14/	A		N E		A I	
W	М	π	IA	ı	N	U

Any malpractice or any attempt to commit any kind of malpractice in the Examination will DISQUALIFY THE CANDIDATE.

PAPER - I PHYSICS & CHEMISTRY

Version Code	A4	Question Booklet Serial Number :		
Time : 150 Minutes		Number of Questions : 120	Maximum Marks : 480	
Name of Car	ndidate			
Roll Number				
Signature of Candidate				

INSTRUCTIONS TO THE CANDIDATE

- 1. Please ensure that the VERSION CODE shown at the top of this Question Booklet is the same as that shown in the OMR Answer Sheet issued to you. If you have received a Question Booklet with a different Version Code, please get it replaced with a Question Booklet with the same Version Code as that of the OMR Answer Sheet from the Invigilator. THIS IS VERY IMPORTANT.
- 2. Please fill the items such as Name, Roll Number and Signature in the columns given above. Please also write Question Booklet Serial No. given at the top of this page against item 4 in the OMR Answer Sheet.
- 3. This Question Booklet contains 120 questions. For each question, five answers are suggested and given against (A), (B), (C), (D) and (E) of which only one will be the Most Appropriate Answer. Mark the bubble containing the letter corresponding to the 'Most Appropriate Answer' in the OMR Answer Sheet, by using either Blue or Black ball-point pen only.
- 4. Negative Marking: In order to discourage wild guessing, the score will be subjected to penalization formula based on the number of right answers actually marked and the number of wrong answers marked. Each correct answer will be awarded FOUR marks. ONE mark will be deducted for each incorrect answer. More than one answer marked against a question will be deemed as incorrect answer and will be negatively marked.
- 5. Please read the instructions given in the OMR Answer Sheet for marking answers. Candidates are advised to strictly follow the instructions contained in the OMR Answer Sheet.

IMMEDIATELY AFTER OPENING THIS QUESTION BOOKLET, THE CANDIDATE SHOULD VERIFY WHETHER THE QUESTION BOOKLET ISSUED CONTAINS ALL THE 120 QUESTIONS IN SERIAL ORDER. IF NOT, REQUEST FOR REPLACEMENT.

DO NOT OPEN THE SEAL UNTIL THE INVIGILATOR ASKS YOU TO DO SO.

PLEASE ENSURE THAT THIS QUESTION BOOKLET CONTAINS 120 QUESTIONS SERIALLY NUMBERED FROM 1 TO 120. **PRINTED PAGES: 32**

The speed of an electromagnetic wave in a material medium of permeability μ and permittivity ε is

(A)
$$\frac{1}{\mu\epsilon}$$

(B)
$$\frac{1}{2\mu\epsilon}$$

(C)
$$\frac{1}{\sqrt{\mu\epsilon}}$$

(A)
$$\frac{1}{\mu\epsilon}$$
 (B) $\frac{1}{2\mu\epsilon}$ (C) $\frac{1}{\sqrt{\mu\epsilon}}$ (D) $\frac{1}{\sqrt{2\mu\epsilon}}$ (E) $\frac{2}{\mu\epsilon}$

(E)
$$\frac{2}{\mu\epsilon}$$

The energy of infrared waves is greater than that of 2.

- (A) visible light
- (B) ultraviolet waves
- (C) x-rays
- (D) gamma rays
- (E) micro waves

An object is kept at a distance of 60 cm from a concave mirror. For getting a 3. magnification of $\frac{1}{2}$, focal length of the concave mirror required is

- (A) 20 cm
- (B) 40 cm (C) -20 cm (D) 30 cm
- (E) 10 cm

In Young's double slit experimental setup, if the wavelength alone is doubled, the band 4. width β becomes

- (B) 2β (C) 3β
- (D) β
- (E) 4β

- 5. If the speed of light in material A is 1.25 times its speed in material B, then the ratio of the refractive indices of these materials is
 - (A) 1.50
- **(B)** 1.00
- (C) 0.800
- (D) 1.25
- (E) 0.90

- 6. The resolving power of a microscope is
 - (A) inversely proportional to numerical aperture
 - (B) directly proportional to wavelength
 - (C) directly proportional to square of the wavelength
 - (D) directly proportional to numerical aperture
 - (E) independent of numerical aperture
- 7. Which one of the following statements is correct?
 - (A) Monochromatic light is never coherent
 - (B) Monochromatic light is always coherent
 - (C) Two independent monochromatic sources are coherent
 - (D) Coherent light is sometimes monochromatic
 - (E) Coherent light is always monochromatic

