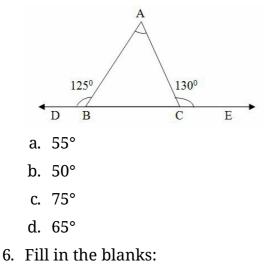
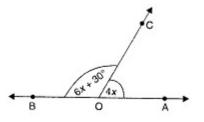

CBSE Test Paper 04 CH-6 Lines and Angles

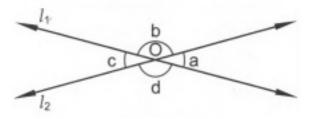

1. In the given figure, the measure of $\angle a$ is:

- 2. An exterior angle of a triangle is $80^0\,$ and the interior opposite angles are in the ratio 1
 - : 3. Measure of each inte4rior opposite angle is :
 - a. 30^{0} , 60^{0}
 - b. 20^{0} , 60^{0}
 - c. 30^0 , 90^0
 - d. 40^{0} , 120^{0}
- 3. In two interior angles on the same side of a transversal intersecting two parallel lines are in the ratio 5 : 4, then the smaller of the two angles is :
 - a. 120⁰
 - b. 60⁰
 - c. 100⁰
 - d. 80⁰
- 4. In the adjoining figure, the bisectors of \angle CBD and \angle BCE meet at the point O. If \angle BAC = 70°, then \angle BOC is equal to :-

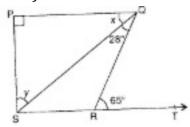
5. Side BC of \triangle ABC has been produced to D on left-hand side and to E on right-hand side such that \angle ABD = 125° and \angle ACE = 130°. Then \angle A = ?

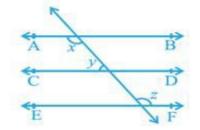


A ray has _____ end point.


7. Fill in the blanks:

If two angles of a triangle are complementary, then the type of triangle formed will be _____ triangle.


- 8. Find the measure of the complementary angle of 60° .
- 9. Two supplementary angles differ by 34°. Find the angles.
- 10. What value of x would make AOB a line in figure, If $\angle AOC = 4x$ and $\angle BOC = 6x + 30^{\circ}$?


- 11. Find the measure of an angle which is the complement of itself.
- 12. In a $\Delta ABC, \angle A + \angle B = 110^\circ, \angle C + \angle A = 135^\circ$. Find $\angle A$.
- 13. In Figure, lines l_1 and l_2 intersect at O, forming angles as shown in the figure. If a = 35°, find the values of b, c, and d.

14. In figure, if PQ \perp PS, PQ $\mid \mid$ SR, \angle SQR = 28^o and \angle QRT = 65^o, then find the values of x and y.

15. In the given figure, if AB || CD, CD || EF and y: z = 3: 7, find x.

CBSE Test Paper 04 CH-6 Lines and Angles

Solution

1. (b) 30°

Explanation:

In the given figure $150^\circ + \angle a = 180^\circ$ (linear - pair) $\angle a = 180^\circ - 150^\circ$ Therefore $\angle a = 30^\circ$

2. (b) 20⁰, 60

Explanation:

let the common ratio is x

the ratio of interior angles are 1:3

so angles are x and 3x

x+3 x=80

$$4 ext{ x=80} \ x = rac{80}{4} \ ext{x=20}$$

so angles are 20^0 and 60^0

3. (d)80⁰

Explanation: We know that sum of two interior angles on the same side of a

transversal intersecting two parallel lines is 180⁰

let the common ratio is x

so the angles are 5x, 4xso $5x + 4x = 180^{0}$ $9x = 180^{0}$ $x = 180^{0}/9$ $x = 20^{0}$ so the angles are $5x = 100^{0}$ $4x = 80^0$

so smallest angle is 80⁰

4. (b) 55°

Explanation:

 $\angle BOC = 90^\circ - \frac{1}{2} \angle BAC$ $\angle BOC = 90^\circ - 35^\circ = 55^\circ$

5. (c) 75°

Explanation:

 $\angle ABD + \angle ABC = 180^{\circ}$ (Linear Pair) $\angle ABC = 180^{\circ} - 125^{\circ} = 55^{\circ}$ $\angle ACE + \angle ACB = 180^{\circ}$ (Linear Pair) $\angle ACB = 180^{\circ} - 130^{\circ} = 50^{\circ}$ In $\triangle ABC$ $\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$ (Angle sum property) $\angle BAC = 180^{\circ} - 50^{\circ} - 55^{\circ}$ $\angle BAC = 75^{\circ}$

- 6. only one
- 7. right-angled
- 8. The measure of the complementary angle $x = (90^{\circ} r^{\circ})$

