12.1

Chapter 12

Electrodynamics and Relativity

The Special Theory of Relativity

12.1.1 Einstein’s Postulates

Classical mechanics obeys the principle of relativity: the same laws apply in any inertial
reference frame. By “inertial” I mean that the system is at rest or moving with constant
velocity.! Imagine, for example, that you have loaded a billiard table onto a railroad car,
and the train is going at constant speed down a smooth straight track. The game would
proceed exactly the same as it would if the train were parked in the station; you don’t have
to “correct” your shots for the fact that the train is moving—indeed, if you pulled all the
curtains you would have no way of knowing whether the train was moving or not. Notice by
contrast that you would know it immediately if the train sped up, or slowed down, or turned
a corner, or went over a bump—the billiard balls would roll in weird curved trajectories,
and you yourself would feel a lurch. The laws of mechanics, then, are certainly not the
same in accelerating reference frames.

In its application to classical mechanics, the principle of relativity is hardly new; it was
stated clearly by Galileo. Question: does it also apply to the laws of electrodynamics?
At first glance the answer would seem to be no. After all, a charge in motion produces a
magnetic field, whereas a charge at rest does not. A charge carried along by the train would
generate a magnetic field, but someone on the train, applying the laws of electrodynamics

IThis raises an awkward problem: If the laws of physics hold just as well in a uniformly moving frame, then we
have no way of identifying the “rest” frame in the first place, and hence no way of checking that some other frame
is moving at constant velocity. To avoid this trap we define an inertial frame formally as one in which Newton’s

first law holds. If you want to know whether you’re in an inertial frame, throw some rocks around—if they travel

in straight lines at constant speed, you’ve got yourself an inertial frame, and any frame moving at constant velocity
with respect to you will be another inertial frame (see Prob. 12.1).
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in that system, would predict no magnetic field. In fact, many of the equations of elec-
trodynamics, starting with the Lorentz force law, make explicit reference to “the” velocity
of the charge. It certainly appears, therefore, that electromagnetic theory presupposes the
existence of a unique stationary reference frame, with respect to which all velocities are to
be measured.

And yet there is an extraordinary coincidence that gives us pause. Suppose we mount
a wire loop on a freight car, and have the train pass between the poles of a giant magnet
(Fig. 12.1). As the loop rides through the magnetic field, a motional emf is established:
according to the flux rule (Eq. 7.13),

dod
dt’

This emf, remember, is due to the magnetic force on charges in the wire loop, which are
moving along with the train. On the other hand, if someone on the train naively applied the
laws of electrodynamics in that system, what would the prediction be? No magnetic force,
because the loop is at rest. But as the magnet flies by, the magnetic field in the freight car
will change, and a changing magnetic field induces an electric field, by Faraday’s law. The
resulting electric force would generate an emf in the loop given by Eq. 7.14:

dod
dt’

Because Faraday’s 1aw and the flux rule predict exactly the same emf, people on the train will
get the right answer, even though their physical interpretation of the process is completely
wrong.

Or is 1t? Einstein could not believe this was a mere coincidence; he took it, rather, as a
clue that electromagnetic phenomena, like mechanical ones, obey the principle of relativity.
In his view the analysis by the observer on the train is just as valid as that of the observer
on the ground. If their interpretations differ (one calling the process electric, the other
magnetic), so be it; their actual predictions are in agreement. Here’s what he wrote on the
first page of his 1905 paper introducing the special theory of relativity:
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It is known that Maxwell’s electrodynamics—as usually understood at the
present time—when applied to moving bodies, leads to asymmetries which
do not appear to be inherent in the phenomena. Take, for example, the re-
ciprocal electrodynamic action of a magnet and a conductor. The observable
phenomenon here depends only on the relative motion of the conductor and the
magnet, whereas the customary view draws a sharp distinction between the two
cases in which either one or the other of these bodies is in motion. For if the
magnet is in motion and the conductor at rest, there arises in the neighborhood
of the magnet an electric field . .. producing a current at the places where parts
of the conductor are situated. But if the magnet is stationary and the conduc-
tor in motion, no electric field arises in the neighborhood of the magnet. In
the conductor, however, we find an electromotive force . .. which gives rise—
assuming equality of relative motion in the two cases discussed—to electric
currents of the same path and intensity as those produced by the electric forces
in the former case.

Examples of this sort, together with unsuccessful attempts to discover any
motion of the earth relative to the “light medium,” suggest that the phenomena
of electrodynamics as well as of mechanics possess no properties corresponding
to the idea of absolute rest.?

But I'm getting ahead of the story. To Einstein’s predecessors the equality of the two
emf’s was just a lucky accident; they had no doubt that one observer was right and the other
was wrong. They thought of electric and magnetic fields as strains in an invisible jellylike
medium called ether, which permeated all of space. The speed of the charge was to be
measured with respect to the ether—only then would the laws of electrodynamics be valid.
The train observer is wrong, because that frame is moving relative to the ether.

But wait a minute! How do we know the ground observer isn’t moving relative to the
ether, too? After all, the earth rotates on its axis once a day and revolves around the sun once
a year; the solar system circulates around the galaxy, and for all I know the galaxy itself
may be moving at 2 high speed through the cosmos. All told, we should be traveling at well
over 50 km/s with respect to the ether. Like a motorcycle rider on the open road, we face
an “ether wind” of high velocity—unless by some miraculous coincidence we just happen
to find ourselves in a tailwind of precisely the right strength, or the earth has some sort of
“windshield” and drags its local supply of ether along with it. Suddenly it becomes a matter
of crucial importance to find the ether frame, experimentally, or else all our calculations
will be invalid.

The problem, then, is to deterntine our motion through the ether—to measure the speed
and direction of the “ether wind.” How shall we do it? At first glance you might suppose
that practically any electromagnetic experiment would suffice: If Maxwell’s equations are
valid only with respect to the ether frame, any discrepancy between the experimental result
and the theoretical prediction would be ascribable to the ether wind. Unfortunately, as
nineteenth century physicists soon realized, the anticipated error in a typical experiment is

2 A wranslation of Einstein's first relativity paper, “On the Electrodynamics of Moving Bodies,” is reprinted in
The Principle of Relativity, by H. A. Lorentz et al. (New York: Dover, 1923).



480 CHAPTER 12. ELECTRODYNAMICS AND RELATIVITY

extremely small; as in the example above, “coincidences” always seem to conspire to hide
the fact that we are using the “wrong” reference frame. So it takes an uncommonly delicate
experiment to do the job.

Now, among the results of classical electrodynamics is the prediction that electromag-
netic waves travel through the vacuum at a speed

1 8
o 3.00 x 10°m/s,

relative (presumably) fo the ether. In principle, then, one should be able to detect the ether
wind by simply measuring the speed of light in various directions. Like a motorboat on a
river, the net speed “downstream” should be a maximum, for here the light is swept along
by the ether; in the opposite direction, where it is bucking the current, the speed should
be a minimum (Fig. 12.2). While the idea of this experiment could not be simpler, its
execution is another matter, because light travels so inconveniently fast. If it weren’t for
that “technical detail”” you could do it all with a flashlight and a stopwatch. As it happened.
an elaborate and lovely experiment was devised by Michelson and Morley, using an optical
interferometer of fantastic precision. I shall not go into the details here, because I do not
want to distract your attention from the two essential points: (1) all Michelson and Morley
were trying to do was compare the speed of light in different directions, and (2) what they
in fact discovered was that this speed is exactly the same in all directions.

Speed of light
!
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A

Figure 12.2

Nowadays, when students are taught in high school to snicker at the naiveté of the ether
model, it takes some imagination to comprehend how utterly perplexing this result must
have been at the time. All other waves (water waves, sound waves, waves on a string) travel
at a prescribed speed relative to the propagating medium (the stuff that does the waving).
and if this medium is in motion with respect to the observer, the net speed is always greater
“downstream” than “upstream.” Over the next 20 years a series of improbable schemes
were concocted in an effort to explain why this does not occur with light. Michelson and
Morley themselves interpreted their experiment as confirmation of the “ether drag” hypoth-
esis, which held that the earth somehow pulls the ether along with it. But this was found
to be inconsistent with other observations, notably the aberration of starlight.® Various so-

3 A discussion of the Michelson-Morley experiment and related matters is to be found in R. Resnick’s Introduction
to Special Relativity, Chap. 1 (New York: John Wiley, 1968).
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called “emission” theories were proposed, according to which the speed of electromagnetic
waves is governed by the motion of the source—as it would be in a corpuscular theory
(conceiving of light as a stream of particles). Such theories called for implausible modifi-
cations in Maxwell’s equations, but in any event they were discredited by experiments using
extraterrestrial light sources. Meanwhile, Fitzgerald and Lorentz suggested that the ether
wind physically compresses all matter (including the Michelson-Morley apparatus itself)
in just the right way to compensate for, and thereby conceal, the variation in speed with
direction. As it turns out, there is a grain of truth in this, although their idea of the reason
for the contraction was quite wrong.

At any rate, it was not until Einstein that anyone took the Michelson-Motley result at
face value and suggested that the speed of light is a universal constant, the same in all
directions, regardless of the motion of the observer or the source. There is no ether wind
because there is no ether. Any inertial system is a suitable reference frame for the application
of Maxwell’s equations, and the velocity of a charge is to be measured not with respect to a
(nonexistent) absolute rest frame, nor with respect to a (nonexistent) ether, but simply with
respect to the particular reference system you happen to have chosen.

Inspired, then, both by internal theoretical hints (the fact that the laws of electrodynamics
are such as to give the right answer even when applied in the “wrong” system) and by external
empirical evidence (the Michelson-Morley experiment*), Einstein proposed his two famous
postulates:

1. The principle of relativity. The laws of physics apply in all inertial
reference systems.

2. The universal speed of light. The speed of light in vacuum is the same
for all inertial observers, regardless of the motion of the source.

The special theory of relativity derives from these two postulates. The first elevates Galileo’s
observation about classical mechanics to the status of a general law, applying to all of
physics. Tt states that there is no absolute rest system. The second might be considered
Einstein’s response to the Michelson-Morley experiment. It means that there is no ether.
(Some authors consider Einstein’s second postulate redundant—no more than a special case
of the first. They maintain that the very existence of ether would violate the principle of
relativity, in the sense that it would define a unique stationary reference frame. I think this
is nonsense. The existence of air as a medium for sound does not invalidate the theory of
relativity. Ether is no more an absolute rest system than the water in a goldfish bowl—which
is a special system, if you happen to be the goidfish, but scarcely “absolute.”)’

Unlike the principle of relativity, which had roots going back several centuries, the
universal speed of light was radically new—and, on the face of it, preposterous. For if I
walk 5 mi/h down the corridor of a train going 60 mi/h, my net speed relative to the ground

4Actually, Einstein appears to have been only dimly aware of the Michelson-Morley experiment at the time.
For him, the theoretical argument alone was decisive.

5T put it this way in an effort to dispel some misunderstanding as to what constitutes an absolute rest frame. In
1977, it became possible to measure the speed of the earth through the 3 K background radiation left over from the
“big bang.” Does this mean we have found an absolute rest system, and relativity is out the window? Of course
not.
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is “obviously” 65 mi/h—the speed of A (me) with respect to C (ground) is equal to the
speed of A relative to B (train) plus the speed of B relative to C:

VAC = VUAB + Upc. (12.1)

And yet, if A is a light signal (whether is comes from a flashlight on the train or a lamp on
the ground or a star in the sky) Einstein would have us believe that its speed is ¢ relative to
the train and c relative to the ground:

VAC = Vs = C. (12.2)
Evidently, Eq. 12.1, which we now call Galileo’s velocity addition rule (no one before

Einstein would have bothered to give it a name at ail) is incompatible with the second
postulate. In special relativity, as we shall see, it is replaced by Einstein’s velocity addition

rule:
UVAB + UpC
VAgC = ———— | (12.3)
L 1 + (vapvpc/c?)

For “ordinary” speeds (vap « c, vpc K c¢), the denominator is so close to 1 that the
discrepancy between Galileo’s formula and Einstein’s formula is negligible. On the other
hand, Einstein’s formula has the desired property that if v4g = c, then automatically
VAC = C:
bpe = _CTUBC
1 + (cvpc/c?)

But how can Galileo’s rule, which seems to rely on nothing but common sense, possibly
be wrong? And if it is wrong, what does this do to all of classical physics? The answer
is that special relativity compels us to alter our notions of space and time themselves, and
therefore also of such derived quantities as velocity, momentum, and energy. Although
it developed historically out of Einstein’s contemplation of electrodynamics, the special
theory is not limited to any particular class of phenomena—rather, it is a description of
the space-time “arena” in which all physical phenomena take place. And in spite of the
reference to the speed of light in the second postulate, relativity has nothing to do with light:
c is evidently a fundamental velocity, and it happens that light travels at that speed, but it
is perfectly possible to conceive of a universe in which there are no clectric charges, and
hence no electromagnetic fields or waves, and yet relativity would still prevail. Because
relativity defines the structure of space and time, it claims authority not merely over all
presently known phenomena, but over those not yet discovered. It is, as Kant would say, a
“prolegomenon to any future physics.”

Problem 12.1 Use Galileo’s velocity addition rule. Let S be an inertial reference system.

(a) Suppose that § moves with constant velocity relative to S. Show that S is also an inertial
reference system. [Hinz: use the definition in footnote 1.]

(b) Conversely, show that if S is an inertial system, then it moves with respect to S at constant
velocity.
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Problem 12.2 As an illustration of the principle of relativity in classical mechanics, consider
the following generic collision: In inertial frame S, particle A (mass m 4, velocity uy4) hits
particle B (mass m g, velocity ug). In the course of the collision some mass rabs off A and
onto B, and we are left with particles C (mass m, velocity uc) and D (mass m p, velocity
up). Assume that momentum (p = mu) is conserved in S.

(a) Prove that momentum is also conserved in inertial frame S, which moves with velocity v
relative to S. [Use Galileo’s velocity addition rule—this is an entirely classical calculation.
What must you assume about mass?]

(b) Suppose the collision is elastic in S; show that it is also elastic in S.

Problem 12.3

(a) What's the percent error introduced when you use Galileo’s rule, instead of Einstein’s, with
vap = Smi/hand vge = 60 mi/h?

(b) Suppose you could run at half the speed of light down the corridor of a train going three-
quarters the speed of light. What would your speed be relative to the ground?

(c) Prove, using Eq. 12.3, thatif v4g < cand vpc < cthen vac < c. Interpret this result.

Figure 12.3

Problem 12.4 As the outlaws escape in their getaway car, which goes %c, the police officer
fires a bullet from the pursuit car, which only goes %c (Fig. 12.3). The muzzle velocity of the

bullet (relative to the gun) is %c. Does the bullet reach its target (a) according to Galileo, (b)
according to Einstein?