8.	If alpha particle, proton and electron move with the same momentum, then their respective de Broglie wavelengths λ_{α} , λ_{p} , λ_{e} are related as				
	(A) $\lambda_{\alpha} = \lambda_{p} = 2$	λ_e	(B) $\lambda_{\alpha} < \lambda_{p} < 3$	λ_e	
	(C) $\lambda_{\alpha} > \lambda_{p} > \lambda$	e	(D) $\lambda_p > \lambda_e > \lambda$	α	
	(E) $\lambda_p < \lambda_e < \lambda$	α			
9.			clei with mass nu (C) 27:125		
10.					radiation of intensity ch it would be safe to
	(A) 4	(B) 6	(C) 12	(D) 16	(E) 24
11.	A radioactive d particles	ecay can form a	n isotope of the	original nucleus	with the emission of
	(A) one α and	**			
	(B) one α and				
	(C) one α and	2002-0 16 MARK			
	(D) four α and				
	(E) two α and	one p			
12.			' for the inputs of	of '1' and '03	are
	(A) AND and (B) OR and N				
	(C) NAND and				
	(D) NAND and				
	(E) AND and 1	NOR			

13.	. Identify the mismatch of the following			
	(A) Photo diode	4 7.77.	optical signal	
	(B) LED	_	spontaneous emission	
	(C) Diode laser	=	stimulated emission	
	(D) Solar cell	_	electrical energy into light	
	(E) Photo conducting cell	82 <u>-3</u>	photo detector	
14.	If a PN junction diode of depl biased, then	etion	layer width W and barrier height V ₀ is forward	
	(A) W increases, V ₀ decreases			
	(B) W decreases, Vo increases			
	(C) both W and V ₀ increase			
	(D) both W and V ₀ decrease			
	(E) both W and V ₀ remain the s	ame		
15.	The heavily and lightly doped re	gions	of a bipolar junction transistor are respectively	
	(A) base and emitter	(B)	base and collector	
	(C) collector and base	(D)	collector and emitter	
	(E) emitter and base			

16.	A television tower of height 1 (Radius of earth = 6.4×10^6 m)		its signal upto a maximum area of
	(A) $1.56 \times 10^6 \text{ km}^2$	(B) $5.6 \times 10^3 \mathrm{km}^2$	
	(C) $5.6 \times 10^{10} \text{km}^2$	(D) $1.56 \times 10^9 \text{ km}^3$	2
	(E) $1.56 \times 10^4 \text{ km}^2$		
17.	The waves that are bent down b	y the ionosphere are	
	(A) ground wayer (P)	curfoce wower	(C) direct wayes

- (A) ground waves
- (B) surface waves
- (C) direct waves

- (D) space waves
- (E) sky waves
- 18. A ground receiver in line-of-sight communication cannot receive direct waves due to
 - (A) its low frequency
 - (B) curvature of earth
 - (C) its high intensity
 - (D) smaller antenna
 - (E) both its low frequency and high intensity
- 19. In an amplitude modulation with modulation index 0.5, the ratio of the amplitude of the carrier wave to that of the side band in the modulated wave is
 - (A) 4:1
- (B) 1:1
- (C) 1:2 (D) 2:1
- (E) 1:4

20.		acement of a partic	W. S. C.	ng x-axis with	respect to time	t is
	x = at + bt	$t^2 - ct^3$. The dimension	ons of c are			
	(A) T^{-3}	(B) LT ⁻²	(C) LT^{-3}	(D) LT ³	(E) LT ²	
21.		period of oscillation of $\frac{1}{2}$ second, the $\frac{1}{2}$:-:			atch
	(A) 10 %	(B) 30 %	(C) 15 %	(D) 25 %	(E) 20 %	
22.	A particle	moving along a stra	aight line cover	s half of the dis	tance with a spee	d of

3 ms⁻¹. The other half of the distance is covered in two equal time intervals with speed of 4.5 ms⁻¹ and 7.5 ms⁻¹. The average speed of the particle (in ms⁻¹) is

- (A) 5.0 (B) 5.5 (C) 5.8 (D) 4.0 (E) 4.8

Two cars started moving with initial velocities v and 2v. For the same deceleration, their 23. respective stopping distances are in the ratio

- (A) 1:1 (B) 1:2 (C) 1:4 (D) 2:1 (E) 4:1

24.	The distances traversed during equal intervals of time by a freely falling body from rest are in the ratio					
	(A) 1:3:5:7	(B) 2:4:6:8	(C) 1:4:5	9:25		
	(D) 1:9:25:49	(E) 1:2:3:4				
25.	In the entire path of a proje	ectile, the quantity that	remains unchan	ged is		
	(A) vertical component of	velocity				
	(B) horizontal component	of velocity				
	(C) kinetic energy					
	(D) potential energy					
	(E) linear momentum					
26.	The sum of magnitudes of $8\sqrt{3}$ N is at 90° with the	±-10 × 10 × 10 × 10 × 10 × 10 × 10 × 10 ×	-		ltant	
	(A) 11, 5 (B) 9, 7	(C) 6, 10	(D) 4, 12	(E) 2, 14		
27.	Among the following, the	vector quantity is				
	(A) pressure					
	(B) gravitation potential					
	(C) stress					
	(D) impulse					
	(E) distance					
	Space for rough work					

- 28. A block of mass 10 kg is moving horizontally with a speed of 1.5 ms⁻¹ on a smooth plane. If a constant vertical force 10 N acts on it, the displacement of the block from the point of application of the force at the end of 4 seconds is