Where r^{o} = given measurement

 $\therefore x = (90^{\circ} - 60^{\circ}) = 30^{\circ}$

- 9. Let one angle be x°. Then, the other angle is $(x + 34)^\circ$. It is given that x° and $(x + 34)^\circ$ are supplementary angles. $\therefore x + (x + 34) = 180$ $\Rightarrow 2x + 34 = 180$ $\Rightarrow 2x = 180 - 34 \Rightarrow 2x = 146 \Rightarrow x = 73$ Thus, two angles are of measures 73° and 107°.
- 10. If AOB is a line, then

$$\angle AOB = 180^{\circ} \dots [A \text{ straight line} = 180^{\circ}]$$

 $\angle AOC + \angle BOC = 180^{\circ}$
 $\therefore 4x + (6x + 30^{\circ}) = 180^{\circ}$
 $\therefore 10x + 30^{\circ} = 180^{\circ}$
 $\therefore 10x = 180^{\circ} - 30^{\circ}$
 $\therefore 10x = 150^{\circ}$
 $\therefore x = \frac{150^{\circ}}{10} = 15^{\circ}$

11. Let the measure of the angle be x°.

The measure of its complement is given to be x°. Since the sum of the measures of an angle and its complement is 90° $x + x = 90^{\circ} \Rightarrow 2x \Rightarrow x = 45^{\circ}$

12. Given $\angle A + \angle B = 110^{\circ}$ (1)

and, $\angle C + \angle A = 135^\circ$ (2)

Also we know that, in $\triangle ABC$, $\angle A + \angle B + \angle C = 180^{\circ}$(3) On adding (1) & (2), we get :- $\angle A + \angle B + \angle C + \angle A = 110^{\circ} + 135^{\circ}$ $\Rightarrow 180^{\circ} + \angle A = 245^{\circ}$ [from (3)] $\Rightarrow \angle A = 245^{\circ} - 180^{\circ} = 65^{\circ}$

13. Since lines l_1 and l_2 intersect at O.

 $\therefore \angle a = \angle c \text{ [Vertically opposite angles]}$ $\Rightarrow \angle c = 35^{\circ} \text{ [} \therefore \angle a = 35^{\circ} \text{]}$ Clearly, $\angle a + \angle b = 180^{\circ} \text{ [Since } \angle a \text{ and } \angle b \text{ are angles of a linear pair]}$

$$\Rightarrow 35^{\circ} + \angle b = 180^{\circ}$$
$$\Rightarrow \angle b = 180^{\circ} - 35^{\circ}$$
$$\Rightarrow \angle b = 145^{\circ}$$
Since $\angle b$ and $\angle d$ are vertically opposite angles,
$$\therefore \angle d = \angle b \Rightarrow \angle d = 145^{\circ} [\because \angle b = 145^{\circ}]$$

Hence, $b = 145^{\circ}$, $c = 35^{\circ}$ and $d = 145^{\circ}$

- 14. $\angle QRT = \angle RQS + \angle QSR \dots$ [Sum of two interior opposite angles equal to exterior angle]
 - $\therefore 65^{\circ} = 28^{\circ} + \angle QSR$ $\therefore \angle QSR = 65^{\circ} - 28^{\circ} = 37^{\circ}$ $\angle QPS = 90^{\circ} \dots [PQ \perp SP]$ $\angle QPS = 90^{\circ}$ As PQ || SR $\therefore \angle QPS + \angle PSR = 180^{\circ} \dots [sum of consecutive interior angles on the same side of transversal]$ $<math display="block">\therefore 90^{\circ} + \angle PSR = 180^{\circ}$

 $\therefore \angle PSR = 180^{\circ} - 90^{\circ} = 90^{\circ}$ $\angle PSR + \angle QSR = 90^{\circ}$ $\therefore y + 37^{\circ} = 90^{\circ}$ $\therefore y = 90^{\circ} - 37^{\circ} = 53^{\circ}$ In PQS, $\angle PQS + \angle QSP + \angle QPS = 180^{\circ} \dots [Sum of all the angles of a triangle]$ $\therefore x + y + 90^{\circ} = 180^{\circ}$ $\therefore x + 53^{\circ} + 90^{\circ} = 180^{\circ}$ $\therefore x + 143^{\circ} = 180^{\circ}$ $\therefore x = 180^{\circ} - 143^{\circ} = 37^{\circ}$

15. We are given that $AB \parallel CD, CD \parallel EF$ and y : z = 3 : 7

We need to find the value of x in the figure given below.

We know that lines parallel to the same line are also parallel to each other. We can conclude that $AB \parallel EF$

Let y = 3a and z = 7a

We know that angles on the same side of a transversal are supplementary. $\therefore x+y=180^{\circ}$

x = z Alternate interior angles

Therefore, we can conclude that $x=126^\circ$