PRACTICE PAPER

Time allowed: 45 minutes		Maximum Marks: 200			
Gene	eral Instructions: Same as Practice Pape	-1.			
Choo	ose the correct option.				
1.	Ohm ⁻¹ cm ⁻¹ is the unit of				
	(a) specific conductance	(b) equivalent conductance			
	(c) cell constant	(d) molar conductance			
2.	On dissolving sugar in water at room temperature solution feels cool to touch. Under which of the following cases dissolution of sugar will be most rapid?				
	(a) Sugar crystals in cold water.	(b) Sugar crystals in hot water.			
	(c) Powdered sugar in cold water.	(d) Powdered sugar in hot water.			
3.	Which of the following statement is not (a) On heating they may become crystal (b) They may become crystalline on kee (c) Amorphous solids can be moulded by (d) They are anisotropic in nature.	ine at certain temperature. ing for long time.			
4.	When AgNO ₃ solution is added to KCl (a) slow (b) moderate	solution a white precipitate is formed. This reaction is (c) instantaneous (d) all of these			
5.	When the hydrogen gas is adsorbed or (a) adsorber (b) adsorben	the surface of the nickel, the nickel metal is termed as (c) absorber (d) adsorbate			
6.	According to Freundlich adsorption is (a) goes on increasing with pressure. (c) reaches a constant limiting value.	therm, the amount of gas adsorbed at very high pressure (b) goes on decreasing with pressure. (d) increases first and decreases later with pressure.			
7.	If the rate of a reaction between <i>A</i> and (<i>a</i>) First order with respect to <i>A</i> . (<i>c</i>) Overall is third order.	B is given as rate = $k[A][B]^2$, then the reaction is (b) Second order with respect to B. (d) All of the above			
8.	Which of the following is the best redu	cing agent?			
	(a) F ₂ (b) Cl ₂	(c) Br ₂ (d) I ₂			
9.	The number of tetrahedral voids in a v	nit cell of ccp structure			
	(a) 4 (b) 6	(c) 8 (d) 10			
10.	If the molarity of a solution of sulphur	c acid is 1.35 M, then its molality will be			
	(The density of the acid solution is 1.0	g cm ⁻³)			

(c) 1.52 m

(d) 2.39 m

11.	The half-life period of a zero order react	ion is				
	(a) directly proportional to a^2 .	(b) directly proportional to $a^{1/2}$.				
	(c) directly proportional to a.	(d) directly proportional to a^3 .				
12.	In the following					
	$2Br_2 + 6CO_3^{2-} + 3H_2O \longrightarrow 5Br^{-} + BrO_3^{-} + 6HCO_3^{-}$					
	(a) Bromine is oxidised and carbonate ion is reduced.					
	(b) Bromine is reduced and carbonate ion is oxidised.					
	(c) Bromine is neither reduced nor oxidised.					
	(d) Bromine is reduced as well as oxidised	•				
13.	The presence of Frenkel defects in a crys					
	(a) decreases	(b) increases				
2772	(c) does not change	(d) either increase or decrease				
14.	When an egg is placed in concentrated so (a) exosmosis (b) endosmosis	olution of sodium chloride, it shrinks due to (c) diffusion (d) surface tension				
15.	The electrode potential data are given be	elow				
	$Fe^{3+} + e^{-} \longrightarrow Fe^{2+}, E^{\circ} =$	0.77 V				
	$Al^{3+} + 3e^- \longrightarrow Al, E^\circ = -$	- 1.66 V				
	$Br_9 + 2e^- \longrightarrow 2Br^-, E^\circ = -$	+ 1.08 V				
	Based on the data, the reducing power of Fe ³⁺ , Al ³⁺ , Br ₂ will increase in the order:					
	(a) $Br_9 < Fe^{3+} < Al^{3+}$	(b) $Fe^{3+} < Al^{3+} < Br_9$				
	(c) $Al^{3+} < Br_2 < Fe^{3+}$	(d) $AI^{3+} < Fe^{3+} < Br_2$				
16.	Which of the following statement is not correct for standard hydrogen electrode?					
	(a) Hydrogen ion concentration is 1 M.					
	(b) Pressure of hydrogen gas is 1 bar pressure.					
	(c) It is a primary electrode.					
	(d) It has a metallic conductor which does not adsorb hydrogen gas.					
17.	Which of the following statement is inco					
	(a) Fe ²⁺ is more paramagnetic than Mn ²⁺ .					
	(b) V^{2+} is less paramagnetic than Cr^{2+} .					
	(c) Cr ²⁺ is less paramagnetic than Mn ²⁺ . (d) Mn ²⁺ is more paramagnetic than V ²⁺ .					
18.	The formula of dichloridobis (urea) copp (a) Cu[(O=C(NH ₂) ₂)] Cl ₂	oer (II) is (b) Cu[O=C(NH₀)₀]Cl₀				
	(a) $Cu[(O - C(NH_2)_2)] Ci_2$ (c) $[CuCl_2(O - C(NH_2)_2)_2]$	(d) $[CuCl_9(O = C(NH_9)_9)H_9]$				
10		(6) [04012(0 - 0(11112)2)112]				
19.	(a) 4	(b) 0				
	(c) 2	(d) 3				
20.	Which method of purification is represen	nted by the equation				
	$\begin{array}{c} \text{Ti} \\ \text{(Impure)} \end{array} + 2I_2 \xrightarrow{500\text{K}} \text{Ti}I_4 \xrightarrow{1675\text{K}} \text{Ti}I_2 \end{array}$					
	(Impure) 2 4	(Pure) 2				
	(a) Cupellation	(b) Poling				
	(c) van Arkel	(d) Zone refining				