 - (A) 5 m (B) 20 m (C) 12 m (D) 10 m (E) 18 m

- 29. A block of weight 4 kg is resting on a smooth horizontal plane. If it is struck by a jet of water at the rate of 2 kgs⁻¹ and at the speed of 10 ms⁻¹, then the initial acceleration of the block is
- (A) 15 ms^{-2} (B) 10 ms^{-2} (C) 2.5 ms^{-2} (D) 1 ms^{-2} (E) 5 ms^{-2}
- **30.** A ball is hung by a string from the ceiling of a car moving on a straight and smooth road. If the string is inclined towards the front side of the car making a small constant angle with the vertical, then the car is moving with
 - (A) constant velocity
 - (B) constant acceleration
 - (C) constant retardation
 - (D) increasing acceleration
 - (E) decreasing retardation
- A girl in a swing is 2.5 m above ground at the maximum height and at 1.5 m above the 31. ground at the lowest point. Her maximum velocity in the swing is $(g = 10 \text{ ms}^{-2})$
 - (A) $5\sqrt{2} \text{ ms}^{-1}$
- (B) $2\sqrt{5} \text{ ms}^{-1}$
- (C) $2\sqrt{3} \text{ ms}^{-1}$

- (D) $3\sqrt{2} \text{ ms}^{-1}$
- (E) $4\sqrt{2} \text{ ms}^{-1}$

- 32. The position of a particle of mass 4 g, acted upon by a constant force is given by $x = 4t^2 + t$, where x is in metre and t in second. The work done during the first 2 seconds is

- (A) 128 mJ (B) 512 mJ (C) 576 mJ (D) 144 mJ (E) 288 mJ
- The shape of the curve representing the relation between the speed and kinetic energy 33. of a moving object is
 - (A) parabola
 - (B) ellipse
 - (C) straight line with positive slope
 - (D) straight line with negative slope
 - (E) exponential
- A billiard ball of mass m and radius r, when hit in a horizontal direction by a cue at a 34. height h above its centre, acquired a linear velocity v_0 . The angular velocity ω_0 acquired by the ball is

- A carpet of mass m made of inextensible material is rolled along its length in the form of a cylinder of radius r and kept on a rough floor. The decrease in the potential energy of the system, when the carpet is unrolled to a radius $\frac{r}{2}$ without sliding is (g = acceleration due to gravity)
 - (A) $\frac{3}{4} mgr$ (B) $\frac{5}{8} mgr$ (C) $\frac{7}{8} mgr$ (D) $\frac{1}{2} mgr$ (E) $\frac{1}{8} mgr$
- The radius of gyration of a solid cylinder of mass M and radius R about its own axis is
 - (A) $\frac{R}{\sqrt{2}}$ (B) $\frac{R}{2}$ (C) $\frac{R}{\sqrt{3}}$ (D) $\frac{R}{3}$ (E) $\frac{R}{4}$

- An artificial satellite moving in a circular orbit at a distance h from the centre of the earth has a total energy E_0 . Its potential energy is

- (A) $-E_0$ (B) $1.5 E_0$ (C) E_0 (D) $2 E_0$ (E) $\frac{E_0}{2}$
- Two identical spheres of radius R made of the same material are kept at a distance d apart. Then the gravitational attraction between them is proportional to
- (B) d^2
- (C) d^4
- (D) d
- (E) d^{-4}

39.	An astronaut experiences weightlessness in a space satellite. It is because
	(A) the gravitational force is small at that location in space
	(B) the gravitational force is large at that location in space
	(C) the astronaut experiences no gravity

(D) the gravitational force is infinitely large at that location in space

(E) the astronaut experiences an upthrust

40. Choose the wrong statement

- (A) The bulk modulus for solids is much larger than for liquids
- (B) Gases are least compressible
- (C) The incompressibility of the solids is due to the tight coupling between neighbouring atoms
- (D) The reciprocal of the bulk modulus is called compressibility
- (E) For a system in equilibrium, the value of bulk modulus is always positive
- If two capillary tubes of radii r_1 and r_2 in the ratio 1: 2 are dipped vertically in water, then the ratio of capillary rises in the respective tubes is

- (A) 1:4 (B) 4:1 (C) 1:2 (D) 2:1 (E) 1: $\sqrt{2}$
- 42. If the excess pressure inside a soap bubble of radius r_1 in air is equal to the excess pressure inside air bubble of radius r_2 inside the soap solution, then $r_1:r_2$ is

- (A) 2:1 (B) 1:2 (C) 1:4 (D) $\sqrt{2}$:1 (E) 1: $\sqrt{2}$

- The pressure at depth h below the surface of a liquid of density ρ open to the 43. atmosphere is (A) greater than the atmospheric pressure by ρgh (B) less than the atmospheric pressure by ρgh (C) equal to the atmospheric pressure (D) decreases exponentially with depth (E) increases exponentially with depth
- 1 cc of water becomes 1681 cc of steam when boiled at a pressure of 10⁵ Nm⁻². The increasing internal energy of the system is

(L.T. of steam is 540 cal g^{-1} , 1 calorie = 4.2 J)