12.1.2 The Geometry of Relativity

In this section I present a series of gedanken (thought) experiments that serve to introduce
the three most striking geometrical consequences of Einstein’s postulates: time dilation,
Lorentz contraction, and the relativity of simultaneity. In Sect. 12.1.3 the same results will
be derived more systematically, using Lorentz transformations.

(i) The relativity of simultaneity. Imagine a freight car, traveling at constant speed
along a smooth, straight track (Fig. 12.4). In the very center of the car there hangs a
light buib. When someone switches it on, the light spreads out in all directions at speed
c. Because the lamp is equidistant from the two ends, an observer on the train will find
that the light reaches the front end at the same instant as it reaches the back end: The two
events in question—i(a) light reaches the front end and (b) light reaches the back end—
occur simultaneously. However, to an observer on the ground these same two events are not
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simultaneous. For as the light travels out from the bulb, the train itself moves forward, so
the beam going to the back end has a shorter distance to travel than the one going forward
(Fig. 12.5). According to this observer, therefore, event (b) happens before event (a). An
observer passing by on an express train, meanwhile, would report that (a) preceded (b).
Conclusion:

Two events that are simultaneous in one inertial system are not, in
general, simultaneous in another.

Naturally, the train has to be going awfully fast before the discrepancy becomes detectable—
that’s why you don’t notice it all the time.

Of course, it is always possible for a naive witness to be mistaken about simultaneity:
you hear the thunder after you see the lightning, and a child might infer that the source
of the light was not simultaneous with the source of the sound. But this is a trivial error.
having nothing to do with moving observers or relativity—obviously, you must correct for
the time the signal (sound, light, carrier pigeon, or whatever) takes to reach you. When I
speak of an observer, I mean someone having the sense to make this correction, and an
observation is what an observer records affer doing so. What you see, therefore, is not the
same as what you observe. An observation cannot be made with a camera—it is an artificial
reconstruction after the fact, when all the data are in. In fact, a wise observer will avoid the
whole problem, by stationing assistants at strategic locations, each equipped with a watch
synchronized to a master clock, so that time measurements can be made right at the scene.
I belabor this point in order to emphasize that the relativity of simultaneity is a genuine
discrepancy between measurements made by competent observers in relative motion, not a
simple mistake arising from a failure to account for the travel time of light signals.

Problem 12.5 Synchronized clocks are stationed at regular intervals, a million km apart, along
a straight line. When the clock next to you reads 12 noon:

() What time do you see on the 90th clock down the line?

(b) What time do you observe on that clock?

Problem 12.6 Every 2 years, more or less, The New York Times publishes an article in which
some astronomer claims to have found an object traveling faster than the speed of light. Many
of these reports result from a failure to distinguish what is seen from what is observed—that
is, from a failure to account for light travel time. Here’s an example: A star is traveling with
speed v at an angle 6 to the line of sight (Fig. 12.6). What is its apparent speed across the sky?
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(Suppose the light signal from b reaches the earth at a time At after the signal from a, and the
star has meanwhile advanced a distance As across the celestial sphere; by “apparent speed”
I mean As/At.) What angle 6 gives the maximum apparent speed? Show that the apparent
speed can be much greater than ¢, even if v itself is less than c.

(ii) Time dilation. Now let’s consider a light ray that leaves the bulb and strikes the
floor of the car directly below. Question: How long does it take the light to make this trip?
From the point of view of an observer on the train, the answer is easy: If the height of the

car is A, the time is

_ h
At = —.
c

(12.4)

(’ll use an overbar to denote measurements made on the train.) On the other hand, as
observed from the ground this same ray must travel farther, because the train itself is

. moving. From Fig. 12.7 I see that this distance is A% + (vA£)?, s0
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At =
c

Vh2 + (vAD?
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Solving for At, we have

and therefore

Af = /1 —vZ/c? Ar. (12.5)

Evidently the time elapsed between the same two events—(a) light leaves bulb, and (b) light
strikes center of floor—is different for the two observers. In fact, the interval recorded on
the train clock, Af, is shorter by the factor

1

4 J1=v2/cr

(12.6)

Conclusion:
Moving clocks run slow.

This is called time dilation. It doesn’t have anything to do with the mechanics of clocks: it’s
a statement about the nature of time, which applies to all properly functioning timepieces.

Of all Einstein’s predictions, none has received more spectacular and persuasive confir-
mation than time dilation. Most elementary particles are unstable: they disintegrate after a
characteristic lifetime® that varies from one species to the next. The lifetime of a neutron
is 15 min, of amuon, 2 x 109 s, of a neutral pion, 9 x 1077 s. But these are lifetimes of
particles at rest. When particles are moving at speeds close to ¢ they last much longer, for
their internal clocks (whatever it is that tells them when their time is up) are running slow,
in accordance with Einstein’s time dilation formula.

Example 12.1

A muon is traveling through the laboratory at three-fifths the speed of light. How long does it
last?

Solution: In this case,
1 5

so it lives longer (than at rest) by a factor of ;5—1:

5
7 X @x 107%)s = 2.5 x 1070,

6Actua]ly, an individual particle may last longer or shorter than this. Particle disintegration is a random process.
and I should really speak of the average lifetime for the species. But to avoid irrelevant complication I shall
pretend that every particle disintegrates after precisely the average lifetime.
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It may strike you that time dilation is inconsistent with the principle of relativity. For if
the ground observer says the train clock runs slow, the train observer can with equal justice
claim that the ground clock runs slow—after all, from the train’s point of view it is the
ground that is in motion. Who’s right? Answer: They’re both right! On closer inspection
the “contradiction,” which seems so stark, evaporates. Let me explain: In order to check
the rate of the train clock, the ground observer uses rwo of his own clocks (Fig. 12.8): one
to compare times at the beginning of the interval, when the train clock passes point A, the
other to compare times at the end of the interval, when the train clock passes point B. Of
course, he must be careful to synchronize his clocks before the experiment. What he finds
is that while the train clock ticked off, say, 3 minutes, the interval between his own two
clock readings was 5 minutes. He concludes that the train clock runs slow.

Train clock Train clock B Train clock A
S (I
4 0O B OO 0O O NNO)
Ground clock
Ground clock A Ground clock B
Figure 12.8 Figure 12.9

Meanwhile, the observer on the train is checking the rate of the ground clock by the
same procedure: She uses two carefully synchronized train clocks, and compares times
with a single ground clock as it passes by each of them in turn (Fig. 12.9). She finds that
while the ground clock ticks off 3 minutes, the interval between her train clocks is 5 min-
utes, and concludes that the ground clock runs slow. Is there a cortradiction? No, for the
two observers have measured different things. The ground observer compared one train
clock with rwo ground clocks; the train observer compared one ground clock with two rain
clocks. Each followed a sensible and correct procedure, comparing a single moving clock
with two stationary ones. “So what,” you say, “the stationary clocks were synchronized
in each instance, so it cannot matter that they used two different ones.” But there’s the
rub: Clocks that are properly synchronized in one system will not be synchronized when
observed from another system. They can’t be, for to say that two clocks are synchronized
is to say that they read 12 noon simultaneously, and we have already learned that what’s
simultaneous to one observer is nor simultaneous to another. So whereas each observer
conducted a perfectly sound measurement, from his/her own point of view, the other ob-
server, watching the process, considers that she/he made the most elementary blunder, by
using two unsynchronized clocks. That’s how, in spite of the fact that his clocks “actually”
run slow, he manages to conclude that hers are running slow (and vice versa).
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Because moving clocks are not synchronized, it is essential when checking time dilation
to focus attention on a single moving clock. A/l moving clocks run slow by the same factor,
but you can’t start timing on one clock and then switch to another because they weren’t
in step to begin with. But you can use as many stationary clocks (stationary with respect
to you, the observer) as you please, for they are properly synchronized (moving observers
would dispute this, but that’s their problem).

Example 12.2

The twin paradox. On her 21st birthday, an astronaut takes off in a rocket ship at a speed of
i3c Afier S years have elapsed on her watch, she turns around and heads back at the same
speed to rejoin her twin brother, who stayed at home. Question: How old is each twin at their

reunion?

Solution: The traveling twin has aged 10 years (5 years out, 5 years back); she arrives at home
just in time to celebrate her 31st birthday. However, as viewed from earth, the moving clock
has been running slow by a factor

B 1 13
VI 50
13

The time elapsed on earthbound clocks is Z % 10 = 26, and her brother will be therefore
celebrating his 47th birthday—he is now 16 years older than his twin sister! But don’t be
deceived: This is no fountain of youth for the traveling twin, for though she may die later than
her brother, she will not have lived any more—she’s just done it slower. During the flight, all
her biological processes—metabolism, pulse, thought, and speech—are subject to the same
time dilation that affects her watch.

The so-called twin paradox arises when you try to tell this story from the point of view of
the traveling twin, She sees the earth fly off at TC turn around after 5 years, and return. From
her point of view, it would seem, she’s at rest, whereas her brother is in motion, and hence
it is e who should be younger at the reunion. An enormous amount has been written about
the twin paradox, but the truth is there’s really no paradox here at all: this second analysis is
simply wrong. The two twins are not equivalent. The traveling twin experiences acceleration
when she turns around to head home, but her brother does not. To put it in fancier language,
the traveling twin is not in an inertial system—more precisely, she’s in one inertial system
on the way out and a completely different one on the way back. You’ll see in Prob. 12.16
how to analyze this problem correctly from her point of view, but as far as the resolution of
the “paradox™ is concerned, it is enough to note that the traveling twin cannot claim to be a
stationary observer because you can’t undergo acceleration and remain stationary.

Problem 12.7 In a laboratory experiment a muon is obscrved to travel 800 m before disinte-
grating. A graduate student looks up the lifetime of a muon (2 x 10~ s) and concludes that

its speed was
800m

T 2x 1076 ]
Faster than light! Identify the student’s error, and find the actual speed of this muon.

=4x108 m/s.
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Problem 12.8 A rocket ship leaves earth at a speed of %c. When a clock on the rocket says 1
hour has elapsed, the rocket ship sends a light signal back to earth.

(8) According to earth clocks, when was the signal sent?
(b) According to earth clocks, how long after the rocket left did the signal arrive back on earth?

(¢) According to the rocket observer, how long after the rocket left did the signal arrive back
on earth?

(iii) Lorentz contraction. For the third gedanken experiment you must imagine that we
have set up a lamp at one end of a boxcar and a mirror at the other, so that a light signal can
be sent down and back (Fig. 12.10). Question: How long does the signal take to complete
the round trip? To an observer on the train, the answer is

AR
AT =228 12.7)
C

where AX is the length of the car (the overbar, as before, denotes measurements made on
the train). To an observer on the ground the process is more complicated because of the
motion of the train. If Aty is the time for the light signal to reach the front end, and A#, is
the return time, then (see Fig. 12.11):
Ax + vAf Ax — VAt
+ L Af X 2

A =22 00 Ay = SE TR
C C

or, solving for Ar; and Aty:

Ax Ax
Aty = , An = .
c—v c+v
So the round-trip time is
Ax 1
At=At+An=2—————. 12.8
1+ An A= (12.8)

Meanwhile, these same intervals are related by the time dilation formula, Eq. 12.5:

AT = /1 —=v2/c2 At.
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Figure 12.10 Figure 12.11
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Applying this to Egs. 12.7 and 12.8, I conclude that

1
Ax = —=Ax. (12.9)

N

The length of the boxcar is not the same when measured by an observer on the ground,
as it is when measured by an observer on the train—from the ground point of view it is
somewhat shorter. Conclusion:

Moving objects are shortened.

We call this Lorentz contraction. Notice that the same factor,

1
J1=v2/c

appears in both the time dilation formula and the Lorentz contraction formula. This makes
it all very easy to remember: Moving clocks run slow, moving sticks are shortened, and the
factor is always y.

Of course, the observer on the train doesn’t think her car is shortened—her meter sticks
are contracted by that same factor, so all her measurements come out the same as when the
train was standing in the station. In fact, from her point of view it is objects on the ground
that are shortened. This raises again a paradoxical problem: If A says B’s sticks are short,
and B says A’s sticks are short, who is right? Answer: They both are! But to reconcile the
rival claims we must study carefully the actual process by which length is measured.

Suppose you want to find the length of a board. If it’s at rest (with respect to you) you
simply lay your ruler down next to the board, record the readings at each end, and subtract
them to get the length of the board (Fig. 12.12). (If you're really clever, you’ll line up
the left end of the ruler against the left end of the board—then you only have to read one
number.)

But what if the board is moving? Same story, only this time, of course, you must be
careful to read the two ends ar the same instant of time. If you don’t, the board will move
in the course of measurement, and obviously you’ll get the wrong answer. But therein lies
the problem: Because of the relativity of simultaneity the two observers disagree on what
constitutes “the same instant of time.” When the person on the ground measures the length
of the boxcar, he reads the position of the two ends at the same instant in his system. But

4

Board
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Ruler

Figure 12.12
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the person on the train, watching him do it, complains that he read the front end first, then
waited a moment before reading the back end. Naturally, he came out short, in spite of
the fact that (to her) he was using an undersized meter stick, which would otherwise have
yielded a number too large. Both observers measure lengths correctly (from the point of
view of their respective inertial frames) and each finds the other’s sticks to be shortened.
Yet there is no inconsistency, for they are measuring different things, and each considers
the other’s method improper.

Example 12.3

The barn and ladder paradox. Unlike time dilation, there is no direct experimental confir-
mation of Lorentz contraction, simply because it's too difficult to get an object of measurable
size going anywhere near the speed of light. The following parable illustrates how bizarre the
world would be if the speed of light were more accessible.

There once was a farmer who had a ladder too long to store in his barn (Fig. 12.13a). He
chanced one day to read some relativity, and a solution to his problem suggested itself. He
instructed his daughter to run with the ladder as fast as she could—the moving ladder having
Lorentz-contracted to a size the barn could easily accommodate, she was to rush through the
door, whereupon the farmer would slam it behind her, capturing the ladder inside (Fig. 12.13b).
The daughter, however, has read somewhat farther in the relativity book; she points out that in
her reference frame the barn, not the ladder, will contract, and the fit will be even worse than
it was with the two at rest (Fig. 12.13c). Question: Who’s right? Will the ladder fit inside the
barn, or won’t it?

(a) (b)

—

LLOETITTT

-4

©)

Figure 12.13
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Solution: They’re borh right! When you say “the ladder is in the barn,” you mean that all
parts of it are inside ar one instant of time, but in view of the relativity of simultaneity, that’s a
condition that depends on the observer. There are really two relevant events here:

a. Back end of ladder makes it in the door.
b. Front end of ladder hits far wall of barn.

The farmer says a occurs before b, so there is a time when the ladder is entirely within the
barn; his daughter says b precedes a, so there is not. Contradiction? Nope—ijust a difference
in perspective.