21. Heating of an ore in the absence of air below the melting point is called

(b) roasting

(d) calcination

(a) leaching

(c) smelting

22.	Which of the following is not tetrahedral in shape? (a) NH_4^+	(b) SiCl ₄		
	(c) SF ₄	(d) SO ₄ ²		
23.	Given below are two statements labelled as Statemen	nt P and Statement O:		
	Statement P: CH_4 molecule is formed by sp^3 hybridisation.			
	Statement Q: PCl ₅ molecule is trigonal bipyramida			
	(a) P is true, but Q is false	(b) P is false, but Q is true		
	(c) Both P and Q are true	(d) Both P and Q are false		
24.	Oxygen is not evolved when ozone reacts with			
	(a) KI	(b) H ₂ O ₂		
	(c) SnCl ₂	(d) PbS		
25.	The reagents for the following conversion is/are			
	$Br \xrightarrow{?} H = H$			
	(a) Zn/CH ₃ OH			
	(b) alcoholic KOH followed by NaNH ₂			
	(c) aqueous KOH followed by NaNH ₂			
	(d) alcoholic KOH			
26.	Toluene reacts with a halogen in the presence of iro	n (III) chloride giving ortho and para halo compounds.		
	The reaction is			
	(a) Electrophilic elimination reaction	(b) Electrophilic substitution reaction		
~=	(c) Free radical addition reaction	(d) Nucleophilic substitution reaction		
27.	On addition of conc. H_2SO_4 to a chloride salt, colou fumes come out. This is because	rless fumes are evolved but in case of iodide salt, violet		
	(a) H ₂ SO ₄ reduces HI to I ₂ .	(b) HI is of violet colour.		
	(c) HI gets oxidised to I ₉ .	(d) HI changes to HIO ₃ .		
28.	Which one of the following complexes will have fou			
40.	(a) [Co(en)(NH ₃) ₂ Cl ₂]Cl	(b) [Co(PPh) ₃) ₉ (NH ₃) ₉ Cl ₉]Cl		
	(c) [Co(en) ₃]Cl	(d) [Co(en) ₂ Cl ₂]Cl		
29.	Which of the following compound is not coloured?	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	(a) Copper(II) sulphate	(b) Zinc(II) chloride		
	(c) Chromium(III) sulphate	(d) Manganese(II) oxalate		
30.	Which of the following transition metal ions will have			
	(a) Sc^{3+} (b) Ti^{3+}	(c) Cu^+ (d) Zn^{2+}		
31.	In which of the following molecules carbon atom ma	arked with asterisk (*) is asymmetric?		
	н р н	H		
	I C C CI OH C	C_{2} C_{3} C_{2} C_{4} C_{5} C_{5} C_{4} C_{5} C_{5		
	Br Br OH	C_2H_5 H C_2H_5		
	(i) (ii) (iii	(iv)		
	(a) (i) , (ii) , (iii) , (iv)	(b) (i), (ii), (iii)		
	(c) (ii), (iii), (iv)	(d) (i) , (iii) , (iv)		
32.	The mixture of dettol is			
	(a) Chloroxylenol + Terpineol	(b) Bithionol + Terpineol		
	(c) Chloroxylenol + Bithionol	(d) Chloroxylenol + Salol		