- (A) 300 cal (B) 500 cal (C) 225 cal

- (D) 600 cal (E) 1000 cal
- A partition wall has two layers of different materials A and B in contact with each 45. other. They have the same thickness but the thermal conductivity of layer A is twice that of layer B. At steady state if the temperature difference across the layer B is 50 K, then the corresponding difference across the layer A is
 - (A) 50 K
- (B) 12.5 K
- (D) 60 K
- (E) 6.25 K

- Identify the wrong statement 46.
 - (A) For isothermal process, $\Delta T = 0$
 - (B) For isochoric process, $\Delta V = 0$
 - (C) For isobaric process, $\Delta P = 0$
 - (D) For adiabatic process, $\Delta Q = 0$
 - (E) For cyclic process, $\Delta W = 0$
- If the pressure and the volume of certain quantity of ideal gas are halved, then its temperature
 - (A) is doubled
 - (B) becomes one-fourth
 - (C) remains constant
 - (D) is halved
 - (E) become four times
- Two pendulums of lengths 1.44 m and 1 m start to swing together. The number of 48. vibrations after which they will again start swinging together is

- (A) 4 (B) 3 (C) 6 (D) 2
- 49. The average total energy in one time period of a particle of mass m executing SHM of amplitude a and angular velocity ω is
 - $(A) \frac{1}{2}m\omega^2 a^2$
- (B) $\frac{1}{4}m\omega^2a^2$
- (C) 0

- (D) $m\omega^2 a^2$
- (E) $\frac{1}{8}m\omega^2a^2$

	(A) Rotation of earth around the sun					
	(B) Rotation of	f earth about	its own axis			
	(C) Revolving	motion of a	top			
	(D) Motion of	a steel ball in	a viscous me	dium		
	(E) Motion of	oscillating lie	quid column in	U tube		
51.	1. If a closed organ pipe of length L_1 in its fundamental mode resonates with an operange of length L_2 , then $L_1:L_2$ is				an open	
	(A) 1:2	(B) 2:1	(C) 1:4	(D) 4:1	(E) 1:8	
52.	The physical medium to ano		remains uncl	nanged when a sou	und wave goes	from one
	(A) amplitude		(B) speed	(C) wa	velength	
	(D) frequency		(E) phase			
53.	The beat frequ	ency observe	d when two so	und waves $y_1 = 0.5$	sin (410 t) and	
	$y_2 = 0.5 \sin (45)$	(4 t) travel in	the same direc	tion is		
	(A) 5	(B) 3	(C) 7	(D) 2	(E) 4	
			Space for ro	ough work		

Which one of the following is simple harmonic?

50.

- Two identical thin rings, each of radius 10 cm carrying charges 10 C and 5 C are coaxially placed at a distance 10 cm apart. The work done in moving a charge q from the centre of the first ring to that of the second is
- (A) $\frac{q}{8\pi\varepsilon_0} \left(\frac{\sqrt{2}+1}{\sqrt{2}} \right)$ (B) $\frac{q}{8\pi\varepsilon_0} \left(\frac{\sqrt{2}-1}{\sqrt{2}} \right)$ (C) $\frac{q}{4\pi\varepsilon_0} \left(\frac{\sqrt{2}+1}{\sqrt{2}} \right)$
- (D) $\frac{q}{4\pi\varepsilon_0} \left(\frac{\sqrt{2}-1}{\sqrt{2}} \right)$ (E) $\frac{q}{4\pi\varepsilon_0} \left(\frac{\sqrt{3}+1}{\sqrt{2}} \right)$
- The electric potential V at any point (x, y, z) in space is given by $V = 3x^2$ 55. where x, y, z are all in metre. The electric field at the point (1 m, 0, 2 m) is
 - (A) 6 V m⁻¹ along negative x-axis
 - (B) 6 V m⁻¹ along positive x-axis
 - (C) 12 V m^{-1} along negative x-axis
 - (D) 12 V m⁻¹ along positive x-axis
 - (E) 8 V m^{-1} along negative x-axis
- Choose the correct statement 56.
 - (A) Polar molecules have permanent electric dipole moment
 - (B) CO₂ molecule is a polar molecule
 - (C) H₂O is a non-polar molecule
 - (D) The dipole field at large distances falls of as $\frac{1}{r^2}$
 - (E) The dipole moment is a scalar quantity

- The electric field between two infinitely charged plates with air medium in between, in terms of the surface charge density σ is

 - (A) $4\pi\epsilon_0$ (B) $\frac{\sigma}{4\pi\epsilon_0}$ (C) $\frac{\sigma}{\epsilon_0}$ (D) $\frac{4\pi\sigma}{\epsilon_0}$ (E) $\frac{\sigma}{4\pi r^2}$

- **58.** Two equal point charges each of 3 µC are separated by a certain distance in metres. If they are located at $(\hat{i} + \hat{j} + \hat{k})$ and $(2\hat{i} + 3\hat{j} + \hat{k})$, then the electrostatic force between them is