“But come now,” I hear you protest, “when it’s all over and the dust clears, either the ladder
is inside the barn, or it isn’t. There can be no dispute about thar” Quite so, but now you’re
introducing a new element into the story: What happens as the ladder is brought to a stop?
Suppose the farmer grabs the last rung of the ladder firmly with one hand, while he slams
the door with the other. Assuming it remains intact, the ladder must now stretch out to its
rest length. Evidently, the front end keeps going, even after the rear end has been stopped!
Expanding like an accordian, the front end of the ladder smashes into the far side of the barn.
In truth, the whole notion of a “rigid” object loses its meaning in relativity, for when it changes
its speed, different parts do not in general accelerate simultaneously—in this way the material
stretches or shrinks to reach the length appropriate to its new velocity.

But to return to the question at hand: When the ladder finally comes to a stop, is it inside the
barn or not? The answer is indeterminate. When the front end of the ladder hits the far side
of the barn, something has to give, and the farmer is left either with a broken ladder inside the
barn or with the ladder intact poking through a hole in the wall. In any event, he is unlikely to
be pleased with the outcome.

One final comment on Lorentz contraction. A moving object is shortened only along
the direction of its motion:

Dimensions perpendicular to the velocity are not contracted.

Indeed, in deriving the time dilation formula I took it for granted that the height of the train
is the same for both observers. I'll now justify this, using a lovely gedanken experiment
suggested by Taylor and Wheeler.” Imagine that we build a wall beside the railroad tracks,
and 1 m above the rails, as measured on the ground, we paint a horizontal blue line. When
the train goes by, a passenger leans out the window holding a wet paintbrush 1 m above the
rails, as measured on the train, leaving a horizontal red line on the wall. Question: Does
the passenger’s red line lie above or below our blue one? If the rule were that perpendicular
directions contract, then the person on the ground would predict that the red line is lower,
while the person on the train would say it’s the blue one (to the latter, of course, the ground
is moving). The principle of relativity says that both observers are equally justified, but they
cannot both be right. No subtleties of simultaneity or synchronization can rationalize this
contradiction; either the blue line is higher or the red one is—unless they exactly coincide,

’E.F Taylor and J. A. Wheeler, Spacetime Physics (San Francisco: W. H. Freeman, 1966). A somewhat
different version of the same argument is given in J. H. Smith, Introduction to Special Relativity (Champaign, IL:
Stipes, 1965).
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which is the inescapable conclusion. There cannot be a law of contraction (or expansion)
of perpendicular dimensions, for it would lead to irreconcilably inconsistent predictions.

Problem 12.9 A Lincoln Continental is twice as long as a VW Beetle, when they are at rest.
As the Continental overtakes the VW, going through a speed trap, a (stationary) policeman
observes that they both have the same length. The VW is going at half the speed of light. How
fast is the Lincoln going? (Leave your answer as a multiple of ¢.)

Problem 12.10 A sailboat is manufactured so that the mast leans at an angle 6 with respect to
the deck. An observer standing on a dock sees the boat go by at speed v (Fig. 12.14). What
angle does this observer say the mast makes?

Figure 12.14 Figure 12.15

Problem 12.11 A record turntable of radius R rotates at angular velocity w (Fig. 12.15). The
circumference is presumably Lorentz-contracted, but the radius (being perpendicular to the
velocity) is not. What’s the ratio of the circumference to the diameter, in terms of w and R?
According to the rules of ordinary geometry, that has to be 7. What’s going on here? |This
is known as Ehrenfest’s paradox; for discussion and references see H. Arzelies, Relativistic
Kinematics, Chap. IX (Elmsford, NY: Pergamon Press, 1966) and T. A. Weber, Am. J. Phys.
65, 486 (1997).]

12.1.3 The Lorentz Transformations

Any physical process consists of one or more events. An “event” is something that takes
place at a specific location (x, y, z), at a precise time (¢). The explosion of a firecracker,
for example, is an event; a tour of Europe is not. Suppose that we know the coordinates
(x, y, z) of a particular event E in one inertial system S, and we would like to calculate the
coordinates (X, y, z, f) of that same event in some other inertial system S. What we need
is a “dictionary” for translating from the language of S to the language of S.
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We may as well orient our axes as shown in Fig. 12.16, so that S slides along the x axis
at speed v. If we “start the clock” (+ = 0) at the moment the origins (O and O) coincide.
then at time 7, O will be a distance vt from O, and hence

x =d +vt, (12.10)

where d is the distance from O to A at time ¢ (A is the point on the x axis which is even
with £ when the event occurs). Before Einstein, anyone would have said immediately that

d=7%, (12.11)

and thus constructed the “dictionary”
(i) x =x —vt,
(i) y =y,
(12.12)
(iil) z =z,

(iv) 1 =1.

These are now called the Galilean transformations, though they scarcely deserve so fine
a title—the last one, in particular, went without saying, since everyone assumed the flow
of time was the same for all observers. In the context of special relativity, however, we
must expect (iv) to be replaced by a rule that incorporates time dilation, the relativity of
simultaneity, and the nonsynchronization of moving clocks. Likewise, there will be a
modification in (i) to account for Lorentz contraction. As for (ii) and (iii), they, at least.
remain unchanged, for we have already seen that there can be no modification of lengths
perpendicular to the motion.

But where does the classical derivation of (i) break down? Answer: In Eq. 12.11. For
d is the distance from O to A as measured in S, whereas & is the distance from O to A as
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measured in S. Because O and A are at rest in S , X is the “moving stick,” which appears

contracted to S: .
d=—x. (12.13)
14

When this is inserted in Eq. 12.10 we obtain the relativistic version of (i):
X=yx—u). (12.14)

Of course, we could have run the same argument from the point of view of S. The
diagram (Fig. 12.17) looks similar, but in this case it depicts the scene at time 7, whereas
Fig. 12.16 showed the scene at rime t. (Note that t and f represent the same physical instant
at E, but not elsewhere, because of the relativity of simultaneity.) If we assume that S also
starts the clock when the origins coincide, then at time , O will be a distance vi from O,
and therefore

¥ =d — i, (12.15)

where d is the distance from O to A at time 7, and A is that point on the x axis which is
even with E when the event occurs. The classical physicist would have said that x = d,
and, using (iv), recovered (i). But, as before, relativity demands that we observe a subtle
distinction: x is the distance from O to A in S, whereas d is the distance from O to A in
S. Because O and A are at rest in S, x is the “moving stick,” and

- 1
d=—x. (12.16)
4
It follows that
x =y (X + vi). (12.17)

This last equation comes as no surprise, for the symmetry of the situation dictates that
the formula for x, in terms of ¥ and 7, should be identical to_the formula for ¥ in terms of
x and 1 (Eq. 12.14), except for a switch in the sign of v. (If S is going to the righr at speed

va Y
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Figure 12.17
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v, with respect to S, then § is going to the left at speed v, with respect to S.) Nevertheless,
this is a useful result, for if we substitute x from Eq. 12.14, and solve for 7, we complete
the relativistic “dictionary”:

(i) x =y — i),
(i) y=y,

N (12.18)
(iii) z =z,

(iv) f:y(t—c%x).

These are the famous Lorentz transformations, with which Einstein replaced the
Galilean ones. They contain all the geometrical information in the special theory, as the
following examples illustrate. The reverse dictionary, which carries you from S back to
S, can be obtained algebraically by solving (i) and (iv) for x and 7, or, more simply, by
switching the sign of v:

(i) x =y (X +vi),

i) y =y,

! (12.19)
(iii") z=2,

i) t=y (t_-l- L%)?)

Example 12.4

Simultaneity, synchronization, and time dilation. Suppose event A occursat x4 = 0,14 =
0, and event B occurs at xg = b, tg = 0. The two events are simultaneous in S (they both
take place at r = 0). But they are not simultaneous in &, for the Lorentz transformations give
%4 =0,i4 =0andig = yb, ip = —y(v/c2)b. According to the S clocks, then, B occurred
before A. This is nothing new, of course—just the relativity of simultaneity. But I wanted you
to see how it follows from the Lorentz transformations.

Now suppose that at time ¢ = 0 observer S decides to examine al/ the clocks in S. He finds
that they read different times, depending on their location; from (iv):

: v
=—y—5x.
o2

Those to the left of the origin (negative x) are ahead, and those to the right are behind, by an
amount that increases in proportion to their distance (Fig. 12.18). Only the master clock at the
origin reads f = 0. Thus, the nonsynchronization of moving clocks, too, follows directly from
the Lorentz transformations. Of course, from the S viewpoint it is the S clocks that are out of
synchronization, as you can check by putting 7 = 0 into equation (iv').
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S clocks

S clocks

Figure 12.18

Finally, suppose S focuses his attention on a single clock in the S frame (say, the one at
X = a), and watches it over some interval Ar. How much time elapses on the moving clock?
Because ¥ is fixed, (iv)) gives At = y Af, or

Al = lAz.
Y
That’s the old time dilation formula, derived now from the Lorentz transformations. Please
note that it’s ¥ we hold fixed, here, because we’re watching one moving clock. If you hold x
fixed, then you’re watching a whole series of different S clocks as they pass by, and that won’t
tell you whether any one of them is running slow.

Example 12.5

Lorentz contraction. Imagine a stick moving to the right at speed v. Its rest length (that is, its
length as measured in 8) is AX = %, — ¥;, where the subscripts denote the right and left ends
of the stick. If an observer in S were to measure the stick, he would subtract the positions of
the two ends at one instant of his time t: Ax = x, — x;. According to (i), then,

1
Ax = —Ax.
14
This is the old Lorentz contraction formula. Note that it’s ¢ we hold fixed, here, because we’re
talking about a measurement made by S, and he marks off the two ends at the same instant of
his time. (S doesn’t have to be so fussy, since the stick is at rest in her frame.)

Example 12.6

Einstein’s velocity addition rule. Suppose a particle moves a distance dx (in S) in a time dt.
Its velocity u is then
dx
U=—.
dt
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In &, meanwhile, it has moved a distance
dx = y(dx — vdt),

as we see from (i), in a time given by (iv):

di =y (dz - %dx) :
c
The velocity in & is therefore

_dx y(dx — vdt) (dx/dt —v) u—v
dt  y(dt —v/c2dx) 1—v/cidx/dt 1 —uv/c?

This is Einstein’s velocity addition rule. To recover the more transparent notation of Eq. 12.3,
let A be the particle, B be S, and C be S; thenu = vap, it = v4c, and v = vep = ~vpC.
so Eq. 12.20 becomes

VAB T UBC

VA= ——————,
1+ (vaBVUBC/C?)

as before.

Problem 12.12 Solve Eqs. 12.18 for x, y, z, t in terms of X, ¥, Z, 7, and check that you recover
Egs. 12.19.

Problem 12.13 Sophie Zabar, clairvoyante, cried out in pain at precisely the instant her twin
brother, 500 km away, hit his thumb with a hammer. A skeptical scientist observed both events
(brother’s accident, Sophie’s cry) from an airplane traveling at %c to the right (see Fig. 12.19).
Which event occurred first, according to the scientist? How much earlier was it, in seconds?

Problem 12.14

(a) In Ex. 12.6 we found how velocities in the x direction transform when you go from S to

S. Derive the analogous formulas for velocities in the y and z directions.

(b) A spotlight is mounted on a boat so that its beam makes an angle  with the deck (Fig. 12.20).
If this boat is then set in motion at speed v, what angle 8 does an observer on the dock say the
beam makes with the deck? Compare Prob. 12.10, and explain the difference.

Problem 12.15 You probably did Prob. 12.4 from the point of view of an observer on the
ground. Now do it from the point of view of the police car, the outlaws, and the bullet. That
is, fill in the gaps in the following table:

| speed of — Ground | Police | Outlaws | Bullet || Do they escape?
relative to |

Ground Y 3¢ i

Police % <

Outlaws

Bullet
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500 km

Figure 12.19 Figure 12.20

Problem 12.16 The twin paradox revisited. On their 21st birthday, one twin gets on a moving
sidewalk, which carries her out to star X at speed %c; her twin brother stays home. When the
traveling twin gets to star X, she immediately jumps onto the returning moving sidewalk and
comes back to earth, again at speed %c. She arrives on her 39th birthday (as determined by
her watch).

(a) How old is her twin brother (who stayed at home)?
(b) How far away is star X? (Give your answer in light years.)

Call the outbound sidewalk system S and the inbound one S (the earth system is §). All three
systems set their master clocks, and choose their origins, sothatx = ¥ =X =0,t =f =t =0
at the moment of departure.

(c) What are the coordinates (x, t) of the jump (from outbound to inbound sidewalk) in S?
(d) What are the coordinates (¥, 7) of the jump in §?
(e) What are the coordinates (X, /) of the jump in 82

(f) If the traveling twin wanted her watch to agree with the clock in S, how would she have
to reset it immediately after the jump? If she did this, what would her watch read when she
got home? (This wouldn’t change her age, of course—she’s still 39—it would just make her
watch agree with the standard synchronization in S.)

(2) If the traveling twin is asked the question, “How old is your brother right now?”, what is the
correct reply (i) just before she makes the jump, (ii) just after she makes the jump? (Nothing
dramatic happens to her brother during the split second between (i) and (ii), of course; what
does change abruptly is his sister’s notion of what “right now, back home” means.)

(h) How many earth years does the return trip take? Add this to (ii) from (g) to determine how
old she expects him to be at their reunion. Compare your answer to (a).
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12.1.4 The Structure of Spacetime

(i) Four-vectors. The Lorentz transformations take on a simpler appearance when expressed
in terms of the quantities
v
L=, B=-. (12.21)
c

Using x (instead of ) and B (instead of v) amounts to changing the unit of time from the
second to the meter—1 meter of x° corresponds to the time it takes li ght to travel 1 meter
(in vacuum). If, at the same time, we number the x, v, Z coordinates, so that

X =x, x*=y, x =z, (12.22)
then the Lorentz transformations read

=y - pxh,

=y - a0,

S (12.23)
i2=x2,
3= 3
Or, in matrix form:
z° vy —vB 00 x°
x! -8 y 0 0 xl
= ) (12.24)
x2 0 0 10 x?
73 0 0 0 1 3

Letting Greek indices run from O to 3, this can be distilled into a single equation:
3
= "(AxY, (12.25)
v=0

where A is the Lorentz transformation matrix in Eq. 12.24 (the superscript u labels the
row, the subscript v labels the column). One virtue of writing things in this abstract manner
is that we can handle in the same format a more general transformation, in which the relative
motion is not along a common x X axis; the matrix A would be more complicated, but the
structure of Eq. 12.25 is unchanged.

