CHAPTER 6 Ratios, Rates, and Proportions

6-1 Ratios and Rates

A ratio is a comparison of two quantities by division.

The ratio of a to b can be written in three different ways: a to b, a:b, and $\frac{a}{b}$.

If two quantities are in the ratio of a to b, then the two numbers can be expressed as ax and bx, in which x is a positive integer.

A rate is a ratio of two measurements having different units of measure. For example, a price of \$2.59 per gallon of gasoline, an income of \$750 in 3 days, and a speed of 60 miles per hour are all rates.

A unit rate is a rate that has a denominator of 1. Some examples of unit rates are defined as follows.

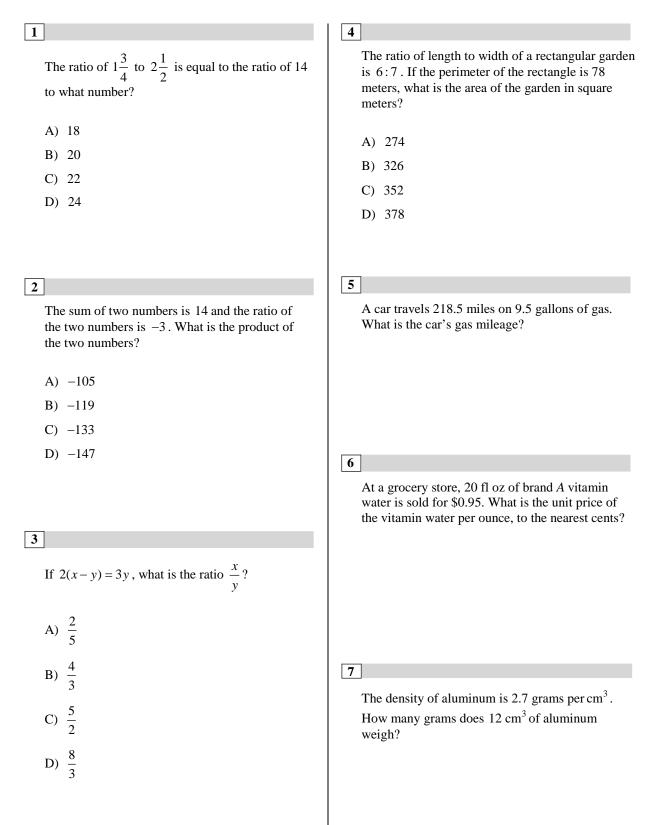
Price of Package Unit Price = -Number of Units in the Package

$$Gas Mileage = \frac{Number of Miles Traveled}{Number of Gallons of Gas Used}$$

Speed (Miles per Hour) = $\frac{\text{Number of Miles Traveled}}{\text{Number of Miles Traveled}}$

Number of Hours

Density = $\frac{\text{Mass}}{\text{Volume}}$


Example 1 \Box Express each ratio as a unit rate. a. 1360 grams of coffee cost \$17.68. What is the unit price of the coffee? b. A car travels 322 miles on 11.5 gallons of gas. What is the car's gas mileage? c. A driver traveled $485\frac{1}{3}$ miles in $8\frac{2}{3}$ hours. What is his speed?

d. A volume of 46 cm³ of silver has a mass of 483 grams. What is the density of silver?

Solution
a.
$$\frac{\$17.68}{1360 \text{ grams}} = \frac{1768 \text{ cents}}{1360 \text{ grams}} = 1.3 \text{ cents / gram}$$

b. $\frac{322 \text{ mi}}{11.5 \text{ gal}} = 28 \text{ miles / gallon}$.
c. $\frac{485\frac{1}{3} \text{ mi}}{8\frac{2}{3} \text{ hr}} = \frac{(485\frac{1}{3} \text{ mi}) \cdot 3}{(8\frac{2}{3} \text{ hr}) \cdot 3} = \frac{1456 \text{ mi}}{26 \text{ hr}} = 56 \text{ mph}$
d. density $= \frac{\text{mass}}{\text{volume}} = \frac{483 \text{ grams}}{46 \text{ cm}^3} = 10.5 \text{ grams/cm}^3$

Example 2 \Box 3 angles of a triangle are in the ratio of 3:5:7. What is the measure of each angle?