- (A) $9 \times 10^{3} \text{ N}$ (B) $9 \times 10^{-3} \text{ N}$ (C) 10^{-3} N (D) $9 \times 10^{-2} \text{ N}$ (E) $3 \times 10^{-3} \text{ N}$
- Three identical bulbs connected in series across an accumulator consumes 20 W power. If the bulbs are connected in parallel to the same source, the power consumed is

- (A) 20 W (B) 60 W (C) 90 W (D) 120 W (E) 180 W
- A galvanometer connected with an unknown resistor and two identical cells in series **60**. each of emf 2 V shows a current of 1 A. If the cells are connected in parallel, it shows 0.8 A. Then the internal resistance of the cell is

- (A) 1Ω (B) 0.5Ω (C) 0.25Ω (D) 0.33Ω (E) 0.66Ω

61.	2Ω , 6Ω and		ent of 2.8 A ent		n cyclic order are 5 Ω , of 5 Ω and 15 Ω , then
	(A) 1.5 A	(B) 2.8 A	(C) 0.7 A	(D) 1.4 A	(E) 2.1 A
62.	(A) Compact(B) Inexpensive(C) Relatively		X 	FS	

- (E) Colour codes express their resistor values
- The number of electrons per second flowing through any cross section of the wire **63.** carrying current of 1 ampere is
 - (A) 3.12×10^{16}
- (B) 1.6×10^{18}
- (C) 6.25×10^{16}

- (D) 3.12×10^{18}
- (E) 6.25×10^{18}
- The shunt resistance required to allow 4% of the main current through the galvanometer of resistance 48 Ω is
 - (A) 1Ω
- (B) 2 Ω
- (C) 3 Ω
- (D) 4 Ω
- (E) 5Ω

- 65. A straight wire carrying current I is made into a circular loop. If M is the magnetic moment associated with the loop, then the length of the wire is
 - (A) $\sqrt{\frac{4\pi M}{I}}$ (B) $\sqrt{\frac{2\pi M}{I}}$ (C) $\sqrt{\frac{\pi M}{I}}$ (D) $\sqrt{\frac{\pi M}{2I}}$ (E) $\sqrt{\frac{\pi M}{4I}}$

- A magnet takes a minute to make 30 oscillations in a magnetic field. If the field strength 66. is doubled, then the time period of oscillation (in s) is

 - (A) $\sqrt{2}$ (B) $2\sqrt{2}$ (C) $\frac{\sqrt{3}}{2}$ (D) $\sqrt{3}$ (E) 2

- The magnetic flux linked with a coil of N turns of area of cross section A held with its **67.** plane parallel to the field B is
- (A) $\frac{\text{NAB}}{2}$ (B) NAB (C) $\frac{\text{NAB}}{4}$ (D) 0 (E) 2NAB
- The ferromagnetic core of electromagnets should have 68.
 - (A) a broad hysteresis loop
 - (B) high permeability and high retentivity
 - (C) low permeability and low retentivity
 - (D) low permeability and high retentivity
 - (E) high permeability and low retentivity

69.	A transformer is used to light a 100 W and 110 V lamp using a 220 V main supply. If the supply current is 0.5 A, then the efficiency of the transformer is
	(A) 100 % (B) 99 % (C) 90.1 % (D) 87.7% (E) 85 %
70.	Two identical coaxial coils P and Q carrying equal amount of current in the same direction are brought nearer. The current in
	(A) P increases while in Q decreases
	(B) Q increases while in P decreases
	(C) both P and Q increases
	(D) both P and Q decreases
	(E) both P and Q remains constant
71.	The self inductance of a long solenoid cannot be increased by
	(A) increasing its area of cross section
	(B) increasing its length
	(C) changing the medium with greater permeability
	(D) increasing the number of turns in it
	(E) increasing the current through it
72.	The power factor of LCR circuit at resonance is
	(A) 0 (B) $\frac{1}{2}$ (C) $\frac{1}{\sqrt{2}}$ (D) 1 (E) -1
	Space for rough work

- 73. The decreasing order of boiling points of alkyl halides is
 - (A) RF > RC1 > RBr > RI
 - (B) RBr > RCl > RI > RF
 - (C) RI \rightarrow RBr \rightarrow RCl \rightarrow RF
 - (D) RC1 > RF > RI > RBr
 - (E) RI > RF > RC1 > RBr
- 74. The correct order of ease of cleavage of ether linkage by hydrogen halide follows
 - (A) HI > HBr > HCl
 - (B) HBr > HI > HC1
 - (C) HC1 > HBr > HI
 - (D) HCl > HI > HBr
 - (E) HI > HCl > HBr
- 75. What are the starting materials to get 2-methylpropene as the major product?
 - (A) Sodium methoxide and sec-butyl bromide
 - (B) Sodium ethoxide and sec-butyl bromide
 - (C) Sodium tert-butoxide and ethyl bromide
 - (D) Sodium methoxide and tert-butyl bromide
 - (E) Sodium tert-butoxide and methyl bromide
- 76. Which one of the following is the correct order of increasing basic strength of nitrogen compounds in aqueous solution?
 - (A) $NH_3 < C_2H_5NH_2 < C_6H_5NH_2 < (C_2H_5)_2NH < C_6H_5CH_2NH_2$
 - (B) $C_6H_5NH_2 < NH_3 < C_6H_5CH_2NH_2 < C_2H_5NH_2 < (C_2H_5)_2NH$
 - (C) $(C_2H_5)_2NH < C_6H_5CH_2NH_2 < NH_3 < C_2H_5NH_2 < C_6H_5NH_2$
 - (D) $C_6H_5CH_2NH_2 < C_2H_5NH_2 < NH_3 < C_6H_5NH_2 < (C_2H_5)_2NH$
 - (E) $C_2H_5NH_2 < C_6H_5NH_2 < NH_3 < (C_2H_5)_2NH < C_6H_5CH_2NH_2$