33. In the reaction

$$\begin{array}{c}
NO_2 \\
B_r
\end{array}
\xrightarrow{A}$$

$$\begin{array}{c}
NO_2 \\
B_r
\end{array}$$

(a) H₃PO₉ and H₉O

(b) H+/H₉O

(c) HgSO₄/H₉SO₄

(d) Cu₉Cl₉

34. The reaction

$$\begin{array}{c} \text{CH}_3 \\ -\bar{\text{C}} \\ -\bar{\text{ON}} \\ \text{CH}_3 \\ -\bar{\text{C}} \\ -\bar{\text{ON}} \\ \text{CH}_3 \end{array} + \begin{array}{c} \text{CH}_3 \\ -\bar{\text{NaCl}} \\ -\bar{\text{NaCl}} \\ \bar{\text{CH}}_3 \\ -\bar{\text{C}} \\ -\bar{\text{O}} \\ -\bar{\text{CH}}_2 \\ -\bar{\text{CH}}_3 \end{array}$$

is called

(a) Williamson synthesis

(b) Williamson continuous etherification process

(c) Etard reaction

- (d) Gatternman-Koch reaction
- 35. Among the following sets of reactants which one produces anisole?
 - (a) CH₃CHO; RMgX

(b) C₆H₅OH; NaOH; CH₃Br

(c) C₆H₅OH; neutral FeCl₃

- (d) C₆H₅—CH₃; CH₃COCl; AlCl₃
- 36. Which of the following substance is not used as an antacid?
 - (a) NaHCO₃

(b) Al(OH)₃

(c) Mg(OH)₉

- (d) NaOH
- 37. Bakelite is a product of the reaction between:
 - (a) formaldehyde and NaOH

(b) aniline and urea

(c) phenol and methanal

- (d) phenol and chloroform
- 38. Which one is the formula of a disaccharide?
 - (a) C₁₂H₂₂O₁₁

(b) $C_6H_{12}O_6$

(c) C₁₈H₂₂O₁₁

- (d) $C_{10}H_{20}O_{10}$
- 39. A new carbon-carbon bond is possible in
 - (a) Cannizzaro reaction

(b) Friedel-crafts reaction

(c) Clemmensen reduction

- (d) None of these
- 40. Among acetic acid, phenol and n-hexanol, which one will react with NaHCO₃ solution to give sodium salt and CO₂?
 - (a) Acetic acid

(b) n-Hexanol

(c) Acetic acid and phenol

- (d) Phenol
- 41. In the diazotisation of aniline with sodium nitrite and hydrochloric acid, the excess of acid is used primarily to
 - (a) suppress the concentration of free aniline.
- (b) suppress the hydrolysis to phenol.
- (c) ensure a stoichiometric amount of nitrous acid.
- (d) neutralise the base liberated.
- 42. Sodium formate on heating yields
 - (a) oxalic acid and H₉

(b) sodium oxalate and H₉

(c) CO₂ and NaOH

- (d) sodium oxalate
- 43. During dehydration of alcohols to alkenes by heating with conc. H₂SO₄ the initiation step is
 - (a) formation of carbocation.

(b) elimination of water.

(c) formation of an ester.

- (d) protonation of an alcohol molecule.
- 44. Which will not respond to carbylamine reaction?
 - (a) Ethylamine

(b) Dimethylamine

(c) Methylamine

(d) Phenylamine

45. RCOOH → RCH₂OH

This mode of reduction of an acid to an alcohol can be affected only by

(a) Zn/HCl

(b) Na/alcohol

(c) LiAlH₄

(d) Zn-Hg/HCl

46. Given below are two statements labelled as Assertion and Reason:

Assertion (A): For making rubber synthetically, isoprene molecules are polymerised.