Solution \Box The measure of each angle of the triangle can be represented as 3x, 5x, and 7x. 3x + 5x + 7x = 180The angle sum in a triangle is 180. 15x = 180Simplify. x = 12Simplify. The measure of the 3 angles are $3x = 3 \cdot 12 = 36$, $5x = 5 \cdot 12 = 60$, and $7x = 7 \cdot 12 = 84$.

6-2 Proportions

A proportion is an equation stating that two ratios are equal.

The proportions $\frac{a}{b} = \frac{c}{d}$ is read "*a* is to *b* as *c* is to *d*." The numbers *a* and *d* are called the **extremes** of the proportion. The numbers *b* and *c* are called the **means** of the proportion.

In a proportion, the product of the extremes is equal to the product of the means.

If $\frac{a}{b} = \frac{c}{d}$, then ad = bc. The products ad and bc are called the **cross products** of the proportion $\frac{a}{b} = \frac{c}{d}$.

Example 1 \Box Determine whether each pair of ratios forms a proportion.

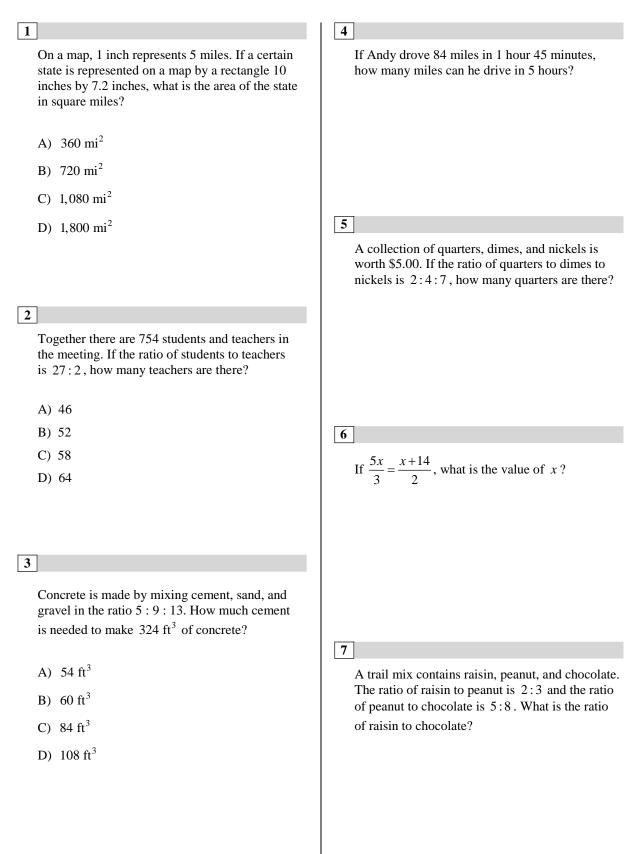
a.
$$\frac{0.4}{1.5}$$
, $\frac{1.6}{6}$
Solution \square a. $\frac{0.4}{1.5} \stackrel{?}{=} \frac{1.6}{6}$
 $0.4 \times 6 \stackrel{?}{=} 1.5 \times 1.6$
 $2.4 = 2.4$
The cross products are equal, so the ratios form a proportion.
 $2.4 = 2.4$
 3.6×10^{-2}
 $3.6 \times 10^$

b. $\frac{12}{25} = \frac{7}{15}$	Write a proportion.
$12 \times 15 \stackrel{?}{=} 25 \times 7$	Find the cross products.
180 \ne 175	Simplify.

The cross products are not equal, so the ratios do not form a proportion.