77.	Ethanoic acid on heating with ammonia forms compound A which on treatment with bromine and sodium hydroxide gives compound B. Compound B on treatment with NaNO ₂ /dil.HCl gives compound C. The compounds A, B and C respectively are							
	(A) ethanamic	(A) ethanamide, methanol						
	(B) propanam	(B) propanamide, ethanamine, ethanol						
	(C) N-ethylpr	opanamide, meth	aneisonitrile, met	thanamine				
	(D) ethanamin	ne, bromoethane,	ethanediazonium	chloride				
(E) methanamine, ethanamide, methanol								
78.	Which one of	the following form	ns the constituen	t of cell wall of p	lant cells?			
	(A) Starch	(B) Glycogen	(C) Cellulose	(D) Amylose	(E) Amylopectin			
79.	A thermoplast	ic among the follo	owing is					
	(A) bakelite		(B) polystyrene	e				
	(C) terylene		(D) urea-forma	aldehyde resin				
	(E) nylon							
80.		following antibion (a) tetracycline. Th		To the second se	n iii) chloramphenico			
	(A) i-iii	(B) ii-iv	(C) iii-v	(D) i-iv	(E) ii-v			
81.	The maximum	prescribed conce	entration of cadm	ium in drinking v	vater in ppm is			
	(A) 0.05	(B) 3	(C) 2	(D) 5	(E) 0.005			
82.	The gas emitte	ed by supersonic j	et planes that slo	wly depletes the	concentration of ozone			
	(A) CO	(B) NO	(C) SO ₂	(D) O ₂	(E) HF			
·								

			Space for rough	work				
	(A) H ₂	(B) He	(C) N ₂	(D) O ₂	(E) CO ₂			
87.	The gas with th	e highest critica	al temperature is					
	(E) NH_3	trigonal p	yramidal					
	(D) NH_4^+	tetrahedra	1					
	(C) ClF ₃	T-shape						
	(B) SF ₄	see saw						
	(A) BrF ₅	trigonal bi	ipyramidal					
	Molecule	Shape						
86.	The incorrectly matched pair, among the following is							
	(A) CCl ₄	(B) NH_3	(C) H_2O	(D) CHCl ₃	(E) BF_3			
85.	Among the foll	owing, the mol	ecule of highest	dipole moment is	3			
	$(A) \frac{4}{5}$	(B) $\frac{5}{4}$	(C) $\frac{4}{3}$	(D) $\frac{3}{4}$	$(E) \frac{3}{8}$			
	3550 2	_	200		_			
84.	The ratio of the	e frequency cor	responding to the	ne third line in L	yman series of hyes	drogen		
	(A) 40	(B) 20	(C) 28	(D) 12	(E) 56			
83.		10.000 (0.000 to 0.000 to 0.00			2 g on complete the equivalent mass			

88.	Molecules / ions and their magnetic properties are given below.											
	Mol	lecule / i	ion		Magnet	Magnetic property						
	i) C_6H_6 1)				antiferror	antiferromagnetic						
	ii)	CrO_2		2)	ferrimagn	ferrimagnetic						
	iii)	MnQ		3)	ferromag	ferromagnetic						
	iv)	Fe ₃ O ₄		4)	paramagr	paramagnetic						
	v)	Fe ³⁺		5)	diamagne	etic						
	The	correct	ly matc	hed pairs	s in the ab	ove is						
	(A)	i-5	ii-3	iii-2	iv-1	v-4						
	(B)	i-3	ii-5	iii-1	iv-4	v-2						
	(C)	i-5	ii-3	iii-1	iv-2	v-4						
	(D)	i-5	ii-3	iii-1	iv-4 v-2							
	(E)	i-4	ii-5	iii-1	iv-2	v-3						
89.	Am	ong the	followi	ng, the e	lement of	highest fi	rst ionisation ent	halpy is				
	(A)	<u></u>		3) F		Be	(D) N	(E) Ne				
90.	Which one of the following has the shortest bond length?											
	(A)	C-H	(B	3) C-N	(C)	C-O	(D) C-C	(E) C-F				
91.	Among the following compounds, the one that gets hydrolysed to form metallic hydroxide, hydrogen peroxide and oxygen is											
	(A)	Na ₂ O	(B	B) Na ₂ O ₂	(C)	Li ₂ O	(D) Li ₂ O ₂	(E) KO ₂				
	Space for rough work											