If this reminds you of the rotations we studied in Sect. 1.1.5, it’s no accident. There we
were concerned with the change in components when you switch to a rotated coordinate
system; here we are interested in the change of components when you go to a moving



12.1. THE SPECIAL THEORY OF RELATIVITY 501

system. In Chapter 1 we defined a (3-) vector as any set of three components that transform
under rotations the same way (x, y, z) do; by extension, we now define a 4-vector as any
set of four components that transform in the same manner as (x, x!, x2, x3) under Lorentz
transformations:

3
a* =Yy Ala". (12.26)
v=0

For the particular case of a transformation along the x axis:

@’ =y - gah),

a' = y(a' - paY),
(12.27)

There is a 4-vector analog to the dot product (A-B = A, B, + AyB, + A;B;), butit’s
not just the sum of the products of like components; rather, the zeroth components have a
minus sign:

—a%® +a'b! + a*p* + a3b°. (12.28)
This is the four-dimensional scalar product; you should check for yourself (Prob. 12.17)
that it has the same value in all inertial systems:

—a%% + a'b! + %% +3%h% = —a%° + a'bl + a20% + 3D, (12.29)

Just as the ordinary dot product is invariant (unchanged) under rotations, this combination
is invariant under Lorentz transformations.

To keep track of the minus sign it is convenient to introduce the covariant vector a 0>
which differs from the contravariant a# only in the sign of the zeroth component:

ay = (ag, a1, a2, a3) = (=a’, a', a*, a¥). (12.30)

You must be scrupulously careful about the placement of indices in this business: upper
indices designate contravariant vectors; lower indices are for covariant vectors. Raising
or lowering the temporal index costs a minus sign (ap = —a®); raising or lowering a spatial
index changes nothing (a; = a', a» = a2, a3 = a3). The scalar product can now be written
with the summation symbol,

3
Zaubu, (12.31)
u=0
or, more compactly still,
a,b*. (12.32)

Summation is implied whenever a Greek index is repeated in a product—once as a covariant
index and once as contravariant. This is called the Einstein summation convention, after
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its inventor, who regarded it as one of his most important contributions. Of course, we
could as well take care of the minus sign by switching to covariant b:

ayb* = a*b, = —a"b® + a'b! + a%b* + a3b°. (12.33)

Problem 12.17 Check Eq. 12.29, using Eq. 12.27. [This only proves the invariance of the
scalar product for transformations along the x direction. But the scalar product is also invariant
under rotations, since the first term is not affected at all, and the last three constitute the three-
dimensional dot product a-b. By a suitable rotation, the x direction can be aimed any way you
please, so the four-dimensional scalar product is actually invariant under arbitrary Lorentz
transformations. ]

Problem 12.18
(a) Write out the matrix that describes a Galilean transformation (Eq. 12.12).
(b) Write out the matrix describing a Lorentz transformation along the y axis.

(c) Find the matrix describing a Lorentz transformation with velocity v along the x axis followed
by a Lorentz transformation with velocity v along the y axis. Does it matter in what order the
transformations are carried out?

Problem 12.19 The parallel between rotations and Lorentz transformations is even more strik-
ing if we introduce the rapidity:
6 = tanh ! (v/c). (12.34)

(a) Express the Lorentz transformation matrix A (Eq. 12.24) in terms of 6, and compare it to
the rotation matrix (Eq. 1.29).

In some respects rapidity is a more natural way to describe motion than velocity. [See E.
F. Taylor and J. A. Wheeler, Spacetime Physics (San Francisco: W. H. Freeman, 1966).] For
one thing, it ranges from —oo to +o0, instead of —c¢ to +c. More significantly, rapidities add.
whereas velocities do not.

(b) Express the Einstein velocity addition law in terms of rapidity.

(ii) The invariant interval. Suppose event A occurs at (x?, x1 x2, x3), and event B
PP Ar KA Xq Xy

at (x%, xll;, xlz;, x%). The difference,

Axt = xh — xh, (12.35)

is the displacement 4-vector. The scalar product of Ax* with itself is a quantity of special
importance; we call it the interval between two events:

I = (Ax)u(Ax)* = —(Ax")? + (Ax1)? + (AxD2 + (A2 = =22 + 42, (12.36)

where 1 is the time difference between the two events and d is their spatial separation. When
you transform to a moving system, the time between A and B is altered (7 # 1), and so is
the spatial separation (d # d), but the interval  remains the same.
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Depending on the two events in question, the interval can be positive, negative, or zero:

1. If I < O we call the interval timelike, for this is the sign we get when
the two occur at the same place (d = 0), and are separated only temporally.

2. If I > 0 we call the interval spacelike, for this is the sign we get when
the two occur at the same time (t = 0), and are separated only spatially.

3. If I = 0 we call the interval lightlike, for this is the relation that holds
when the two events are connected by a signal traveling at the speed of light.

If the interval between the two events is timelike, there exists an inertial system (accessible
by Lorentz transformation) in which they occur at the same point. For if I hop on a train
going from (A) to (B) at the speed v = d/¢, leaving event A when it occurs, I shall be
just in time to pass B when ir occurs; in the train system, A and B take place at the same
point. You cannot do this for a spacelike interval, of course, because v would have to be
greater than ¢, and no observer can exceed the speed of light (y would be imaginary and the
Lorentz transformations would be nonsense). On the other hand, if the interval is spacelike,
then there exists a system in which the two events occur at the same time (see Prob. 12.21).

Problem 12.20
(a) Event A happens at point (x4 = 5, y4 = 3,24 = 0) and at time 7,4 given by cr4 = 15;
event B occurs at (10, 8, 0) and ¢tp = 5, both in system S.

(1) What is the invariant interval between A and B?

(ii) Is there an inertial system in which they occur simultaneously? 1If so, find its velocity
(magnitude and direction) relative to S.

(iii) Is there an inertial system in which they occur at the same point? If so, find its velocity
relative to S

(b) Repeat part (a) for A = (2,0,0), ¢t = 1;and B = (5,0, 0), cf = 3.
Problem 12.21 The coordinates of event A are (x4, 0, 0), 14, and the coordinates of event B

are (xp, 0, 0), 7p. Assuming the interval between them is spacelike, find the velocity of the
system in which they are simultaneous.

(iii) Space-time diagrams. If you want to represent the motion of a particle graphically,
the normal practice is to plot the position versus time (that is, x runs vertically and ¢
horizontally). On such a graph, the velocity can be read off as the slope of the curve. For
some reason the convention is reversed in relativity: everyone plots position horizontally
and time (or, better, x® = cr) vertically. Velocity is then given by the reciprocal of the
slope. A particle at rest is represented by a vertical line; a photon, traveling at the speed of
light, is described by a 45° line; and a rocket going at some intermediate speed follows a
line of slope c¢/v = 1/8 (Fig. 12.21). We call such plots Minkowski diagrams.

The trajectory of a particle on a Minkowski diagram is called a world line. Suppose
you set out from the origin at time t+ = 0. Because no material object can travel faster
than light, your world line can never have a slope less than 1. Accordingly, your motion is
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restricted to the wedge-shaped region bounded by the two 45° lines (Fig. 12.22). We call
this your “future,” in the sense that it is the locus of all points accessible to you. Of course,
as time goes on, and you move along your chosen world line, your options progressively
narrow: your “future” at any moment is the forward “wedge” constructed at whatever point
you find yourself. Meanwhile, the backward wedge represents your “past,” in the sense that
it is the locus of all points from which you might have come. As for the rest (the region
outside the forward and backward wedges) this is the generalized “present.” You can’t get
there, and you didn’t come from there. In fact, there’s no way can can influence any event
in the present (the message would have to travel faster than light); it’s a vast expanse of
spacetime that is absolutely inaccessible to you.

I’'ve been ignoring the y and z directions. If we include a y axis coming out of the page,
the “wedges” become cones—and, with an undrawable z axis, hypercones. Because their
boundaries are the trajectories of light rays, we call them the forward light cone and the
backward light cone. Your future, in other words, lies within your forward light cone.
your past within your backward light cone.

Notice that the slope of the line connecting two events on a space-time diagram tells
you at a glance whether the invariant interval between them is timelike (slope greater than
1), spacelike (slope less than 1), or lightlike (slope 1). For example, all points in the past
and future are timelike with respect to your present location, whereas points in the present
are spacelike, and points on the light cone are lightlike.

Hermann Minkowski, who was the first to recognize the full geometrical significance
of special relativity, began a classic paper with the words, “Henceforth space by itself, and
time by itself, are doomed to fade away into mere shadows, and only a kind of union of the
two will preserve an independent reality.” It is a lovely thought, but you must be careful
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Figure 12.23

not to read too much into it. For it is not at all the case that time is “just another coordinate,
on the same footing with x, y, and z” (except that for obscure reasons we measure it on
clocks instead of rulers). No: Time is usterly different from the others, and the mark of its
distinction is the minus sign in the invariant interval. That minus sign imparts to spacetime
a hyperbolic geometry that is much richer than the circular geometry of 3-space.

Under rotations about the z axis, a point P in the xy plane describes a circle. the locus
of all points a fixed distance r = /x2 + y2 from the origin (Fig. 12.23). Under Lorentz
transformations, however, itis the interval I = (x? —¢?¢?) that is preserved, and the locus of
all points with a given value of [ is a hyperbola—or, if we include the y axis, a hyperboloid
of revolution. When the interval is timelike, it's a “hyperboloid of two sheets” (Fig. 12.24a);
when the interval is spacelike, it’s a “hyperboloid of one sheet” (Fig. 12.24b). When you
perform a Lorentz transformation (that is, when you go into a moving inertial system), the
coordinates (x, ) of a given event will change to (X, ), but these new coordinates will lie
on the same hyperbola as (x, t). By appropriate combinations of Lorentz transformations

\ ct h

(b)

Figure 12.24
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and rotations, a spot can be moved around at will over the surface of a given hyperboloid,
but no amount of transformation will carry it, say, from the upper sheet of the timelike
hyperboloid to the lower sheet, or to a spacelike hyperboloid.

When we were discussing simultaneity I pointed out that the time ordering of two events
can, at least in certain cases, be reversed, simply by going into a moving system. But we now
see that this is not always possible: If the invariant interval between two events is timelike,
their ordering is absolute; if the interval is spacelike, their ordering depends on the inertial
system from which they are observed. In terms of the space-time diagram, an event on
the upper sheet of a timelike hyperboloid definitely occurred after (0, 0), and one on the
lower sheet certainly occurred before; but an event on a spacelike hyperboloid occurred at
positive ¢, or negative 7, depending on your reference frame. This is not an idle curiosity, for
it rescues the notion of causality, on which all physics is based. If it were always possible to
reverse the order of two events, then we could never say “A caused B,” since arival observer
would retort that B preceded A. This embarrassment is avoided, provided the two events
are timelike-separated. And causally related events are timelike-separated—otherwise no
influence could travel from one to the other. Conclusion: The invariant interval between
causally related events is always timelike, and their temporal ordering is the same for all
inertial observers.

Problem 12.22

(a) Draw a space-time diagram representing a game of catch (or a conversation) between
two people at rest, 10 ft apart. How is it possible for them to communicate, given that their
separation is spacelike?

(b) There’s an old limerick that runs as follows:

There once was a girl named Ms. Bright,
Who could travel much faster than light.
She departed one day,

The Einsteinian way,

And returned on the previous night.

What do you think? Even if she could travel faster than the speed of light, could she return
before she set out? Could she arrive at some intermediate destination before she set out? Draw
a space-time diagram representing this trip.

Problem 12.23 Inertial system S moves in the x direction at speed %c relative to system S.
(The x axis slides long the x axis, and the origins coincide at f = = 0, as usual.)

(a) On graph paper set up a Cartesian coordinate system with axes ¢t and x. Carefully draw
in lines representing x = —3, =2, —1, 0, 1, 2, and 3. Also draw in the lines corresponding to
cf = =3,-2,-1,0,1,2, and 3. Label your lines clearly.

(b) In S, a free particle is observed to travel from the point ¥ = —2 at time ¢f = ~2 to the
point ¥ = 2 at cf = +3. Indicate this displacement on your graph. From the slope of this line.
determine the particle’s speed in S.

(c) Use the velocity addition rule to determine the velocity in S algebraically, and check that
your answer is consistent with the graphical solution in (b).
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Relativistic Mechanics

12.2.1 Proper Time and Proper Velocity

As you progress along your world line, your watch runs slow; while the clock on the wall
ticks off an interval d¢, your watch only advances dt:

dt = /1 —u?/c?dr. (12.37)

(I’ use u for the velocity of a particular object—you, in this instance—and reserve v for
the relative velocity of two inertial systems.) The time T your watch registers (or, more
generally, the time associated with the moving object) is called proper time. (The word
suggests a mistranslation of the French propre, meaning “own.”) In some cases T may be
a more relevant or useful quantity than ¢. For one thing, proper time is invariant, whereas
“ordinary” time depends on the particular reference frame you have in mind.

Now, imagine you’re on a flight to Los Angeles, and the pilot announces that the plane’s
velocity is %c, due South. What precisely does he mean by “velocity”? Well, of course, he
means the displacement divided by the time:

dl
u= e (12.38)

and, since he is presumably talking about the velocity relative to ground, both dl and dr
are to be measured by the ground observer. That’s the important number to know, if you're
concerned about being on time for an appointment in Los Angeles, but if you’re wondering
whether you’ll be hungry on arrival, you might be more interested in the distance covered
per unit proper time:

_dl

=
This hybrid quantity—distance measured on the ground, over time measured in the airplane—
is called proper velocity; for contrast, I’ll call u the ordinary velocity. The two are related
by Eq. 12.37:

(12.39)

1

" e

For speeds much less than ¢, of course, the difference between ordinary and proper velocity
is negligible.

From a theoretical standpoint, however, proper velocity has an enormous advantage over
ordinary velocity: it transforms simply, when you go from one inertial system to another.
In fact, n is the spatial part of a 4-vector,

(12.40)

dx*
_ 1241
o ( )

whose zeroth component is
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For the numerator, dx*, is a displacement 4-vector, while the denominator, dt, is invariant.
Thus, for instance, when you go from system S to system S, moving at speed v along the
COommon x X axis,

7% =y@° - B,

7l =yn' - pn0),

(12.43)
72 =2,
P =n
More generally,
n* = Akn®; (12.44)

n* is called the proper velocity 4-vector, or simply the 4-velocity.
By contrast, the transformation rule for ordinary velocities is extremely cumbersome,
as we found in Ex. 12.6 and Prob. 12.14:

- dx Uy — v
Uy = — = e,
FTdr T (1= vuy/cd)
_ dy Uy

== — 12.45
BT T Y0 =3 (12.45)
- dz U,
MZ = —_— = _2 .

dt y(1 —vu,/c?)

The reason for the added complexity is plain: we’re obliged to transform both the numerator
dl and the denominator dt, whereas for proper velocity the denominator dr is invariant, so
the ratio inherits the transformation rule of the numerator alone.