Example 2 \square Solve the proportion $\frac{3}{7} = \frac{6}{x-4}$.

Solution	$\Box \frac{3}{7} = \frac{6}{x-4}$	
	3(x-4) = 7(6)	Find the cross products.
	3x - 12 = 42	Distributive Property
	3x = 54	Add 12 to each side.
	x = 18	Divide each side by 3.
	3x - 12 = 42 $3x = 54$	Distributive Proper Add 12 to each side


Example 3 Carter's SUV requires 8 gallons of gasoline to travel 148 miles. How much gasoline, to the nearest gallon, will he need for a 500 mile trip?

Solution \Box a. Let g = the number of gallons of gas needed for a 500 mile trip.

miles $\rightarrow 148 - 500 \leftarrow$ miles	Write a proportion.
gallons $\rightarrow \frac{1}{8} \frac{1}{g} \leftarrow \text{gallons}$	write a proportion.
$148g = 8 \times 500$	Find the cross products.
$g = \frac{8 \times 500}{148} \approx 27.03$	Divide each side by 148.

Carter's needs 27 gallons of gas for a 500 mile trip.

Exercises - Proportions

6-3 Ratios, Rates, and Proportions Word Problems

You can use conversion factors to convert a unit of measure from one system to another. Sometimes you may need to use two or more conversion factors.

Example 1 \square A model car is scaled so that 1 inch of the model equals 6 feet of the actual car. If the model is $1\frac{2}{3}$ inch long, how long is the actual car?

Solution \Box Let *x* = the length of actual car.

 $\begin{array}{l} \text{model} \rightarrow \frac{1}{6} \inf_{\text{ft}} = \frac{1\frac{2}{3} \text{ in }}{x \text{ ft }} \leftarrow \text{ model} \\ \leftarrow \text{ actual} \end{array} \qquad \text{Set up a proportion.} \\ x = 6 \times 1\frac{2}{3} = 10 \qquad \text{Cross product} \end{array}$

The length of the actual car is 10 feet.

Example 2 \Box A car is traveling at a constant rate of 54 miles per hour. How many kilometers will the car travel in 5 minutes? (1 mile = 1.6 kilometers)

Solution	54 miles = 54 mi $\times \frac{1.6 \text{ km}}{1 \text{ mi}}$ = 86.4 km	
	$\frac{54 \text{ mi}}{1 \text{ hr}} = \frac{86.4 \text{ km}}{60 \text{ min}}$	54 miles = 86.4 km and 1 hour = 60 min
	$\frac{86.4 \text{ km}}{60 \text{ min}} = \frac{x \text{ km}}{5 \text{ min}}$	Set up a proportion.
	$86.4 \times 5 = 60x$	Cross Products
	$x = \frac{86.4 \times 5}{60}$	Divide.
	= 7.2 km	

Example 3 \Box The ratio of males to females in an office is 6:7. If there are 42 males in the office, what is the total number of people in the office?

Solution	Let f = the number of females in the office.	
	$\begin{array}{l} \text{male} & \rightarrow & \frac{6}{7} = \frac{42}{f} \\ \text{female} & \rightarrow & \frac{6}{7} = \frac{42}{f} \end{array}$	The ratio of males to females is 6 to 7.
	$6f = 7 \cdot 42 = 294$	Cross products
	$f = \frac{294}{6} = 49$	Divide.
	The total number of people in the office is	

The total number of people in the office is 42+49, or 91.

Exercises - Ratios, Rates, and Proportions Word Problems

1

If 20 machines produce 1,240 printers in a day, how many more machines are needed to produce 1,984 printers in a day?

A) 12

- B) 20
- C) 24
- D) 32

2

If $\frac{3}{4}$ quart of lemonade concentrate is mixed with

 $6\frac{2}{3}$ quarts of water to make lemonade for 40

people, how many quarts of lemonade concentrate are needed to make the lemonade for 24 people?

