8.8 Line radiation

Spectral line broadening

[
Natural broadening ^a	$I(\omega) = \frac{(2\pi\tau)^{-1}}{(2\tau)^{-2} + (\omega - \omega_0)^2}$	(8.112)	$I(\omega) \text{ normalised intensity}^b \tau $
Natural half-width	$\Delta \omega = \frac{1}{2\tau}$	(8.113)	$\Delta \omega$ half-width at half-power ω_0 centre frequency
Collision broadening	$I(\omega) = \frac{(\pi\tau_{\rm c})^{-1}}{(\tau_{\rm c})^{-2} + (\omega - \omega_0)^2}$	(8.114)	$\tau_{\rm c}$ mean time between collisions p pressure
Collision and pressure half-width ^c	$\Delta\omega = \frac{1}{\tau_{\rm c}} = p\pi d^2 \left(\frac{\pi mkT}{16}\right)^{-1/2}$	(8.115)	T' temperature
Doppler broadening	$I(\omega) = \left(\frac{mc^2}{2kT\omega_0^2\pi}\right)^{1/2} \exp\left[-\frac{mc^2}{2kT}\right]^{1/2}$	$\frac{\omega - \omega_0)^2}{\omega_0^2} \bigg] $ (8.116)	$I(\omega)$
Doppler half-width	$\Delta \omega = \omega_0 \left(\frac{2kT\ln 2}{mc^2}\right)^{1/2}$	(8.117)	ω_0

^{*a*}The transition probability per unit time for the state is $= 1/\tau$. In the classical limit of a damped oscillator, the e-folding time of the electric field is 2τ . Both the natural and collision profiles described here are Lorentzian. ^{*b*}The intensity spectra are normalised so that $\int I(\omega) d\omega = 1$, assuming $\Delta \omega / \omega_0 \ll 1$.

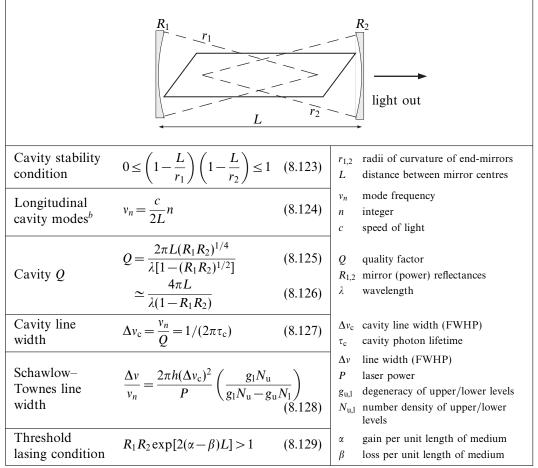
^cThe pressure-broadening relation combines Equations (5.78), (5.86) and (5.89) and assumes an otherwise perfect gas of finite-sized atoms. More accurate expressions are considerably more complicated.

Einstein coefficients^a

Absorption	$R_{12} = B_{12}I_{\nu}n_1$	(8.118)	$\begin{array}{ll} R_{ij} & \text{transition rate, level } i \to j \; (m^{-3} \text{s}^{-1}) \\ B_{ij} & \text{Einstein } B \; \text{coefficients} \\ I_{\nu} & \text{specific intensity of radiation field} \end{array}$
Spontaneous emission	$R_{21} = A_{21}n_2$	(8.119)	A_{21} Einstein <i>A</i> coefficient n_i number density of atoms in quantum level <i>i</i> (m ⁻³)
Stimulated emission	$R'_{21} = B_{21}I_v n_2$	(8.120)	
Coefficient ratios	$\frac{A_{21}}{B_{12}} = \frac{2hv^3}{c^2} \frac{g_1}{g_2}$ $\frac{B_{21}}{B_{12}} = \frac{g_1}{g_2}$	(8.121) (8.122)	

 $\frac{12}{a} \frac{62}{b}$ ^aNote that the coefficients can also be defined in terms of spectral energy density, $u_v = 4\pi I_v/c$ rather than I_v . In this case $\frac{A_{21}}{B_{12}} = \frac{8\pi hv^3}{c^3} \frac{g_1}{g_2}$. See also *Population densities* on page 116.

Lasers^a



^aAlso see the *Fabry-Perot etalon* on page 163. Note that "cavity" refers to the empty cavity, with no lasing medium present.

^bThe mode spacing equals the cavity free spectral range.