Reason (R): Neoprene (a polymer of chloroprene) is a synthetic rubber.

- (a) Assertion and reason both are correct statements and reason is correct explanation for assertion.
- (b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
- (c) Assertion is correct statement but reason is wrong statement.
- (d) Assertion is wrong statement but reason is correct statement.

47. Arrange the following compounds in the increasing order of their acidic strength:

- i. m-nitrophenol
- ii. m-cresol
- iii. phenol

iv. o-chlorophenol

(a) iii < ii < i < iv

(b) ii < iv < iii < i

(c) ii < iii < iv < i

(d) ii < iii < i < iv

48. $C_2H_5COCl + H_2 \xrightarrow{Pd/BaSO_4} X + Y$

compounds X and Y are

(a) CH₃CHO and HCl

(b) C₂H₅CHO and HCl

(c) CH3COCH3 and HCl

(d) CH₃COC₉H₅ and HCl

49. By which bond the polypeptide chains are held together in fibrous protein?

(a) Covalent bond

(b) Hydrogen bond

(c) Disulphide bond

(d) Both (b) and (c)

50. Match the vitamins given in Column I with the disease given in Column II.

Column I		Column II	
A.	Vitamin A	(i)	Rickets
В.	Vitamin B	(ii)	Bleeding gums
C.	Vitamin C	(iii)	Night blindness
D.	Vitamin D	(iv)	Muscle weekness

(a) A-(i), B-(ii), C-(iii), D-(iv)

(b) A-(iii), B-(iv), C-(ii), D-(i)

(c) A-(ii), B-(iii), C-(i), D-(iv)

(d) A-(iv), B-(iii), C-(i), D-(ii)

Answers

PRACTICE PAPER — 4

1. (a)

2. (d)

3. (d)

4. (c)

5. (b)

6. (c)

7. (d)

8. (d)

9. (c)

10. (c)

11. (c)

12. (*d*)

13. (c)

14. (a)

15. (a)

16. (*d*)

(c)

17. (a)

18. (c)

19. (b) **26.** (b)

20. (c)

21. (*d*)

22. (c)

30. (b)

23.

24. (c) **31.** (b)

25. (*b*) **32.** (*a*)

33. (a)

27. (c) **34.** (a)

28. (a)

29. (*b*)

37. (c)

38. (a)

39. (b)

40. (a)

41. (a)

35. (b)

36. (*d*) **43.** (*d*)

44. (b)

45. (c)

46. (*d*)

47. (c)

48. (b)

42. (b) **49.** (d)

50. (b)

Solutions

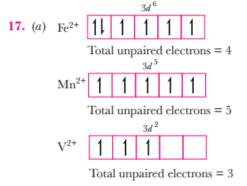
PRACTICE PAPER - 4

- 1. (a) Specific conductance or conductivity(κ) is defined as the conductance of a substance having unit length and unit area of cross section. It can be mathematically represented as $\kappa = \frac{1}{R} \times \frac{l}{A}$
 - $\kappa = \frac{1}{\text{ohm}} \times \frac{\text{cm}}{\text{cm}^2} = \text{ohm}^{-1} \text{ cm}^{-1}$
- **2.** (*d*) Powdered sugar has large surface area and hot water means high temperature and hence dissolution increases due to both the factors.
- **6.** (*c*) At high pressure range, the extent of adsorption of a gas is independent of the applied pressure, *i.e.*, reaches a constant limiting value.
- 7. (d) Rate = $k[A][B]^2$,

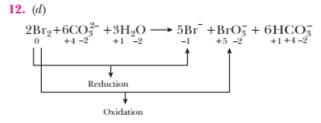
The order with respect to A = 1 and the order with respect to B = 2

Therefore, the overall order is 1 + 2 = 3.