A)
$$\frac{3}{10}$$

B) $\frac{7}{20}$
C) $\frac{2}{5}$
D) $\frac{9}{20}$

3

A machine produced 735 tapes in $5\frac{1}{4}$ hours. What fraction of the 735 tapes was produced in one hour?

A)
$$\frac{1}{7}$$

B) $\frac{4}{21}$
C) $\frac{5}{21}$
D) $\frac{2}{7}$

4

A 32-acre field yields 768 bushels of corn each year. How many more acres are needed to yield 960 bushels of corn each year?

- A) 6
- B) 8
- C) 10
- D) 12

5

The length of a rectangle is 8 inches longer than the width. If the ratio of the length to perimeter is 5:16, what is the area of the rectangle?

- A) 160 in^2
- B) 180 in^2
- C) 240 in^2
- D) 280 in^2

6

If 12 grams of coffee costs x dollars and each gram makes y cups of coffee, what is the cost of one cup of coffee in terms of x and y?

A)
$$\frac{12y}{x}$$

B) $\frac{y}{12x}$
C) $\frac{12x}{y}$
D) $\frac{x}{12y}$

Chapter 6 Practice Test

1

The density of an object is equal to the mass of the object divided by the volume of the object. What is the mass, in grams, of an object with a volume of 0.01 m³ and a density of 4.54 grams per cubic centimeters? (1 m = 100 cm)

- A) 454
- B) 4,540
- C) 45,400
- D) 454,000

2

Jason and Donny painted a house and received \$1,200. To complete the painting job Jason painted 4 hours 25 minutes and Donny spent 2 hours and 15 minutes. If they split the \$1,200 in proportion to the amount of time each spent painting, how much did Donny receive?

A)	\$405.	00

- B) \$443.00
- C) \$472.00
- D) \$492.00

3

The tennis balls in a bag are either white or yellow. If the ratio of white balls to yellow balls is $\frac{3}{10}$, which of the following could not be the number of balls in the bag?

- A) 26
- B) 39
- C) 42
- D) 52

4

A car is traveling at a constant rate of x miles per hour. How many miles will the car travel in y minutes?

- A) 60*xy*
- B) xy
- C) 60
- D) $\frac{y}{60x}$

5

A tree is 8 feet tall and grows 8 inches each year. In how many years will the tree reach a height of 30 feet?

- A) 27
- B) 33
- C) 45
- D) 52

6

Aaron reads x pages of a science fiction book in *m* minutes. If he continues reading at this rate, what will be the number of pages he reads in 20 mseconds?

- A) $\frac{1}{3}x$
- B) $\frac{1}{2}x$
- C) $\frac{2}{3}x$
- D) 2*x*

If $\frac{x}{y} = 1$, what is the value of x - y - 1?

- A) -1
- **B**) 0
- C) 1
- D) The value cannot be determined from the information given.

8

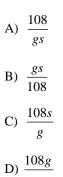
In a certain room the ratio of males to females is 4 to 5. After 8 males enter the room, the ratio of males to females is 6 to 5. What is the total number of people in the room before the additional males enter the room?

- A) 27
- B) 36
- C) 45
- D) 54

9

A person is born every 5 seconds and a person dies every 12 seconds. How many seconds does it take for the population to grow by one person?

A) 7 sec


B)
$$8\frac{4}{7}$$
 sec

C) 10.5 sec

D)
$$10\frac{5}{7}$$
 sec

10

Steve is going to paint a wall that measures 9 feet by 12 feet. If one gallon of paint is needed for each s square foot of wall and each gallon costs gdollars, in terms of s and g how much does it cost to paint the entire wall?

11

If 2 inches are equivalent to 5 centimeters, how many square centimeters are in one square inch?

12

A large painting has a length of 18 inches and a width of 12 inches. If each dimension is reduced by x inches to make the ratio of length to width 5 to 3, what is the value of x?