Problem 12.24

(a) Equation 12.40 defines proper velocity in terms of ordinary velocity. Invert that equation
1o get the formula for w in terms of v.

(b) What is the relation between proper velocity and rapidity (Eq. 12.34)? Assume the velocity
is along the x direction, and find # as a function of 6.

Problem 12.25 A car is traveling along the 45° line in S (Fig. 12.25), at (ordinary) speed
Q/V5)e.

(a) Find the components u, and u y of the (ordinary) velocity.
(b) Find the components 77, and 7y of the proper velocity.
(c) Find the zeroth component of the 4-velocity, no.

System & is moving in the x direction with (ordinary) speed +/2/5 ¢, relative to S. By using
the appropriate transformation laws:

(d) Find the (ordinary) velocity components it and i y in S.
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45°

Figure 12.25

(¢) Find the proper velocity components 7, and #jy in 8.
(f) As a consistency check, verify that

u

Ry

Problem 12.26 Find the invariant product of the 4-velocity with itself, n#7,,.

Problem 12.27 Consider a particle in hyperbolic motion,

x(t)=,/b2+(ct)2, y=z=0.

(a) Find the proper time t as a function of ¢, assuming the clocks are set so that T = 0 when
t = 0. [Hint: Integrate Eq. 12.37.]

(b) Find x and v (ordinary velocity) as functions of 7.

(c) Find #* (proper velocity) as a function of ¢.

12.2.2 Relativistic Energy and Momentum

In classical mechanics momentum is mass times velocity. I would like to extend this
definition to the relativistic domain, but immediately a question arises: Should Iuse ordinary
velocity or proper velocity? In classical physics n and u are identical, so there is no a priori
reason to favor one over the other. However, in the context of relativity it is essential that
we use proper velocity, for the law of conservation of momentum would be inconsistent
with the principle of relativity if we were to define momentum as mu (see Prob. 12.28).
Thus

P mu
=mn =
V1 —u?/c?

this is the relativistic momentum.

(12.46)
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Relativistic momentum is the spatial part of a 4-vector,
pt = mn*, (12.47)

and it is natural to ask what the temporal component,

P=mp’=__"C (12.48)

V1 —u?/c?

represents. Einstein called
m

V1—u?/c?

the relativistic mass (so that pO = Mpic and p = mqu; m itself was then called the rest
mass), but modern usage has abandoned this terminology in favor of relativistic energy:

Meel = (1249)

mc2

E= — (12.50)

NI

(so p° = E/c).8 Because p° is (apart from the factor 1/c) the relativistic energy, p* is
called the energy-momentum 4-vector (or the momentum 4-vector, for short).

Notice that the relativistic energy is nonzero even when the object is Stationary; we call
this rest energy:

Ereqt = mc>. (12.51)

The remainder, which is attributable to the motion, we call kinetic energy

1
Eki[‘l =F — mC2 = mcz (T/_Z—Z —-1}. (1252)
V6I—usjc

In the nonrelativistic régime (1 < ¢) the square root can be expanded in powers of u?/c?,
giving
4
Ekin — %muz + gm_l;_ _|_ v (1253)
the leading term reproduces the classical formula.
So far, this is all just notation. The physics resides in the experimental fact that E and
p. as defined by Eqs. 12.46 and 12.50, are conserved:

In every closed’ system, the total relativistic energy and momentum are
conserved.

8Since F and mye differ only by a constant factor (c2), there’s nothing to be gained by keeping both terms in
circulation, and m e has gone the way of the two dollar bill.

OIf there are external forces at work, then (just as in the classical case) the energy and momentum of the system
itself will not, in general, be conserved.
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“Relativistic mass” (if you care to use that term) is also conserved—but this is equivalent
to conservation of energy. Rest mass is not conserved—a fact that has been painfully familiar
to everyone since 1945 (though the so-called “conversion of mass into energy” is really a
conversion of rest energy into kinetic energy). Note the distinction between an invariant
quantity (same value in all inertial systems) and a conserved quantity (same value before
and after some process). Mass is invariant, but not conserved; energy is conserved but
not invariant; electric charge (as we shall see) is both conserved and invariant; velocity is
neither conserved nor invariant.

The scalar product of p# with itself is

PPou=—-p2+ (@-p) = —m>c?, (12.54)

as you can quickly check using the result of Prob. 12.26. In terms of the relativistic energy,

E? — p2c? = m2c4. (12.55)

This result is extremely useful, for it enables you to calculate E (if you know p), or p
(knowing E), without ever having to determine the velocity.

Problem 12.28

(a) Repeat Prob. 12.2 using the (incorrect) definition p = mu, but with the (correct) Einstein
velocity addition rule. Notice that if momentum (so defined) is conserved in S, it is not
conserved in S. Assume all motion is along the x axis.

(b) Now do the same using the correct definition, p = mn. Notice that if momentum (so
defined) is conserved in & it is automatically also conserved in S. [Hint: Use Eq. 12.43 to
transform the proper velocity.] What must you assume about relativistic energy?

Problem 12.29 If a particle’s kinetic energy is n times its rest energy, what is its speed?
Problem 12.30 Suppose you have a collection of particles, all moving in the x direction, with

energies Ey, E», E3, ...and momenta p;, ps, p3, .... Find the velocity of the center of
momentum frame, in which the total momentum is zero.

12.2.3 Relativistic Kinematics

In this section we’ll explore some applications of the conservation laws to particle decays
and collisions.

Example 12.7

Two lumps of clay, each of (rest) mass m, collide head-on at %c (Fig. 12.26). They stick
together. Question: what is the mass (M) of the composite lump?
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Figure 12.26

Solution: In this case conservation of momentum is trivial: zero before, zero after. The energy
of each lump prior to the collision is

mc2

V1—(3/5)7?

and the energy of the composite lump after the collision is M2 (since it’s at rest). So conser-
vation of energy says

_5 2
= gmc”,

%mc2 + %mc2 = Mcz,
and hence

M:%m.

Notice that this is greater than the sum of the initial masses! Mass was not conserved in this
collision; kinetic energy was converted into rest energy, so the mass increased.

In the classical analysis of such a collision, we say that kinetic energy was converted into
thermal energy—the composite lump is hotter than the two colliding pieces. This is, of course.
true in the relativistic picture too. But what is thermal energy? It’s the sum total of the random
kinetic and potential energies of all the atoms and molecules in the substance. Relativity tells
us that these microscopic energies are represented in the mass of the object: a hot potato is
heavier than a cold potato, and a compressed spring is heavier than a relaxed spring. Not by
much, it’s true—internal energy (U) contributes an amount U /c2 to the mass, and cZ is a very
large number by everyday standards. You could never get two lumps of clay going anywhere
near fast enough to detect the nonconservation of mass in their collision. But in the realm of
clementary particles, the effect can be very striking. For example, when the neutral pi meson
(mass 2.4 x 10728 kg) decays into an electron and a positron (each of mass 9.11 x 10~3! kg).
the rest energy is converted almost entirely into kinetic energy—less than 1% of the original
mass remains.

In classical mechanics there’s no such thing as a massless particle—its kinetic energy
(%muz) and its momentum (mu) would be zero, you couldn’t apply a force to it (F = ma),
and hence (by Newton’s third law) if couldn’t apply a force on anything else—it’s a cipher,
as far as physics is concerned. You might at first assume that the same is true in relativity:
afterall, p and £ are still proportional to ;. However, a closer inspection of Egs. 12.46 and
12.50 reveals a loophole worthy of a congressman: If u = ¢, then the zero in the numerator
is balanced by a zero in the denominator, leaving p and E indeterminate (zero over ZEr0).
It is conceivable, therefore, that a massless particle could carry energy and momentum,
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provided it always travels at the speed of light. Although Egs. 12.46 and 12.50 would no
longer suffice to determine E and p, Eq. 12.55 suggests that the two should be related by

E = pe. (12.56)

Personally, I would regard this argument as a joke, were it not for the fact that at least
one massless particle is known to exist in nature: the photon.'® Photons do travel at the
speed of light, and they obey Eq. 12.56."" They force us to take the “loophole” seriously.
(By the way, you might ask what distinguishes a photon with a lot of energy from one with
very little—after all, they have the same mass (zero) and the same speed (c). Relativity
offers no answer to this question; curiously, quantum mechanics does: According to the
Planck formula, E = hv, where & is Planck’s coustant and v is the frequency. A blue
photon is more energetic than a red one!)

Example 12.8

A pion at rest decays into a muon and a neutrino (Fig. 12.27). Find the energy of the outgoing
muon, in terms of the two masses, my and m, (assume m,, = 0).

°n n
v\
(before) (after)

Figure 12.27

Solution: In this case

2
Ebefore = mmc, Poefore = 0.
Eafter = E,+Ey, Pafter = Pu+Dbv.
Conservation of momentum requires that p, = —p,,. Conservation of energy says that

Ey+E, = mncz.

10Until recently neutrinos were also generally assumed o be massless, but experiments in 1998 indicate that
they may in fact carry a (very small) mass.

1 The photon is the quantum of the electromagnetic field, and it is no accident that the same ratio between
energy and momentum holds for electromagnetic waves (see Eqs. 9.60 and 9.62).
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Now, Ey, = |py|c, by Eq. 12.56, whereas [p,| = EZ - m2c* /c, by Eq. 12.55, so

E,+ ‘/Eﬁ —myct = M c?,

_ (m72r + ml%)c2

"= Zmn; )

from which it follows that

In a classical collision, momentum and mass are always conserved, whereas kinetic
energy, in general, is not. A “sticky” collision generates heat at the expense of kinetic
energy; an “explosive” collision generates kinetic energy at the expense of chemical energy
(or some other kind). If the kinetic energy is conserved, as in the ideal collision of the
two billiard balls, we call the process elastic. In the relativistic case, momentum and total
energy are always conserved but mass and kinetic energy, in general, are not. Once again,
we call the process elastic if kinetic energy is conserved. In such a case the rest energy
(being the total minus the kinetic) is also conserved, and therefore so too is the mass. In
practice this means that the same particles come out as went in. Examples 12.7 and 12.8
were inelastic processes; the next one is elastic.

Example 12.9
Compton scattering. A photon of energy Ep “bounces” off an electron, initially at rest. Find
the energy E of the outgoing photon, as a function of the scattering angle 0 (see Fig. 12.28).
Photon

E
E, 0

"Photon 1 NJo
Electron \ Electron

(before) (after)

Figure 12.28

Solution: Conservation of momentum in the “vertical” direction gives p, sin¢g = ppsing,
or, since p, = E/c,
. E
singp = — siné.
DeC
Conservation of momentum in the “horizontal” direction gives

Eg E E . \?
— =ppcosO + pecos¢p = —cos + po. /1 — | —sing } .
c ¢ PeC

pgc2 = (Eg — Ecos0)? + E2sin? 6 = Eg —2EgEcos6 + E2.

or
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Finally, conservation of energy says that

E0+mc2 = E—I—Ee=E—|—,/m2c4—|—pgc2

E + m2ch + E} —2EoE cos0 + EZ.

Solving for E, I find that

1
E = . (12.57)
(1 —cos®) /mc? + (1/Eqp)
The answer looks nicer when expressed in terms of photon wavelength:
he
E=h=—,
A
SO 5
A =xiyp+ —(1—cosb). (12.58)
mc

The quantity (h/mc) is called the Compton wavelength of the electron.

Problem 12.31 Find the velocity of the muon in Ex. 12.8.

Problem 12.32 A particle of mass m whose total energy is twice its rest energy collides with
an identical particle at rest. If they stick together, what is the mass of the resulting composite
particle? What is its velocity?

Problem 12.33 A neutral pion of (rest) mass m and (relativistic) momentum p = %mc decays

into two photons. One of the photons is emitted in the same direction as the original pion, and
the other in the opposite direction. Find the (relativistic) energy of each photon.

Problem 12.34 In the past, most experiments in particle physics involved stationary targets:
one particle (usually a proton or an electron) was accelerated to a high energy E, and collided
with a target particle at rest (Fig. 12.29a). Far higher relative energies are obtainable (with
the same accelerator) if you accelerate both particles to energy E, and fire them at each other
(Fig. 12.29b). Classically, the energy E of one particle, relative to the other, is just 4E (why?)—
not much of a gain (only a factor of 4). But relativistically the gain can be enormous. Assuming
the two particles have the same mass, m, show that

(12.59)

O~ O O~ 0

Target E E

(@ (b

Figure 12.29
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Suppose you use protons (mc? = 1 GeV) with E = 30 GeV. What E do you get? What
multiple of E does this amount to? (1 GeV=10? electron volts.) [Because of this relativistic
enhancement, most modern elementary particle experiments involve colliding beams, instead
of fixed targets.]

Problem 12.35 In a pair annihilation experiment, an electron (mass m) with momentum
Pe hits a positron (same mass, but opposite charge) at rest. They annihilate, producing two
photons. (Why couldn’t they produce Just one photon?) If one of the photons emerges at 60°
to the incident electron direction, what is its energy?

12.2.4 Relativistic Dynamics

Newton’s first law is built into the principle of relativity. His second law, in the form

dp

F="r (12.60)

retains its validity in relativistic mechanics, provided we use the relativistic momentum.

Example 12.10

Motion under a constant force. A particle of mass m is subject to a constant force F. If it
starts from rest at the origin, at time # = 0, find its position (x), as a function of time.

Solution:
dp
i F = p= Fr+ constant,
but since p = 0 at = 0, the constant must be zero, and hence
mu Ft
p = = .
V1—u2/c?
Solving for u, we obtain
(F/m)t

=t 12.61
! V14 (Ft/mc)? ( )

The numerator, of course, is the classical answer—it’s approximately right, if (F/m)t < c.
But the relativistic denominator ensures that never exceeds c; in fact, ast — oo, u — c.

To complete the problem we must integrate again:

F [t t /
x(ty = —/ dt
mJo 1+ (Ft'/mc)?
2 t 2
0:%[ 1+(Ft/mc)2—1:,. (12.62)

mc
= — 14+ (Ft'/mc)2
F + (Ft'/mc)
In place of the classical parabola, x(f) = (F/2m)t2, the graph is a hyperbola (Fig. 12.30); for
this reason, motion under a constant force is often called hyperbolic motion. It occurs, for
example, when a charged particle is placed in a uniform electric field.
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b

Classical
(parabola)

—_—

Relativistic
(hyperbola)
,/ ot
Figure 12.30
Work, as always, is the line integral of the force:
WE/EM. (12.63)

The work-energy theorem (“the net work done on a particle equals the increase in its
kinetic energy”) holds relativistically:

d dp dl d
sz—p~dl— ap —dt:/—p~udt,
dt dt

~ ) dr dr
while
dt T di \ /1 —u2)/c?
d d 2 dE
_ mua a_ a4 me ==, (1264
(I —u?/c?)3? dr dit \ /T=u2/2 dt
SO

dE
W= / = dt = Efipal — Einitial- (12.65)

(Since the rest energy is constant, it doesn’t matter whether we use the total energy, here,
or the kinetic energy.)