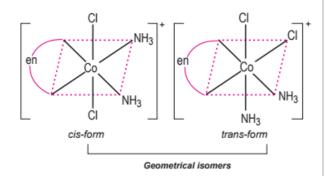
- 8. (d) According to the electrochemical series, the strongest reducing agent among the given option is I₂. This is because of having lower reduction potential as compared to F₂, Cl₂ and Br₂.
- (c) In ccp, number of atoms present per unit cell =4

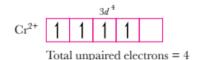

Since in cubic closed packing, the number of tetrahedral voids is equal to twice the number of atoms present per unit cell, hence

Number of tetrahedral voids = $2 \times 4 = 8$


- **3.** (*d*) Amorphous solids are isotropic in nature.
- (c) Some reactions occurs with a very fast speed and is known as instantaneous reactions. For example, precipitation of AgCl from AgNO₃ and KCl.
- 5. (b) The substance accumulating at the surface of the solid during adsorption is called adsorbate and the surface on which adsorption occurs is called adsorbent. Thus, nickel metal acts as an adsorbent.

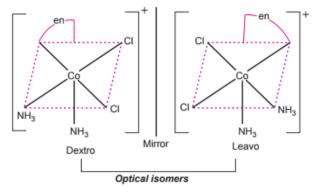
power. Thus, the correct increasing order will be $Fe^{3+} < Br_9 < Al^{3+}$.


16. (d) Standard hydrogen electrode consists of platinum electrode coated with platinum black. The electrode is immersed in 1 M HCl solution. Pure hydrogen gas is passed through the upper inlet at 1 bar pressure. A small amount of hydrogen gas is adsorbed by the platinised electrode.



- 10. (c) Let the solution be 1 litre or 1000 cm^3 . \therefore Number of moles of $H_2SO_4 = 1.35$ Weight of solution = $1000 \times 1.02 = 1020 \text{ g}$ Weight of sulphuric acid = $1.35 \times 98 = 132.3 \text{ g}$ Weight of water = 1020 - 132.3 = 887.7 gMolality of $H_2SO_4 = \frac{1.35}{887.7} \times 1000 = 1.52 \text{ m}$
- 11. (c) The half life period of zero order reaction is $t_{1/2} = \frac{a}{2k}$ where 'a' is the initial concentration of reactant. Thus, half-life period of a zero order reaction is directly proportional to a.

- **13.** (c) Frenkel defect is produced because of missing ions from their normal crystal sites. It is produced when some ions are displaced from their normal sites and occupy interstitial sites. So, it does not affect the density of the crystal.
- **14.** (a) When egg is placed in a saline solution (hypertonic solution), exosmosis occurs and the egg shrinks due to loss of water to the surrounding environment.
- 15. (a) Here is the negative standard reduction potential lower is the standard reduction potential value greater will be its reducing
- 27. (c) On addition of conc. H₂SO₄ to a chloride salt, due to formation of colourless HCl gas we get fumes. While in case of iodide salt, due to formation of I₂ violet fumes comes out, as HI get converted into I₂.
- 28. (a) [Co(en)(NH₃)₂ Cl₂]Cl have 4 isomers as follow:



As, more number of unpaired electrons means more paramagnetic behaviour.

- 19. (b) The oxidation state of nickel in [Ni(CO)₄] is zero, because CO is a neutral ligand and the complex is also neutral in nature.
- 20. (c) van Arkel method is very useful for removing all the oxygen and nitrogen present in the form of impurity in certain metals like Zr and Ti. Impure metal is heated with iodine in an evacuated vessel and the resultant tetraiodide is decomposed on a tungsten filament to get the pure metal.
- **21.** (*d*) Calcination is the process of heating an ore below its melting point either in the absence or limited supply of air.
- **22.** (c) The hybridisation of S in SF_4 is sp^3d and the shape is trigonal bi-pyramidal.
- 25. (b) Br— CH_2 — CH_2 —Br + alc.KOH \longrightarrow 1,2-dibromoethane
 BrCH = CH_2 1-bromoethene $CH \equiv CH_2$ ethyne
- **36.** (*d*) NaOH is corrosive in nature and is strong base while others are mild bases.
- 37. (c) Condensation reaction of phenol with formaldehyde in the presence of either an acid or a base catalyst forms novolac. Novolac on heating with formaldehyde undergoes cross linking to form an infusible solid mass called bakelite.
- **38.** (*a*) It is sucrose which is a disaccharide. On hydrolysis, it gives glucose and fructose.