Answer Key				
Section 6	-1			
	2. D 7. 32.4	3. C	4. D	5.23
Section 6	-2			
1. D		3. B	4.240	5.8
6. 6	7. $\frac{5}{12}$			
Section 6-3				
1. A 6. D	2. D	3. B	4. B	5. C
Chapter 6 Practice Test				
	2. A		4. C	
	7. A		9. B	10. D
11. $\frac{25}{4}$ or 6.25 12. 3				

Answers and Explanations

Section 6-1

1. B

$$\frac{1\frac{3}{4}}{2\frac{1}{2}} = \frac{14}{x}$$
The ratio of $1\frac{3}{4}$ to $2\frac{1}{2}$ is equal
to the ratio of 14 to x .

$$\frac{1\frac{3}{4}}{x} = 14 \cdot 2\frac{1}{2}$$
Cross Products

$$\frac{7}{4}x = 14 \cdot \frac{5}{2}$$
Simplify.

$$\frac{7}{4}x = 35$$
Simplify.

$$\frac{4}{7} \cdot \frac{7}{4}x = \frac{4}{7} \cdot 35$$
Multiply each side by $\frac{4}{7}$.
 $x = 20$
Simplify.

2. D

Let x and y be the two numbers. x + y = 14 The sum of two numbers is 14. . $\frac{x}{y} = -3$. The ratio of the two numbers is -3. $\frac{x}{y} = -3 \implies x = -3y$ x + y = 14First equation(-3y) + y = 14Substitute -3y for x.-2y = 14Simplify.y = -7Substitute y = -7 in the first equation. $x + (-7) = 14 \implies x = 21$ Therefore the product of the two numbers is $x \cdot y = 21 \cdot (-7) = -147$.

3. C

2(x-y) = 3y	
2x - 2y = 3y	Distributive property
2x = 5y	Add $2y$ to each side.
$\frac{2x}{2} = \frac{5y}{2}$	Divide each side by 2.
$x = \frac{5}{2}y$	Simplify.
$\frac{x}{y} = \frac{\frac{5}{2}y}{\frac{y}{y}}$	Divide each side by y .
$\frac{x}{y} = \frac{5}{2}$	Simplify.

4. D

Let 6x = the length and 7x = the width of the rectangle. $P = 2\ell + 2w$ Perimeter of a rectangle. 78 = 2(6x) + 2(7x) P = 78, $\ell = 6x$, and w = 7x78 = 26x Simplify. 3 = x Divide each side by 26. Therefore, the length of the rectangle is $6 \cdot 3$ or 18, and the width of the rectangle is $7 \cdot 3$ or 21. The area of the rectangle is $18 \cdot 21$ or 378.

5. 23

Gas Mileage =
$$\frac{\text{Number of Miles Traveled}}{\text{Number of Gallons of Gas Used}}$$

= $\frac{218.5}{9.5}$ = 23
The car's gas mileage is 23 miles per gallon.

6. 5

Unit Price =
$$\frac{\text{Price of Package}}{\text{Number of Units in the Package}}$$

$$=\frac{0.95}{20}=0.0475$$

The unit price of the vitamin water to the nearest cent is 5.

7. 32.4

Density =
$$\frac{\text{mass}}{\text{volume}}$$

 $\frac{2.7 \text{ grams}}{1 \text{ cm}^3} = \frac{x \text{ grams}}{12 \text{ cm}^3}$
 $x = 2.7 \times 12 = 32.4 \text{ grams}$

Section 6-2

1. D

Set up a proportion.

 $\frac{1 \text{ inch}}{5 \text{ miles}} = \frac{10 \text{ inches}}{x \text{ miles}} \implies x = 50 \text{ miles}$ $\frac{1 \text{ inch}}{5 \text{ miles}} = \frac{7.2 \text{ inches}}{y \text{ miles}} \implies y = 7.2 \times 5 = 36 \text{ miles}$

The area of the state is 50×36 , or 1,800 mi².