Unlike to the first two, Newton’s third law does not, in general, extend to the relativistic
domain. Indeed, if the two objects in question are separated in space, the third law is
incompatible with the relativity of simultaneity. For suppose the force of A on B at some
instant ¢ is F(z), and the force of B on A at the same instant is —F(z); then the third
law applies, in this reference frame. But a moving observer will report that these equal
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and opposite forces occurred at different times; in his system, therefore, the third law is
violated. Only in the case of contact interactions, where the two forces are applied at the
same physical point (and in the trivial case where the forces are constant), can the third law
be retained.

Because F is the derivative of momentum with respect to ordinary time, it shares the
ugly behavior of (ordinary) velocity, when you go from one inertial system to another: both
the numerator and the denominator must be transformed., Thus, 12

- dp, dpy dpy/dt F.
P = % _ p‘»ﬂ _ p>/ﬂd‘ - — y ’ (12.66)
o ar—YP y<l___l) y(1 = Buy/c)
¢ c dt
and similarly for the 7 component:
Fom— b
oy = Buy/e)
The x component is even worse:
_ oy 8 ()
s _ 4P _yvdpe—yBdp® g TP T\
b= = 7N ¥ i ey ey
ydt — 2 dx - == Hale
c c drt
We calculated dE /dr in Eq. 12.64; putting that in,
- F,—Bu-F)/c
o= LB (12.67)

1 —Buy/c
Only in one special case are these equations reasonably tractable: If the particle is (instan-
taneously) at rest in S, so that u = 0, then

- 1 _
F, = ;F_L, Fy=F. (12.68)

That is, the component of F parallel to the motion of & is unchanged, whereas components
perpendicular are divided by y.

It has perhaps occurred to you that we could avoid the bad transformation behavior
of F by introducing a “proper” force, analogous to proper velocity, which would be the
derivative of momentum with respect to proper time:
dpt

dr -’
This is called the Minkowski force; it is plainly a 4-vector, since p* is a 4-vector and
proper time is invariant. The spatial components of K* are related to the “ordinary” force

by
d 1
K= (d’) P_ - F (12.70)

dv ) dt v1—u?/c?

12Remember: y and B pertain to the motion of S with respect S—they are constants; u is the velocity of the
particle with respect to S.

KH = (12.69)
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while the zeroth component,
KO = @ — l@,
dt cdrt
is, apart from the 1/c, the (proper) rate at which the energy of the particle increases—in
other words, the (proper) power delivered to the particie.

Relativistic dynamics can be formulated in terms of the ordinary force or in terms of
the Minkowski force. The latter is generally much neater; but since in the long run we
are interested in the particle’s trajectory as a function of ordinary time, the former is often
more useful. When we wish to generalize some classical force law, such as Lorentz’s, to
the relativistic domain, the question arises: Does the classical formula correspond to the
ordinary force or to the Minkowski force? In other words, should we write

(12.71)

F=g(E+uxB),

or should it rather be
K =¢gq(E +u x B)?

Since proper time and ordinary time are identical in classical physics, there is no way at this
stage to decide the issue. The Lorentz force law, as it turns out, is an ordinary force—later
on I'll explain why this is so, and show you how to construct the electromagnetic Minkowski
force.

Example 12.11

The typical trajectory of a charged particle in a uniform magnetic field is eyclotron motion
(Fig. 12.31). The magnetic force pointing toward the center,

F = QuB,

provides the centripetal acceleration necessary to sustain circular motion. Beware, however—
in special relativity the centripetal force is not mu?/R, as in classical mechanics. Rather, as
you can see from Fig. 12.32, dp = pd#, so
d do u
F=" =

“ar T Pa TPR

do

A p
B p dp\‘; p+dp

Figure 12.31 Figure 12.32
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(Classically, of course, p = mu, so F = muz/R‘) Thus,

u
QuB = PE,
or
p = 0OBR. 12.72)

In this form the relativistic cyclotron formula is identical to the nonrelativistic one, Eq. 5.3—the
only difference is that p is now the relativistic momentum.,

Example 12.12

Hidden momentum. As a model for a magnetic dipole m, consider a rectangular loop of wire
carrying a steady current. Picture the current as a strean of nomninteracting positive charges
that move freely within the wire. When a uniform electric field E is applied (Fig. 12.33),
the charges accelerate in the left segment and decelerate in the right one.!3 Find the total
momentum of all the charges in the loop.

U ——n
O 0 O
—»
o} 1 o}
E
v ilolt , "o n
o) - O
00000000000
-

l

Figure 12.33

Solution: The momenta of the left and right segments cancel, so we need only consider the
top and the bottom. Say there are N+ charges in the top segment, going at speed u to the
right, and N charges in the lower segment, going at (slower) speed u _ to the left. The current
(I = Au) is the same in all four segments (or else charge would be piling up somewhere); in
particular,
ON+ ON_ 1l
—_— Uy = U—, SO Nytut = —,

T HETY
where Q is the charge of each particle, and / is the length of the rectangle. Classically, the
momentum of a single particle is p = Mu (where M is its mass), and the total momentum (to
the right) is

I =

1] Il
Pelassical = MNiuy — MN_u_ = ME — Mb— =0,

BThis is not a very realistic model for a curtent-carrying wire, obviously, but other models lead to exactly the
same result. See V. Hnizdo, Am. J. Phys. 65,92 (1997).
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as one would certainly expect (after all, the loop as a whole is not moving). But relativistically
p = yMu, and we get

MIl
p=y+MNiuy —y MN_u_ = 7(14 -V

which is not zero, because the particles in the upper segment are moving faster.

In fact, the gain in energy (¥ Mc2), as a particle goes up the left segment, is equal to the work
done by the electric force, Q Ew, where w is the height of the rectangle, so

QFw

V+—V——W,

and hence
_ IEw

2
c
But /lw is the magnetic dipole moment of the loop; as vectors, m points into the page and p
is to the right, so

1
p:«i(me)‘
c

Thus a magnetic dipole in an electric field carries linear momentum, even though it is not
moving! This so-called hidden momentum is strictly relativistic, and purely mechanical; it
precisely cancels the electromagnetic momentum stored in the fields (see Ex. 8.3; note that
both results can be expressed in the form p = 11V /c2).

Problem 12.36 In classical mechanics Newton’s law can be written in the more familiar form
F = ma. The relativistic equation, F = dp/dt, cannot be so simply expressed. Show, rather,

that
m u(u-a)

F = m[aJcm—uZ]’ (12.73)

where a = du/dt is the ordinary acceleration.

Problem 12.37 Show that it is possible to outrun a light ray, if you’re given a sufficient head
start, and your feet generate a constant force.

Problem 12.38 Define proper acceleration in the obvious way:

dnt d%xt

= (12.74)

(a) Find o and & in terms of u and a (the ordinary acceleration).
(b) Express o, o in terms of u and a.
(c) Show that n#ay, = 0.

(d) Write the Minkowski version of Newton’s second law, Eq. 12.70, in terms of «*. Evaluate
the invariant product K #7,,.
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Problem 12.39 Show that
1 — 2,2 29
(u=/c*)cos 72

K, K* =
K’ 1—L42/c'2

»

where 6 is the angle between u and F.

Problem 12.40 Show that the (ordinary) acceleration of a particle of mass m and charge q,
moving at velocity u under the influence of electromagnetic fields E and B, is given by

_9 /12,02 1 'E
a—m 1 —u<jc [E+u><B Czu(u Y-

[Hint: Use Eq. 12.73.]

Relativistic Electrodynamics

12.3.1 Magnetism as a Relativistic Phenomenon

Unlike Newtonian mechanics, classical electrodynamics is already consistent with special
relativity. Maxwell’s equations and the Lorentz force law can be applied legitimately in
any inertial system. Of course, what one observer interprets as an electrical process another
may regard as magnetic, but the actual particle motions they predict will be identical. To
the extent that this did nor work out for Lorentz and others, who studied the question in the
late nineteenth century. the fault lay with the nonrelativistic mechanics they used, not with
the electrodynamics. Having corrected Newtonian mechanics, we are now in a position
to develop a complete and consistent formulation of relativistic electrodynamics. But I
emphasize that we will not be changing the rules of electrodynamics in the slightest—
rather, we will be expressing these rules in a notation that exposes and illuminates their
relativistic character. As we go along, I shall pause now and then to rederive, using the
Lorentz transformations, results obtained earlier by more laborious means. But the main
purpose of this section is to provide you with a deeper understanding of the structure of
electrodynamics—Ilaws that had seemed arbitrary and unrelated before take on a kind of
coherence and inevitability when approached from the point of view of relativity.

To begin with I'd like to show you why there had to be such a thing as magnetism,
given electrostatics and relativity, and how, in particular, you can calculate the magnetic
force between a current-carrying wire and a moving charge without ever invoking the laws
of magnetism.'* Suppose you had a string of positive charges moving along to the right
at speed v. I'll assume the charges are close enough together so that we may regard them
as a continuous line charge A. Superimposed on this positive string is a negative one, —A
proceeding to the left at the same speed v. We have, then, a net current to the right, of

magnitude
1 =2)v. (12.75)

M This and several other arguments in this section are adapted from E. M. Purcell’s Electricity and Magnetism.
2d ed. (New York: McGraw-Hill, 1985).
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(b)

Figure 12.34

Meanwhile, a distance s away there is a point charge g traveling to the right at speed u < v
(Fig. 12.34a). Because the two line charges cancel, there is no electrical force on q in this
system (S).

However, let’s examine the same situation from the point of view of system S, which
moves to the right with speed u (Fig. 12.34b). In this reference frame g is at rest. By the
Einstein velocity addition rule, the velocities of the positive and negative lines are now

VFu

e (12.76)

Ui

Because v_ is greater than v, the Lorentz contraction of the spacing between negative
charges is more severe than that between positive charges; in this frame, therefore, the wire
carries a net negative charge! In fact,

Ak = £(Y£)Ao, (12.77)

where

1

‘/l—vi/cz’
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and A is the charge density of the positive line in its own rest system. That’s not the same
as A, of course—in S they’re already moving at speed v, so

A = yho, (12.79)
where
1
y=— . (12.80)
V1—v2/c?
It takes some algebra to put y4 into simple form:
1 c? Fuv
v = T = PR 2
\/1—0%(vq:u)2(1:|:vu/c2)*2 Ve Fuv)? —c2(vFu)
2 2
1
- cTuv VLS L (12.81)
V(2 = v2)(c2 — u?) V1I—u?/c?
Evidently, then, the net line charge in S is
=2
LLLEN (12.82)

Mot = A + A = Ao(yy — yo) = — MV
e " 21 —u?/c?

Conclusion: As a result of unequal Lorentz contraction of the positive and negative lines,
a current-carrying wire that is electrically neutral in one inertial system will be charged in
another.

Now, a line charge Ay sets up an electric field

_ Atot
2megs’

8o there is an electrical force on q in S , to wit:
_ Av qu

F=qF=- .
1 meoc?s \/1— u2/c?

But if there’s a force on g in S, there must be one in S; in fact, we can calculate it by using
the transformation rules for forces. Since g is at rest S, and F is perpendicular to u, the
force in § is given by Eq. 12.68:

i A
F=l-u/?F=- 212 (12.84)
Teget s

The charge is attracted toward the wire by a force that is purely electrical in S (where the
wire is charged, and g is at rest), but distinctly nonelectrical in S (where the wire is neutral).
Taken together, then, electrostatics and relativity imply the existence of another force. This

(12.83)
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“other force” is, of course, magnetic. In fact, we can cast Eq. 12.84 into more familiar form
by using ¢? = (eopo) ! and expressing Av in terms of the current (Eq. 12.75):

F=—qu (“—OI> : (12.85)

2rs

The term in parentheses is the magnetic field of a long, straight wire, and the force is
precisely what we would have obtained by using the Lorentz force law in system S.

12.3.2 How the Fields Transform

We have learned, in various special cases, that one observer’s electric field is another’s mag-
netic field. It would be nice to know the general transformation rules for electromagnetic
fields: Given the fields in S, what are the fields in S? Your first guess might be that E is
the spatial part of one 4-vector and B the spatial part of another. If so, your intuition is
wrong—it’s more complicated than that. Let me begin by making explicit an assumption
that was already used implicitly in Sect. 12.3.1: Charge is invariant. Like mass, but unlike
energy, the charge of a particle is a fixed number, independent of how fast it happens to be
moving. We shall assume also that the transformation rules are the same no matter how
the fields were produced—electric fields generated by changing magnetic fields transform
the same way as those set up by stationary charges. Were this not the case we’d have to
abandon the field formulation altogether, for it is the essence of a field theory that the fields
at a given point tell you all there is to know, electromagnetically, about that point; you do
not have to append extra information regarding their source.

With this in mind, consider the simplest possible electric field: the uniform field in the
region between the plates of a large parallel-plate capacitor (Fig. 12.35a). Say the capacitor
is at rest in Sp and carries surface charges +c¢. Then

g0 .
€0 )

Ep = (12.86)
But what if we examine this same capacitor from system S, moving to the right at speed vg
(Fig. 12.35b)? In this system the plates are moving to the left, but the field still takes the
form
g .
E=—y; (12.87)
€0

the only difference is the value of the surface charge o. [Wait a minute! Is that the only
difference? The formula E = o /ep for a parallel plate capacitor came from Gauss’s law,
and whereas Gauss’s law is perfectly valid for moving charges, this particular application
also relies on symmetry. Are we sure that the field is still perpendicular to the plates? What
if the field of a moving plane t#ilts, say, in the direction of motion, as in Fig. 12.35¢? Well,
even if it did (it doesn’t), the field between the plates, being the superposition of the +o
field and the —o field, would nevertheless run perpendicular to the plates. For the —o
field would aim as indicated in Fig. 12.35¢ (changing the sign of the charges reverses the
direction of the field), and the vector sum kills off the parallel components.]
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(b)
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Figure 12.35

Now, the total charge on each plate is invariant, and the width (w) is unchanged, but the
length (1) is Lorentz-contracted by a factor

1
— =/l =13/, (12.88)
Y0

so the charge per unit area is increased by a factor yp:
Accordingly,

E' = »Eg™. (12.90)
I have put in the superscript L to make it clear that this rule pertains to components of E that
are perpendicular to the direction of motion of S. To get the rule for parailel components.
consider the capacitor lined up with the y z plane (Fig. 12.36). This time it is the plate

separation (d) that is Lorentz-contracted, whereas [ and w (and hence also o) are the same
in both frames. Since the field does not depend on d, it follows that

El = Eyl. (12.91)
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Figure 12.36

Example 12.13

Electric field of a point charge in uniform motion. A point charge g is at rest at the origin in
system Sp. Question: What is the electric field of this same charge in system S, which moves
to the right at speed vg relative to Sp?