$$\begin{array}{c} \mathbf{C}_{12}\mathbf{H}_{22}\mathbf{O}_{11} + \mathbf{H}_2\mathbf{O} \xrightarrow{\quad \mathbf{HCl} \quad} \mathbf{C}_6\mathbf{H}_{12}\mathbf{O}_6 + \mathbf{C}_6\mathbf{H}_{12}\mathbf{O}_6 \\ \text{Sucrose} & \quad \mathbf{D}\text{-fructose} \end{array}$$

39. (b) A new carbon-carbon bond is possible in Friedel-crafts reaction. In this reaction, benzene and other aromatic compounds react with alkyl halides in the presence of anhydrous AlCl₃ to form alkyl benzenes.

- 29. (b) Zinc (II) chloride having zinc ion with electronic configuration, [Ar] 3d¹⁰ does not have unpaired electrons.
- 30. (b) Value of magnetic moment depends upon number of unpaired electrons. All except Ti³⁺ (3d¹) have either fully filled d-subshell (Zn²⁺, Cu⁺) or empty d-subshell (Sc³⁺). Therefore, only Ti³⁺ has a net value of magnetic moment.
- **31.** (*b*) The carbon atom having four different group is called asymmetric carbon atom.
- 32. (a) Dettol (antiseptic) is a mixture of 4.8% chloroxylenol + 9.9% α-terpineol and absolute alcohol.
- **34.** (a) The given reaction is known as Williamson's synthesis. In general, it is written as

$$R = X + Na = \bar{O} = R' \longrightarrow R = O = R' + NaX$$

35. (b)

$$\begin{array}{cccc}
OH & & & & & & & & \\
ONa & & & & & & & \\
& & & + NaOH & & & & & \\
Phenol & & & & & & & \\
\end{array}$$

40. (*a*) When acetic acid is added to an aqueous solution of sodium bicarbonate, brisk effervescence of CO₉ is evolved.

$$CH_3COOH + NaHCO_3 \longrightarrow$$
 $CH_3COO^-Na^+ + H_2O + CO_2$

Phenols and alcohols do not react with NaHCO₃ solution.

- **41.** (a) Excess of HCl is added to keep the mixture acidic enough to suppress the undesirable side reactions such as coupling of the diazonium salt thus formed with the free aniline.
- 42. (b) 2HCOONa $\stackrel{\Delta}{\longrightarrow}$ $\stackrel{\text{COONa}}{\mid}$ + H₂
- **43.** (*d*) The mechanism of dehydration of ethanol involves the following steps:

Step 1: Formation of protonated alcohol

Step 2: Formation of carbocation: It is the slowest step and hence, the rate determining step of the reaction.

Step 3: Formation of ethane by elimination of a proton

$$H - C - C + H + H^{+}$$
 $H + H + H^{+}$
Ethene

The acid used in step 1 is released in step 3. To drive the equilibrium to the right, ethene is removed as it is formed.

- 44. (b) Only primary aliphatic and aromatic amines give carbylamine reaction. (CH₃)₂NH being secondary amine do not give carbylamine reaction.
- 45. (c) The given reaction is affected by LiAlH₄/ether or B₉H₆ as both are strong oxidising agents.
- 46. (d) The correct assertion is "For making synthetic rubber, chloroprene molecules are polymerised.

47. (c) Nitro group has both -R effect and -I effect, but -R effect predominates. Due to stronger electron withdrawing nature of -NO₂ group, phenoxide ion is stabilized more. Hence nitrophenol is more acidic than phenol. Methyl group destabilizes the phenoxide ion by +I effect and hyper conjugation. Hence *m*-cresol is weaker acid than phenol. Chlorine have both +R and -I effect, but -I effect predominates. Hence *o*-chlorophenol is more acidic than phenol. -R effect of nitro group is stronger than -I effect of chlorine, hence *m*-nitrophenol is more acidic than *o*-chlorophenol. Therefore the correct order of acidic strength is

m-nitrophenol > o-chlorophenol > phenol > m-cresol

Acidic strength in increasing order is ii < iii < iv < i

49. (d) When the polypeptide chains run parallel and are held together by hydrogen and disulphide bonds, then fibrous protein is formed.