2. B

Let the number of students = 27x and let the number of teachers = 2x. Then, there will be 27x + 2x, or 29x students and teachers who are in the meeting. Now set up a proportion.

$$\frac{\text{total in the meeting}}{\text{number of teachers}} = \frac{29x}{2x} \implies \frac{754}{\text{number of teachers}} = \frac{29x}{2x} \implies \frac{754}{2x} \implies \frac{754 \times 2}{2y} = 52$$

3. B

Let 5x = the volume of cement, 9x = the volume of sand, and 13x = the volume of gravel. Thus the total volume of concrete is 5x+9x+13x, or 27x, which is equal to 324 ft³.

 $27x = 324 \implies x = 12$ Therefore, the amount of cement is $5x = 5 \cdot 12 = 60$.

4. 240

1 hour 45 minutes = $1\frac{3}{4}$ hours Set up a proportion. $\frac{84 \text{ miles}}{3} = \frac{x \text{ miles}}{5 \text{ hours}}$

$$1\frac{3}{4}$$
 hours 5 nours
 $1\frac{3}{4}x = 84.5$ Cross Products

 $\frac{7}{4}x = 420$ Simplify. $\frac{4}{7} \cdot \frac{7}{4}x = \frac{4}{7} \cdot 420$ Multiply each side by $\frac{4}{7}$. x = 240

He can drive 240 miles in 5 hours.

5. 8

Let 2x = the number of quarters, 4x = the number of dimes, and 7x = the number of nickels. Then the total amount in terms of x, 2x(0.25) + 4x(0.1) + 7x(0.05), is equal to \$5.00. 2x(0.25) + 4x(0.1) + 7x(0.05) = 5.000.5x + 0.4x + 0.35x = 51.25x = 5x = 4

There are $2x = 2 \cdot 4$, or 8 quarters.

6. 6

$$\frac{5x}{3} = \frac{x+14}{2}$$

$$2(5x) = 3(x+14)$$

$$10x = 3x + 42$$

$$7x = 42$$

$$x = 6$$
Cross Products

7.
$$\frac{5}{12}$$

Let r = the amount of raisin, p = the amount of peanut, and c = the amount of chocolate. Then

$$\frac{r}{p} = \frac{2}{3}$$
The ratio of raisin to peanut is 2:3. $3r = 2p$ Cross Products $p = \frac{3}{2}r$ Solve for p . $\frac{p}{c} = \frac{5}{8}$ The ratio of peanut to chocolate is 5:8 $8p = 5c$ Cross Products $p = \frac{5}{8}c$ Solve for p .

Equate the two equations solved for p.

$$\frac{3}{2}r = \frac{5}{8}c \implies \frac{2}{3} \cdot \frac{3}{2}r = \frac{2}{3} \cdot \frac{5}{8}c$$
$$\implies r = \frac{5}{12}c \implies \frac{r}{c} = \frac{5}{12}$$

Section 6-3

1. A

Set up a proportion.

$$\frac{20}{1240} = \frac{x}{1984} \stackrel{\leftarrow}{\leftarrow} \text{number of machines}}{\leftarrow}$$

$$\frac{1240x = 20 \cdot 1984}{1240} = 32$$
Cross Products

Altogether we need 32 machines, therefore we need 32-20, or 12, more machines.

2 D

Let x = the number of quarts of lemonade concentrate needed for 24 people.

In this question " $6\frac{2}{3}$ quarts of water" was

unnecessary information.

$$\frac{\frac{3}{4}}{40} = \frac{x}{24} \xleftarrow{\text{quarts}}{\text{people}}$$

$$40x = 24 \cdot \frac{3}{4} \qquad \text{Cross products}$$

$$x = 24 \cdot \frac{3}{4} \cdot \frac{1}{40} = \frac{9}{20}$$

3. B

The number of tapes produced in one hour is equal to $735 \div 5\frac{1}{4}$, or 140. The fraction of 735 tapes produced in one hour is $\frac{140}{735}$, or $\frac{4}{21}$.