92.	The	The alkaline earth metal with the least density value is									
	(A)	Mg	(B)	Be	(C)	Sr	(D)	Ca	(E) Ba		
93.	Cho	ose the weal	k mo	nobasic acid	l, am	ong the follo	wing	3			
	(A)	H_3BO_3	(B)	H_3PO_3	(C)	H_3PO_4	(D)	HNO ₃	(E) $H_4P_2O_7$		
94.	Pick	Pick out the wrong statement									
	(A)	(A) Nitrogen has the ability to form $p\pi$ - $p\pi$ bonds with itself									
	(B)	(B) Bismuth forms metallic bonds in elemental state									
	(C)	(C) Catenation tendency is higher in nitrogen when compared with other elements of the same group									
	(D)	(D) Nitrogen has higher first ionisation enthalpy when compared with other elements of the same group									
	(E)	(E) Arsenic forms dπ-dπ bonds with transition metals									
95.	The wrong statement about the interstitial compounds is										
	(A)	(A) they retain metallic conductivity									
	(B)	B) they are chemically inert									
	(C)	c) they are very hard									
	(D)	D) their bonds are neither ionic nor covalent									
	(E)	(E) their melting points are lower than those of pure metals									
0. 12 B. 00	A				Space	for rough work	· · · · ·				

- Which one of the following is an amphoteric oxide? 96.
 - (A) Mn_2O_7 (B) CrO (C) V_2O_4
- (D) Cr_2O_3
- (E) V_2O_3
- 97. Choose the reaction in which ΔH is not equal to ΔU
 - $(A) C_{(gr)} + O_{2(g)} \rightarrow CO_{2(g)}$
 - (B) $C_2H_{4(g)} + H_{2(g)} \rightarrow C_2H_{6(g)}$
 - (C) $2C_{(gr)} + H_{2(g)} \rightarrow C_2H_{2(g)}$
 - (D) $H_{2(g)} + I_{2(g)} \rightarrow 2HI_{(g)}$
 - (E) $N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$
- The standard enthalpies of combustion of C₆H_{6(l)}, C_(graphite) and H_{2(g)} are respectively 98. -3270 kJ mol⁻¹, -394 kJ mol⁻¹ and -286 kJ mol⁻¹. What is the standard enthalpy of formation of $C_6H_{6(l)}$ in kJ mol⁻¹?

- (A) 48 (B) + 48 (C) 480 (D) + 480 (E) 72

In the reaction: $A_{2(g)} + 3B_{2(g)} \rightarrow 2AB_{3(g)}$

the standard entropies (in JK^{-1} mol⁻¹) of $A_{2(g)}$, $B_{2(g)}$ and $AB_{3(g)}$ are respectively 190, 130 and 195 and the standard enthalpy change for the reaction is -95 kJ mol⁻¹. The temperature (in K) at which the reaction attains equilibrium is (assuming both the standard entropy change and standard enthalpy change for this reaction are constant over a wide range of temperature)

- (A) 500
- (B) 400
- (C) 300
- (D) 600
- (E) 700

100. In the following equilibrium reaction

$$2A \rightleftharpoons B + C$$

the equilibrium concentrations of A, B and C are 1×10^{-3} M, 2×10^{-3} M and 3×10^{-3} M respectively at 300 K. The value of K_c for this equilibrium at the same temperature is

- (A) $\frac{1}{6}$ (B) 6 (C) $\frac{1}{36}$ (D) 36
- (E) $\frac{1}{24}$

101. Which one of the following is the correct statement?

- (A) HCO_3^- is the conjugate base of CO_3^{2-}
- (B) NH₂ is the conjugate acid of NH₃
- (C) H₂SO₄ is the conjugate acid of HSO₄
- (D) NH₃ is the conjugate base of NH₂
- (E) H₂CO₃ is the conjugate base of HCO₃

102. The mole fraction of methanol in its 4.5 molal aqueous solution is

- (A) 0.250
- (B) 0.125
- (C) 0.100
- (D) 0.075
- (E) 0.055

103.	Freezing point of an aqueous solution is -0.186 °C. If the values of K_b and K_f of water are respectively 0.52 K kg mol ⁻¹ and 1.86 K kg mol ⁻¹ , then the elevation of boiling point of the solution in K is									
	(A) 0.52	(B) 1.04	(C) 1.34	(D) 0.134	(E) 0.052					
104.	A weak electrolyte having the limiting equivalent conductance of 400 S cm ² g.equiv ⁻¹ at 298 K is 2 % ionized in its 0.1N solution. The resistance of this solution (in ohms) in an electrolytic cell of cell constant 0.4 cm ⁻¹ at this temperature is									
	(A) 200	(B) 300	(C) 400	(D) 500	(E) 600					
105.	Given that the standard reduction potentials for M^+/M and N^+/N electrodes at 298 K are 0.52 V and 0.25 V respectively. Which of the following is correct in respect of the following electrochemical cell?									
	$M / M^{\dagger} N^{\dagger} / N$									
	(A) The overall cell reaction is a spontaneous reaction (B) The standard ENCE of the cell is a 0.27 M									
	(B) The standard EMF of the cell is – 0.27 V									
	.070 0.500	d EMF of the cel	CCC Age Viscol Viscol (Viscol CVI)							
	200-200 30-200 30-200 400 500 500 500 500 500 500 500 500 5	d EMF of the cel								
	(E) The standard	d EMF of the cel	11 18 U.Z / V							
106.	The rate constant of a first order reaction is doubled when the temperature is increased from 20°C to 25°C. How many times the rate constant will increase if the temperature is raised from 20°C to 40°C?									
	(A) 4	(B) 8	(C) 16	(D) 32	(E) 64					