Solution: In S the field is
1

L
dreq 2 0

o

| 0%

or
1 qxp

Eyo = ,
T dmeo (xF + 33 + 233

1 qy0
4me0 (3 + 3 + 2

E)’O =

1 q20

EZO = .
47'[60 (x% + yg + 13)3/2

From the transformation rules (Eqs. 12.90 and 12.91), we have

E E 1 qxg
= 0 == s
* * 47'[60 (xg -+ yg + 13)3/2
1 Y090
Ey = nwEy, = ' ,
! 207 Ineg 2+ 2+ 20
1 Y0920
E, = Y E = .
S 2N ST
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Figure 12.37

These are still expressed in terms of the Sy coordinates (x0, Yo, zg) of the field point (P); I'd
prefer to write them in terms of the S coordinates of P. From the Lorentz transformations (or,
actually, the inverse transformations),

X0 = vo(x +vor) = poRy,
Yo = ¥ = Ry,
0 = 2 = Ry,

where R is the vector from ¢ to P (Fig. 12.37). Thus

1 Yo9R

E =
4meg (y2R? cos2 0 + R? sin2 0)3/2

1 gl —v}/c) R
dreo [1 — (v5/c2)sin? §]3/2 R2

(12.92)

This, then, is the field of a Chargg in uniform motion; we got the same result in Chapter 10
using the retarded potentials (Eq. 10.68). The present derivation is far more efficient, and sheds
some light on the remarkable fact that the field points away from the instantaneous (as opposed
to the retarded) position of the charge: E, gets a factor of o from the Lorentz transformation
of the coordinates; Ey and E pick up theirs from the transformation of the field. 1t’s the
balancing of these two y’s that leaves E parallel to R.

But Egs. 12.90 and 12.91 are not the most general transformation laws, for we began
with a system Sp in which the charges were at rest and where, consequently, there was no
magnetic field. To derive the general rule we must start out in a system with both electric
and magnetic fields. For this purpose S itself will serve nicely. In addition to the electric
field

o
E, = —, (12.93)
T o

there is a magneric field due to the surface currents (Fig. 12.35b):

K: = Foy k. (12.94)
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Figure 12.38

By the right-hand rule, this field points in the negative z direction; its magnitude is given
by Ampere’s law:

B, = —poow. (12.95)
In a third system, S, traveling to the right with speed v relative to S (Fig. 12.38), the fields
would be

Ey=2, B, = —uos, (12.96)
€0
where ¥ is the velocity of S relative to Sp:
_ v+ vy _ 1
b= .y = , (12.97
1-|—vv()/c2 v /1_{}2/62 )
and
o =7Yoy. (12.98)

It remains only to express E and B (Eq. 12.96), tn terms of E and B (Egs. 12.93 and
12.95). In view of Eqs. 12.89 and 12.98, we have

Ey = (1> 2 B =- (1> 1105 T. (12.99)
Yo/ €o Yo

With a little algebra, you will find that

- 1— UZ/CZ | 2
Yy _ v 07 1Hvv/e =y (1+22), (12.100)

w o J1-92/2  J1-v2j2

where
(12.101)

as always. Thus,
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Uy <——

Figure 12.39

whereas

(A} v+ U
- _ - — ) =9y(B, — E)).
BZ y (1 + C2 )/‘LOU <1 + UUO/C2> V( 4 .U«OGOU y)
Or, since poep = 1/c2,
Ey = V(Ey —vBy),
~ v (12.102)
B, = y(BZ—C—zEy).

This tells us how E, and B, transform—to do E, and B, we simply align the same
capacitor parallel to the xy plane instead of the xz plane (Fig. 12.39). The fields in S are
then

log
E,=—, By =pugovy.
€0

(Use the right-hand rule to get the sign of B,.) The rest of the argument is identical—
everywhere we had E|, before, read E;, and everywhere we had B,, read —B,:

Ez = V(Ez+vBy),

) , (12.103)
B, = (B, —E,).

y Y \By+ Sk

As for the x components, we have already seen (by orienting the capacitor parallel to
the yz plane) that
E.=E,. (12.104)
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-

Figure 12.40

Since in this case there is no accompanying magnetic field, we cannot deduce the trans-
formation rule for B,. But another configuration will do the job: Imagine a long solenoid
aligned parallel to the x axis (Fig. 12.40) and at rest in S. The magnetic field within the
coil is

B, = ponl, (12.105)

where 7 is the number of turns per unit length, and I is the current. In system S, the length
contracts, so n increases.

i = yn. (12.106)

On the other hand, time dilates: The S clock, which rides along with the solenoid, runs
slow, so the current (charge per unit time) in S is given by

o1
i=-I (12.107)
y

The two factors of y exactly cancel, and we conclude that

Like E, the component of B parallel to the motion is unchanged.
Let’s now collect together the complete set of transformation rules:

Ex=E:, Ey=y(E,—vB,), E.=y(E. +vB,),
(12.108)

- v — v
By = By, By=V(By+C_2Ez), BZZV(BZ_C_ZEy)-
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Two special cases warrant particular attention:

1. If B=01in S, then
_ v R N v - . = A
BZngﬂ—Eﬂﬁiﬂ@y—%U,

or, since v = v X,

_ 1 _
B=——(vxE). (12.109)
C

2, IfE =0in S, then
E=—yv(B.§~ Byi)=—v(B,§ — B, 1),

or

E=v xB. (12.110)

In other words, if either E or B is zero (at a particular point) in one system, then in any
other system the fields (at that point) are very simply related by Eq. 12.109 or Eq. 12.110.

Example 12.14

Magnetic field of a point charge in uniform motion. Find the magnetic field of a point
charge ¢ moving at constant velocity v.

Solution: In the particle’s rest frame (Sp) the magnetic field is zero (everywhere), so in a
system S moving to the right at speed v,
1
B= ——5(vxE).
c

We calculated the electric field in Ex. 12.13. The magnetic field, then, is

B— no qu({l — vz/cz) sind $

= — 111
4 {1 — (v2/c?) sin? 0]3/2 R2’ (12111

where ¢ aims counterclockwise as you face the oncoming charge. Incidentally, in the nonrel-
ativistic limit (v? < cz), Eq. 12.111 reduces to

no vxR

RPTAANY)

)

which is exactly what you would get by naive application of the Biot-Savart law to a point
charge (Eq. 5.40).
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Problem 12.41 Why can’t the electric field in Fig. 12.35b have a z component? After all, the
magnetic field does.

Problem 12.42 A parallel-plate capacitor, at rest in Sy and tilted at a 45° angle to the xq axis,
carries charge densities +o( on the two plates (Fig. 12.41). System S is moving to the right
at speed v relative to Sp.

(a) Find Ey, the field in Sp.
(b) Find E, the field in S.
(c) What angle do the plates make with the x axis?

(d) Is the field perpendicular to the plates in S?

Yo

o
. g v
& : g
. ; ot 450
Xo

Figure 12.41

Problem 12.43

(a) Check that Gauss’s law, [ E - da = (1/€p) Qenc. is obeyed by the field of a point charge in
uniform motion, by integrating over a sphere of radius R centered on the charge.

(b) Find the Poynting vector for a point charge in uniform motion. (Say the charge is going in
the z direction at speed v, and calculate S at the instant g passes the origin.)

Problem 12.44

(a) Charge g4 is at rest at the origin in system S; charge gp flies by at speed v on a trajectory
parallel to the x axis, but at y = d. What is the electromagnetic force on gg as it crosses the
y axis?

(b) Now study the same problem from system &, which moves to the right with speed v. What
is the force on gp when g4 passes the y axis? [Do it two ways: (i) by using your answer to (a)
and transforming the force; (i) by computing the fields in S and using the Lorentz force law.]
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Figure 12.42

Problem 12.45 Two charges +¢, are on parallel trajectories a distance d apart, moving with
equal speeds v in opposite directions. We’re interested in the force on +4 due to —q at the
instant they cross (Fig. 12.42). Fill in the following table, doing all the consistency checks you
can think of as you go along.

System A System B System C
(Fig. 12.42) | (+q atrest) | (—q at rest)

E at +¢ due to —¢:
B at +g due to —g:
Fon +q due to —g:

Problem 12.46
(a) Show that (E - B) is relativistically invariant.
(b) Show that (E? — ¢2B2) is relativistically invariant.

(¢) Suppose that in one inertial system B = 0 but E # 0 (at some point P). Ts it possible to
find another system in which the electric field is zero at P?

Problem 12.47 An electromagnetic plane wave of (angular) frequency w is traveling in the
x direction through the vacuum. It is polarized in the y direction, and the amplitude of the
electric field is Ey.

(a) Write down the electric and magnetic fields, E(x, y, z, r) and B(x, ¥,2,1). [Be sure to
define any auxiliary quantities you introduce, in terms of w, £, and the constants of nature.]

(b) This same wave is observed from an inertial system S moving in the x direction with speed
v relative to the original system S. Find the electric and magnetic fields in S, and express
them in terms of the S coordinates: E(X, $,%,0) and B(%, 3, Z, D). [Again, be sure to define
any auxiliary quantities you introduce.]

(c) What is the frequency @ of the wave in S? Interpret this result. What is the wavelength
A of the wave in $? From & and X, determine the speed of the waves in S. Is it what you
expected?
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(d) What is the ratio of the intensity in S to the intensity in S? As a youth, Einstein wondered
what an electromagnetic wave would look like if you could run along beside it at the speed of
light. What can you tell him about the amplitude, frequency, and intensity of the wave, as v
approaches c?

12.3.3 The Field Tensor

As Eq. 12.108 indicates, E and B certainly do not transform like the spatial parts of the two

4-vectors—in fact, the components of E and B are stirred together when you go from one

inertial system to another. What sort of an object is this, which has six components and

transforms according to Eq. 12.108? Answer: It’s an antisymmetric, second-rank tensor.
Remember that a 4-vector transforms by the rule

a* = Aka” (12.112)

(summation over v implied), where A is the Lorentz transformation matrix. If S is moving
in the x direction at speed v, A has the form

y -—yB8 0 0

1 -8 v 00
A= 0 o 10 | (12.113)

0 0 01

and A} is the entry in row u, column v. A (second-rank) tensor is an object with two
indices, which transform with mwo factors of A (one for each index):

= AN AL (12.114)

A tensor (in 4 dimensions) has 4 x 4 = 16 components, which we can display in a 4 x 4
array:
IOO IOI 102 103
LY R
t t t t
30 31 320 33

However, the 16 elements need not all be different. For instance, a symmerric tensor has
the property
t*Y =" (symmetric tensor). (12.115)

In this case there are 10 distinct components; 6 of the 16 are repeats (191 = 10, 02 —
120, 403 = 430 £12 = (21 13 — 431123 — $32) Similarly, an antisymmetric tensor obeys

tHY = —"*  (antisymmetric tensor). (12.116)
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Such an object has just 6 distinct elements—of the original 16, six are repeats (the same
ones as before, only this time with a minus sign) and four are zero (tOO, 1 , 122, and t33).
Thus, the general antisymmetric tensor has the form

0 1’01 102 103

v _ _0 0 (12 413
=) 2 g2 g 2
03 13 23

Let’s see how the transformation rule 12.114 works, for the six distinct components of
an antisymmetric tensor. Starting with 79!, we have

201 Ol A
7= A A1,

but according to Eq. 12.113, A? = O unless A = 0 or 1, and A}, =0unlesso =0orl. So
there are four terms in the sum:

1 = AGAGY + AGAT 1 AOALO 4 AOAIA
On the other hand, t% = ¢!! = 0, while f"! = —£10 5o

Pl = (AJA] = AVADO = (7 = (B0 =1,
I’ll let you work out the others—the complete set of transformation rules is

L= g0 022 (02 12y 03 03 4 g3l

- 12.
oD P2y ), P22 g0 (12.117)

These are precisely the rules we derived on physical grounds for the electromagnetic fields
(Eq. 12.108)—in fact, we can construct the field tensor F*¥ by direct comparison: 13

Fo15ﬂ7 Fozzﬂ, Fo3£27 F2=B, Fl=p, rB_p.
C C C .
Written as an array,
0 Ex/jc E,/c E./c
puv = | ~E/e 0B B, (12.118)

—Ey/c —B, 0 B,
—E;/c B, —-B, 0

Thus relativity completes and perfects the job begun by Oersted, combinin g the electric and
magnetic fields into a single entity, F*V.

If you followed that argument with exquisite care, you may have noticed that there was
a different way of imbedding E and B in an antisymmetric tensor: instead of comparing

15Some authors prefer the convention FOl = E;, F12 = ¢Bz, and so on, and some use the opposite signs.
Accordingly, most of the equations from here on will look a little different, depending on the text.
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the first line of Eq. 12.108 with the first line of Eq. 12.117, and the second with the second,
we could relate the first line of Eq. 12.108 to the second line of Eq. 12.117, and vice versa.
This leads to dual tensor, G*V:

0 B, B, B,
—B, 0 —E./c Ey/c
wy __ X z Yy
GH' = ~B, E.jc 0 _E.Jc (12.119)

—B, —Ey/c E:/c 0

G*V can be obtained directly from F*" by the substitution E/c — B, B — —E/c. Notice
that this operation leaves Eq. 12.108 unchanged—that’s why both tensors generate the
correct transformation rules for E and B.

Problem 12.48 Work out the remaining five parts to Eq. 12.117.

Problem 12.49 Prove that the symmetry (or antisymmetry) of a tensor is preserved by Lorentz
transformation (that is: if t#Y is symmetric, show that 7*V is also symmetric, and likewise for
antisymmetric).

Problem 12.50 Recall that a covariant 4-vector is obtained from a contravariant one by
changing the sign of the zeroth component. The same goes for tensors: When you “lower
an index” to make it covariant, you change the sign if that index is zero. Compute the tensor
invariants

FPYFuw, G*Guy, and FAYGyy,

in terms of E and B. Compare Prob. 12.46.

Problem 12.51 A straight wire along the z axis carries a charge density A traveling in the +z
direction at speed v. Construct the field tensor and the dual tensor at the point (x, 0, 0).

12.3.4 Electrodynamics in Tensor Notation

Now that we know how to represent the fields in relativistic notation, it is time to reformulate
the laws of electrodynamics (Maxwell’s equations and the Lorentz force law) in that lan-
guage. To begin with, we must determine how the sources of the fields, p and J, transform.
Imagine a cloud of charge drifting by; we concentrate on an infinitesimal volume V', which
contains charge Q moving at velocity u (Fig. 12.43). The charge density is

,= @
V b

and the current density!® is
J = pu.