4. B

Set up a proportion. $\frac{32}{768} = \frac{x}{960} \quad \xleftarrow{\text{number of acres}} \\ \xleftarrow{\text{number of bushels}} \\
768x = 32.960 \qquad \text{Cross products} \\
x = \frac{32.960}{768} = 40$

Altogether we need 40 acres, therefore we need 40-32, or 8, more acres.

5. C

Let x = the width of the rectangle, then x + 8 = the length of the rectangle.

$$P = 2\ell + 2w$$
Perimeter of a rectangle. $P = 2(x+8)+2(x)$ $\ell = x+8$, and $w = x$ $P = 4x+16$ Simplify. $\frac{\text{length}}{\text{perimeter}} = \frac{x+8}{4x+16} = \frac{5}{16}$ $16(x+8) = 5(4x+16)$ Cross Products $16x+128 = 20x+80$ $48 = 4x$ $12 = x$ The length of the rectangle is $12+8$, or 20 and the width of the rectangle is 12 .

The area of the rectangle is 20.12, or 240.

6. D

If 12 grams of coffee cost x dollars, the cost of each gram of coffee is $\frac{x}{12}$ dollars. Let one cup of coffee cost d dollars, and set up a proportion to find the cost of one cup of coffee.

$$\frac{\frac{x}{12}}{y} = \frac{d}{1} \stackrel{\leftarrow}{\leftarrow} \text{cost in dollars} \\ \stackrel{\leftarrow}{\leftarrow} \text{number of cups} \\ y \cdot d = \frac{x}{12} \\ d = \frac{x}{12y}$$
Cross Products

Chapter 6 Practice Test

$$1 m = 100 cm$$

$$1 m^{3} = (100 cm)^{3} = 1,000,000 cm^{3}$$

$$0.01 m^{3} = 0.01 \times 1,000,000 cm^{3} = 10,000 cm^{3}$$

Density = $\frac{Mass}{Volume}$

$$4.54 grams / cm^{3} = \frac{Mass}{0.01 m^{3}} = \frac{Mass}{10,000 cm^{3}}$$

Mass = 4.54 $\frac{grams}{cm^{3}} \cdot 10,000 cm^{3}$
= 45,400 grams

2. A

Total time = Jason's time + Donny's time
= 4 hour 25 min + 2 hour 15 min
=
$$4\frac{5}{12}$$
 hour + $2\frac{1}{4}$ hour = $6\frac{2}{3}$ hour

The amount Donny received

$$= 1,200 \times \frac{2\frac{1}{4} \text{ hour}}{6\frac{2}{3} \text{ hour}} = 1,200 \cdot \frac{\frac{9}{4}}{\frac{20}{3}} = 1,200 \cdot \frac{9}{4} \cdot \frac{3}{20}$$
$$= 405$$

If the ratio of white balls to yellow balls is $\frac{3}{10}$.

3n represents the number of white balls and 10n represents the number of yellow balls (*n* is a positive integer).

Since the total number of balls in the bag is 3n+10n, or 13n, and *n* is a positive integer, the number of balls will be a multiple of 13.

Choice C is correct, because 42 is not a multiple of 13.

4. C

Let m = the number of miles traveled in y minutes. Substitute 60 minutes for 1 hour and set up a proportion.

 $\frac{x}{60} = \frac{m}{y} \xleftarrow{} \text{number of miles} \\ \xleftarrow{} \text{number of minutes} \\ 60m = xy \qquad \text{Cross Products} \\ m = \frac{xy}{60}$

5. B

Let x = the number of years it will take the tree to reach a height of 30 feet.

