
1. REAL NUMBERS

- 1. The prime factor of $2\times7\times11\times17\times23+23$ is _____
- 2. A Physical Education Teacher wishes to distribute 60 balls and 135 bats equally among a number of boys. The greatest nu-mber receiving the gift in this way are____
- 3. The Values of X and Y in the given figure are _____

- 4. If the LCM of 12 and 42 is 10m+4, then the value of 'm' is _____
- 5. π is
- 6. $\log_{2015} 2015 =$
- 7. The reciprocal of two irrational numbers is _____
- 8. The decimal expansion of 17/18 is _____
- 9. $2.54\overline{7}$ is ____
- 10. Decimal expansion of number $\frac{27}{2 \times 5 \times 7}$ has _____
- 11. The decimal expansion of 189/125 will terminate after ____
- 12. If $a = 2^3 \times 3$, $b = 2 \times 3 \times 5$, $c = 3^n \times 5$ and LCM (a, b, c) = $2^3 \times 3^2 \times 5$, then n =____
- 13. If n is any natural number, then 6ⁿ-5ⁿ always ends with _____
- 14. If $\log_2 16 = x$ then $x = ____$
- 15. The standard base of a logarithm is _____
- 16. If $\log_{10} 2 = 0.3010$, then $\log_{10} 8 =$ ____
- 17. $\log_{10} 0.01 =$ ____
- 18. The exponential form $\log_4 64 = 3$ is _____
- 19. log 15 = ____
- 20. The prime factorization of 216 is _____
- 21. HCF of 4 and 19 is _____
- 22. LCM of 10 and 3 is _____
- 23. If the HCF of two numbers is '1', then the two numbers are called

- 24. If the positive numbers a and b are written as $a = x^5y^2$, $b = x^3y^3$ where x and y are prime numbers then the HCF(a, b) = ____; LCM (a,b) =____;
- 25. The product of two irrational numbers is _____
- 26. 43.1234 is ____ number.
- 27. $\log a^p.b^q =$ _____
- 28. If $5^3 = 125$, then the logarithm form _____
- 29. $\log_{7}343 =$ ____

ANSWERS

- 1) 23; 2) 15; 3) X = 21, Y = 84; 4) 8;
- 5) An irrational number; 6) 1; 7) Always an irrational number;
- 8) 2.125; 9) A rational;
- 10) non-terminating but repeating; 11) 3 places of decimal; 12) 2;
- 13) 1; 14) 4; 15) 10; 16) 0.9030; 17) -2; 18) $4^3 = 64$; 19) $\log 3 + 26$
- $\log 5$; 20) $2^3 \times 3^3$; 21) 1; 22) 30; 23) Co-Primes; 24) $[x^3y^2; x^5y^3]$;
- 25) Sometimes rational, Some times irrational; 26) a rational number; 27) plog a+q logb; 28) $\log_5 125 = 3$; 29) 3.