161" m assuming all the charge in V is of one sign, and it all goes at the same speed. If not, you have to treat the
constituents separately: J = pyu_ 4+ p_u_. But the argument is the same.
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Figure 12.43

Iwould like to express these quantities in terms of the proper charge density oo, the density
in the rest system of the charge:

where Vo is the rest volume of the chunk. Because one dimension (the one along the
direction of motion) is Lorentz-contracted,

V=4/1-u2/c2V,, (12.120)

1 u

= y——— J = —_—
£0 172 oy 0 .22 22

Comparing this with Eqs. 12.40 and 12.42, we recognize here the components of proper
velocity, multiplied by the invariant pg. Evidently charge density and current density go
together to make a 4-vector:

and hence
(12.121)

JH = pont, (12.122)

whose components are

L’H = (cp, Jy, Jy, Jz,)—-‘ (12.123)

We’ll call it the current density 4-vector.
The continuity equation (Eq. 5.29),

dp

o’
expressing the local conservation of charge, takes on a nice compact form when written in
terms of J#. For

V.J=

3 .
aJ, al, aJ. 3 9Ji
— —_ + —

V-J= — = -,
1 ax ay 0z ox?

while
dp 194 9JO

= = oo (121249
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while o 0
0 10 0
% _ 187 _9J" (12.124)
ar ¢ ot 9x0
Thus, bringing 3p/d1 over to the left side, we have:
aJ#
— =0, 12.125
P ( )

with summation over u implied. Incidentally, /% /dx* is the four-dimensional divergence
of J#, so the continuity equation states that the current density 4-vector is divergenceless.
As for Maxwell’s equations, they can be written

dFHY IGHY
o = Holt =0, (12.126)

with summation over v implied. Each of these stands for four equations—one for every
value of p. If ¢ = 0, the first equation reads

aFOU aFOO aFOI aFOZ 8F03
dxv 3x0 dx! + 0x2 9x3

1 (0E, O0E, O0FE, 1
= - e - - VE
c<8x+8y+82) c( )

= 10J° = pocp,

or 1
V-E=—p.
€0

This, of course, is Gauss’s law. If ;. = 1, we have

aFlu aFl() aFll 8F12 aFl3
axv x0T axl + ox2 + ox3

1 9E, 0B; 0B,y _( 1 oE

B8y 9z \ Zar

_ 1ok — V x B
2o Ty a2 +X)

X
= uod! = uols.

Combining this with the corresponding results for 4 = 2 and y = 3 gives

oE
VxB= I'LOJ + MOGOE,

which is Ampere’s law with Maxwell’s correction.
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Meanwhile, the second equation in 12.126, with o = 0, becomes

aGOv aGOO aGOI aGOZ 8G03
ax¥  9x0 dx! dx? + dx3

9B, 0B, 0B
~+ 24+ 2 =-V.B=0
ax ay 9z

(the third of Maxwell’s equations), whereas u = 1 yields

aGlu aGlO aGll aGIZ 8G13
ax’ 9x0 + ox! ax2 + ax3
18B, 10E, 109E, 1 /0B
— —_— R — — = —— -— V E :O
c ot c8y+caz C31+X X

So, combining this with the corresponding results for 1 = 2 and w =3,

V xE 9B
XE=——
at

which is Faraday’s law. In relativistic notation, then, Maxwell’s four rather cumbersome
equations reduce to two delightfully simple ones.
In terms of F#¥ and the proper velocity n*, the Minkowski force on a charge g is given

by
12127

Kl — quuFlv =6](—TIOF10+T]1F”+772F12+TI3F13)

For if ;1 = 1, we have

-—C —Ex uy uZ
B+ —2 __(—B,
ql:\/l—uz/c2< c >+\/1—uz/c2( )+\/l—u2/c2( '):l

= ———— [E+@xB),
C

V1—u?/

with a similar formula for 4 = 2 and u = 3. Thus,

9 > [E+ (uxB)], (12.128)

V9I—u?/c

and therefore, referring back to Eq. 12.70,

K =

F =4[E + (u x B)],

which is the Lorentz force law. Equation 12.127, then, represents the Lorentz force
law in relativistic notation. I'll leave for you the interpretation of the zeroth component
(Prob. 12.54).
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Problem 12.52 Obtain the continuity equation (12.125) directly from Maxwell’s equations
(12.126).

Problem 12.53 Show that the second equation in (12.126) can be expressed in terms of the
field tensor F#V as follows:
IF 3F, aFy,

=0. 12.129
dx* dxH axV ( )

Problem 12.54 Work out, and interpret physically, the ;« = 0 component of the electromagnetic
force law, Eq. 12.127.

12.3.5 Relativistic Potentials

From Chapter 10 we know that the electric and magnetic fields can be expressed in terms
of a scalar potential V and a vector potential A:

9A
E=-VV-—" B=VxA (12.130)

As you might guess, V and A together constitute a 4-vector:

AP = (V/c, A, Ay, Ay). (12.131)

In terms of this 4-vector potential the field tensor can be written

_0A"  oAY

P = o (12.132)
I v

(Observe that the differentiation is with respect to the covariant vectors x » and x,; remem-
ber, that changes the sign of the zeroth component: xy = —x°. See Prob. 12.55.)

To check that Eq. 12.132 is equivalent to Eq. 12.130, let’s evaluate a few terms explicitly.
Foru=0,v=1,

o1 _ 0AL 94%  aA. 1av

9xp ax; —3(6‘[) c 0x

That (and its companions with v = 2 and v = 3) is the first equation in 12.130. For x = 1,
v =2, we get
_0AT Al 94, 94

Fl2="" = 20 T (V xA), = B..
x| 9x2 ox ay
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which (together with the corresponding results for F13 and F23) is the second equation in
12.130.

The potential formulation automatically takes care of the homogeneous Maxwell equa-
tion (3G*V/dx” = 0). As for the inhomogeneous equation (OF*V/oxY = upJ*™), that

becomes
d (0AY 0 [0AH
%, <3x” ) "o, (aw) e (12139

This is an intractable equation as it stands. However, you will recall that the potentials are
not uniquely determined by the fields—in fact, it’s clear from Eq. 12.132 that you could
add to A* the gradient of any scalar function A:

oA
Y —s AR = A 4 (12.134)
X

without changing F#”. This is precisely the gauge invariance we noted in Chapter 11; we
can exploit it to simplify Eq. 12.133. In particular, the Lorentz gauge condition (Eq. 10.12)

10V
V A=—-——
c? 9t
becomes, in relativistic notation,
0AH
= 12.135
ppT ( )
In the Lorentz gauge, therefore, Eq. 12.133 reduces to
O%ZAK = —pgJH, (12.136)
where 02 is the d’Alembertian,
0o 0 1 32
0% = =Vvio . 12.137
dx, 0xV 2 9r? ( )

Equation 12.136 combines our previous results into a single 4-vector equation—it represents
the most elegant (and the simplest) formulation of Maxwell’s equations.!”

17Incidentally, the Coulomb gauge is a bad one, from the pointof view of relativity, because its defining condition,
V-A = 0, is destroyed by Lorentz transformation. To restore this condition, itis necessary to perform an appropriate
gauge transformation every time you go to a new inertial system, in addition to the Lorentz transformation itself.
In this sense A% is not a true 4-vector, in the Coulomb gauge.
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Problem 12.55 You may have noticed that the four-dimensional gradient operator 3/3x*
functions like a covariant 4-vector—in fact, it is often written 3y, for short. For instance,
the continuity equation, g, J# = 0, has the form of an invariant product of two vectors. The
corresponding contravariant gradient would be 3# = dx,,. Prove that 3" ¢ is a (contravariant)
4-vector, if ¢ is a scalar function, by working out its transformation law, using the chain rule.

Problem 12.56 Show that the potential representation (Eq. 12.132) automatically satisfies
dGHY /3xY = 0. [Suggestion: Use Prob. 12.53.]

More Problems on Chapter 12

Problem 12.57 Inertial system S moves at constant velocity v = Bc(cos ¢ X + sing ¥) with
respect to S. Their axes are parallel to one another, and their origins coincide at t = f = 0, as
usual. Find the Lorentz transformation matrix A (Eq. 12.25).

Y ~yBcos¢ —yBsing
—yBcos¢p (y cosz¢ + sin? @) (y—1Dsingcose
—yBsing (y —D)singcosg (ysin®¢ + cos? @)

0 0 0

Answer :

— o O O

Problem 12.58 Calculate the threshold (minimum) momentum the pion must have in order
for the process 7 + p — K + X to occur. The proton p is initially at rest. Use myc? =
150, mgc? = 500, mpc? = 900, mxc® = 1200 (all in MeV). [Hint: To formulate the
threshold condition, examine the collision in the center-of-momentum frame (Prob. 12.30).
Answer: 1133 MeV/c]

Problem 12.59 A particle of mass m collides elastically with an identical particle at rest.
Classically, the outgoing trajectories always make an angle of 90°. Calculate this angle
relativistically, in terms of ¢, the scattering angle, and v, the speed, in the center-of-momentum
frame. [Answer: tan~1(2¢2 /v?y sin ¢)]

Problem 12.60 Find x as a function of ¢ for motion starting from rest at the origin under the
influence of a constant Minkowski force in the x direction. Leave your answer in implicit

form (s as a function of x). [Answer: 2Kt/mc = z3/1+ 22 + In(z + v 1+ z2), where
7=+2Kx/mc?]

Problem 12.61 An electric dipole consists of two point charges (¢ ), each of mass m, fixed
to the ends of a (massless) rod of length d. (Do not assume d is small.)

(a) Find the net self-force on the dipole when it undergoes hyperbolic motion (Eq. 12.62) along
a line perpendicular to its axis. [Hint: Start by appropriately modifying Eq. 11.90.]

(b) Notice that this self-force is constant (¢ drops out), and points in the direction of motion—
just right to produce hyperbolic motion. Thus it is possible for the dipole to undergo self-
sustaining accelerated motion with no external force at all!'® [Where do you suppose the
energy comes from?] Determine the self-sustaining force, F, in terms of m, ¢, and d. [Answer:
(@me? fd)y/ (nog? /8rmd)?/3 — 1]

I18F H. J. Cornish, Am. J. Phys. 54, 166 (1986).
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Problem 12.62 An ideal magnetic dipole moment m is located at the origin of an inertial
system & that moves with speed v in the x direction with respect to inertial system S. In & the
vector potential is

~  pupmx P

T 4n 2

(Eq. 5.83), and the electric potential V is zero.
(a) Find the scalar potential V in S. [Answer: (1/4neo)(ﬁ (v x m)/csz)(l — v2/c2)/(l —
(v?/c?)sin? )32
(b) In the nonrelativistic limit, show that the scalar potential in S is that of an ideal electric
dipole of magnitude

v xXm
2

located at O.

Figure 12.44

Problem 12.63 A stationary magnetic dipole, m = m %, is situated above an infinite uniform
surface current, K = K x (Fig. 12.44).

(a) Find the torque on the dipole, using Eq. 6.1.

(b) Suppose that the surface current consists of a uniform surface charge o, moving at velocity
v = v%, so that K = ov, and the magnetic dipole consists of a uniform line charge A,
circulating at speed v (same v) around a square loop of side /, as shown, so that m = Avi2.
Examine the same configuration from the point of view of system §, moving in the x direction
at speed v. In S the surface charge is at rest, so it generates no magnetic field. Show that in this
frame the current loop carries an electric dipole moment, and calculate the resulting torque,
using Eq. 4.4.

Problem 12.64 In a certain inertial frame S, the electric field E and the magnetic field B are
neither parallel nor perpendicular, at a particular space-time point. Show that in a different
inertial system S, moving relative to S with velocity v given by
v _ ExB
1+v2/c2 = B24 E2/c2’

the fields E and B are parallel at that point. Is there a frame in which the two are perpendicular?
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Problem 12.65 Two charges +4 approach the origin at constant velocity from opposite di-
rections along the x axis. They collide and stick together, forming a neutral particle at rest.
Sketch the electric field before and shortly after the collision (remetber that electromagnetic
“news” travels at the speed of light). How would you interpret the field after the collision,
physically?1?

Problem 12.66 “Derive” the Lorentz force law, as follows: Let charge g be at rest in S, so
F = gE, and let S move with velocity v = v & with respect to S. Use the transformation rules
(Eqgs. 12.68 and 12.108) to rewrite F in terms of F, and E in terms of E and B. From these
deduce the formula for F in terms of E and B.

Problem 12.67 A charge q is released from rest at the origin, in the presence of a uniform
electric field E = EyZ and a uniform magnetic field B = By x. Determine the trajectory of
the particle by transforming to a system in which E = 0, finding the path in that system and
then transforming back to the original system. Assume E¢ < ¢Bgy. Compare your result with
Ex.5.2.

Problem 12.68

(a) Construct a tensor D* (analogous to F#V), out of D and H. Use it to express Maxwell’s
equations inside matter in terms of the free current density J j’f . [Answer: Dol = cDy,

D2 = H, etc.; 3DHV /ox¥ = Jj’f.]

(b) Construct the dual tensor H*" (analogous to G*V). [Answer: HO! = H,, H!2 = —cDy,
etc.]

(c) Minkowski proposed the relativistic constitutive relations for linear media:
1
D*'ny =cPeF*n, and H*'my = —GM'p,,
"

where € is the proper20 permittivity, i is the proper permeability, and # is the 4-velocity
of the material. Show that Minkowski’s formulas reproduce Egs. 4.32 and 6.31, when the
material is at rest.

(d) Work out the formulas relating D and H to E and B for a medium moving with (ordinary)
velocity u.

Problem 12.69 Use the Larmor formula (Eq. 11.70) and special relativity to derive the Liénard
formula (Eq. 11.73).

Problem 12.70 The natural relativistic generalization of the Abraham-Lorentz formula (Eq. 11.80)
would seem to be

w _ K4 2 d_(xﬁ

ad 7 gne gr
This is certainly a 4-vector, and it reduces to the Abraham-Lorentz formula in the non-
relativistic limit v < c.

195ee E. M. Purcell, Electricity and Magnetism, 2d ed. (New York: McGraw-Hill, 1985), Sect. 5.7 and Appendix
B (in which Purcell obtains the Larmor formula by masterful analysis of a similar geometrical construction), and
R.Y. Tsien, Am. J. Phys. 40, 46 (1972).

2045 always, “proper” means “in the rest frame of the material.”
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(a) Show, nevertheless, that this is not a possible Minkowski force. [Hint: See Prob. 12.38d.]
(b) Find a correction term that, when added to the right side, removes the objection you raised
in (a), without affecting the 4-vector character of the formula or its nonrelativistic limit,2!

Problem 12.71 Generalize the laws of relativistic electrodynamics (Eqs. 12.126 and 12.127)
to include magnetic charge. [Refer to Sect. 7.3.4.]

2lFor interesting commentary on the relativistic radiation reaction, see F. Rohrlich, Am. J. Phys. 65, 1051 (1997).