Also, 8 inches =
$$\frac{8}{12}$$
 feet .
 $8 + \frac{8}{12}x = 30$
 $\frac{8}{12}x = 22$
 $x = 22 \cdot \frac{12}{8} = 33$
The tree is 8 feet tall and will
grow $\frac{8}{12}x$ feet in x years.

6. A

m minutes = 60m seconds Let *p* = the number of pages he reads in 20m seconds. Set up a proportion. $x \quad p \leftarrow$ number of pages

$$\overline{60m} = \overline{20m} \quad \overleftarrow{\leftarrow} \text{ number of seconds}$$

$$60m \cdot p = 20m \cdot x \qquad \text{Cross Products}$$

$$p = \frac{20m \cdot x}{60m} = \frac{1}{3}x$$
7. A
$$\frac{x}{y} = 1$$

$$y \cdot \frac{x}{y} = y \cdot 1 \qquad \text{Multiply each side by } y.$$

$$x = y \qquad \text{Simplify.}$$

$$x - y = y - y \qquad \text{Subtract } y \text{ from each side.}$$

$$x - y = 0 \qquad \text{Simplify.}$$

$$x - y - 1 = 0 - 1 \qquad \text{Subtract } 1 \text{ from each side.}$$

$$x - y - 1 = -1 \qquad \text{Simplify.}$$

8. B

Let m = the number of males in the room and let f = the number of females in the room.

$\frac{m}{f} = \frac{4}{5}$	The ratio of males to females is 4 to 5.
5m = 4f	Cross Products
$\frac{m+8}{f} = \frac{6}{5}$	After 8 males enter the room, the ratio of males to females is 6 to 5.
5(m+8) = 6f	Cross Products
5m + 40 = 6f	Simplify.
4f + 40 = 6f	Substitute $4f$ for $5m$.
40 = 2f	Subtract $2f$ from each side.
20 = f	Divide each side by 2.

Substituting 20 for f in the equation 5m = 4fgives $5m = 4 \cdot 20$. Solving for m yields m = 16.

The total number of people in the room before the additional males enter the room is m + f = 16 + 20 = 36.

9. B

If a person is born every 5 seconds, 12 people are born per minute. If a person dies every 12 seconds, 5 people die per minute. Every minute the population grows by 12-5, or 7, people.

Therefore, it takes $\frac{60}{7}$ seconds, or $8\frac{4}{7}$ seconds, for the population to grow by one person.

10. D

Total area of the wall = $9 \times 12 = 108$ ft². Let it take *p* gallons of paint to paint 108 ft².

Set up a proportion.

$$\frac{1}{s} = \frac{p}{108} \xleftarrow{\text{number of gallons}}{\xleftarrow{\text{number of square feet}}}$$

$$sp = 108 \qquad \text{Cross Products}$$

$$p = \frac{108}{s}$$
It takes $\frac{108}{s}$ gallons of paint to paint 108 ft².
Since each gallon costs g dollars, the total cost will be $\frac{108}{s} \cdot g$ dollars.
11. $\frac{25}{4}$ or 6.25
2 in = 5 cm
1 in $= \frac{5}{2}$ cm Divide each side by 2.
(1 in)² = (\frac{5}{4} \text{ am})^2

$$(1 \text{ in})^2 = (\frac{1}{2} \text{ cm})^2$$
 Square both sides.
 $1 \text{ in}^2 = \frac{25}{4} \text{ cm}^2$ Simplify.

There are $\frac{25}{4}$ square centimeters in 1 square inch.

12.3

The reduced length of the painting is 18 - x and the reduced width of the painting is 12 - x.

$\frac{18-x}{12-x} = \frac{5}{3}$	The new ratio is 5 to 3.
3(18 - x) = 5(12 - x)	Cross Products
54 - 3x = 60 - 5x	Distributive Property
54 + 2x = 60	Add $5x$ to each side.
2x = 6	Subtract 54 from each side.
x = 3	Divide each side by 2.