107. In the following reaction, the initial concentrations of the reactant and initial rates at 298 K are given:

$$2A \rightarrow C + D$$

 $[A]_0$, mol L^{-1} Initial rate in mol $L^{-1}s^{-1}$

$$0.01$$
 5.0×10^{-5}

$$0.02$$
 2.0×10^{-4}

The value of rate constant of this reaction at 298 K is

(A)
$$0.01 \text{ s}^{-1}$$

(B)
$$5 \times 10^{-3} \text{ mol L}^{-1}\text{s}^{-1}$$
 (C) $2.0 \times 10^{-2} \text{ mol}^{-1} \text{ L s}^{-1}$

(C)
$$2.0 \times 10^{-2} \text{ mol}^{-1} \text{ L s}^{-1}$$

(D)
$$5 \times 10^{-1} \text{ mol}^{-1} \text{ L s}^{-1}$$
 (E) $5.0 \times 10^{-1} \text{ mol } \text{L}^{-1} \text{s}^{-1}$

(E)
$$5.0 \times 10^{-1} \text{ mol L}^{-1} \text{s}^{-1}$$

108. The disease kalaazar is cured by

- (A) colloidal antimony
- (B) milk of magnesia

(C) argyrols

(D) colloidal gold

(E) colloidal silver

109. Which is correct about physical adsorption?

- (A) High temperature and high pressure favour adsorption
- (B) High temperature and low pressure favour adsorption
- (C) Low temperature and high pressure favour adsorption
- (D) Low temperature and low pressure favour adsorption
- (E) Temperature and pressure have no effect on adsorption

110. Excess of copper in toxic proportions in plants/animals can be removed by chelating with

(A) EDTA

(B) ethane-1, 2-diamine

(C) oxalate ion

(D) D-penicillamine

(E) cupron

11 1 .	respectively		177 July 187			tes Y and Z that are formand excess barium ch		e formed v	when
112.	In the estimation 0.699 g of baring masses: Ba = 13	um sulphate	e. The per	_	777	1. The second se		13.77	- A
	(A) 20 %	(B) 15 %	(C)	35 %	(D) 30	%	(E) 40	%	
113.	The least stable	free radical	is	929					
	(A) CH ₃ CH ₂		(B) CH ₃ (CH ₂ CH ₂	(C)	$\left(CH_{3}\right)_{2}$	C H		
	(D) $\left(CH_3\right)_3$ C		(E) CH ₃						
114.	The number of respectively are) and pi	(π) bonds	present	in 1,	3, 5,	7-Octateti	raene
	(A) 14 and 3 (D) 15 and 4		(B) 17 an (E) 16 an	(C)	(C) 16 and 5				
115.	The molecule th	at contains	only sp ² h	vbrid carbo	n atoms i	S			
	(A) isoprene(D) 1, 3-butadie		(B) acryle (E) isobu	onitrile		but-1-er	ne		
	(D) 1, 5-0utadio		(L) 1300u	iono					
116.	Which will unde	ergo S _N 2 rea						npounds?	
	(A) CH ₃ CH ₂ F		(B) CH ₃ (CH	1000	(C)	CH ₃ CH	₂ Br		
	(D) CH ₃ CH ₂ I		(E) (CH ₃	J2CM-CI					

117. Which one of the following reactions proceeds through free radical chain mechanism? (A) Addition of HBr on ethene (B) Halogenation of benzene in the presence of FeBr₃ (C) Photochemical chlorination of methane (D) Hydrolysis of tert-butyl chloride with aqueous KOH (E) Addition of NaHSO₃ on acetone 118. Which one of the following is the correct statement? (A) Achiral molecules are superimposable (B) Alanine is optically inactive amino acid (C) Glycine is optically active amino acid (D) Racemic lactic acid is optically active (E) There is inversion when (-)-2-methylbutan-1-ol is heated with conc. HCl to form (+) -1-chloro-2-methylbutane 119. The α - and β - forms of glucose are (A) isomers of D(+) glucose and L(-) glucose respectively (B) diastereoisomers of glucose (C) anomers of glucose (D) isomers which differ in the configuration of C-2 (E) isomers which differ in the configuration of C-5

Space for rough work

(B) 2, 3-dibromohexane

(D) 2, 4-dibromohexane

120. When HBr adds on hex-1-ene in the presence of benzoyl peroxide, the product is

(A) 2-bromohexane

(E) 1-bromohexane

(C) 1, 2-dibromohexane

BLANK PAGE

Phy-Chem-I/A4/12