisible by 7 ... (3) From (2) and (3), 7 is a common factor of a and b. which contradicts (1)

 $..\sqrt{7}$ is an irrational number.

Example:

Show that $\sqrt{12} - 6$ is an irrational number.

Solution:

If possible, suppose $\sqrt{12} - 6$ is a rational number.

Then
$$\sqrt{12} - 6 = \frac{p}{q}$$
 for some integers p , $q(q^{-1}0)$

Now,

$$\sqrt{12} - 6 = \frac{p}{q}$$

$$\Rightarrow 2\sqrt{3} = \frac{p}{a} + 6$$

$$\Rightarrow \sqrt{3} = \frac{1}{2} \left(\frac{p}{q} + 6 \right)$$

As p, q, 6 and 2 are integers, $\frac{1}{2} \left(\frac{p}{q} + 6 \right)$ is rational number, so is $\sqrt{3}$.

This conclusion contradicts the fact that $\sqrt{3}$ is irrational.

Thus, $\sqrt{12} - 6$ is an irrational number.

• Represent irrational numbers on the number line:

We can represent irrational numbers of the form \sqrt{n} on the number line by first plotting $\sqrt{n-1}$, where *n* is any positive integer.

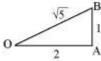
Example: Locate $\sqrt{6}$ on the number line.

Solution:

As
$$\sqrt{6} = \sqrt{(\sqrt{5})^2 + 1^2}$$

To locate $\sqrt{6}$ on the number line, we first need to construct a length of $\sqrt{5}$.

$$\sqrt{5} = \sqrt{2^2 + 1}$$



By Pythagoras theorem, $OB^2 = OA^2 + AB^2 = 2^2 + 1^2 = 5$ $\Rightarrow OB = \sqrt{5}$

Steps:

Mark O at 0 and A at 2 on the number line, and then draw AB of unit length perpendicular to OA.

Then, by Pythagoras Theorem, $OB = \sqrt{5}$.

Construct BD of unit length perpendicular to OB. Thus, by Pythagoras theorem,

$$OD = \sqrt{(\sqrt{5})^2 + 1^2} = \sqrt{6}$$

Using a compass with centre O and radius OD, draw an arc intersecting the number line at point P. Thus, P corresponds to the number $\sqrt{6}$.

