CHAPTER 1

FUNDAMENTAL PRINCIPLES

§1.01 Scope of thermodynamics

The most important conception in thermodynamics is temperature. The
essential properties of temperature will be described below. Anticipating
this we may define thermodynamics as that part of physics concerned with
the dependence on temperature of any equilibrium property. This definition
may be illustrated by a simple example. Consider the distribution of two
immiscible liquids such as mercury and water in a gravitational field.
The equilibrium distribution is that in which the heavier liquid, mercury,
occupies the part of accessible space where the gravitational potential is
lowest and the lighter liquid, water, occupies the part of the remaining
accessible space where the gravitational potential is lowest. This equilibrium
distribution, if we neglect the effect of thermal expansion, is independent
of temperature. Consequently the problem does not involve thermodynamics,
but only hydrostatics. Now consider by contrast the distribution in a
gravitational field of two completely miscible fluids such as bromine and
carbon disulphide. The relative proportions of the two substances will
vary from place to place, the proportion of the heavier liquid, bromine,
being greatest at the lowest gravitational potential and conversely. The
precise relation between the composition and the gravitational potential
depends on the temperature, assumed uniform, of the mixture. Clearly this
is a problem in thermodynamics, not merely hydrostatics.

We shall now mention a few other typical examples to show that thermo-
dynamics has a bearing on most branches of physics, including elasticity,
hydrodynamics, electrostatics, and electrodynamics. In the relation, known
as Hooke’s law, of proportionality between tension and extension the coeffi-
cient of proportionality will in general be temperature dependent. In so far
as its variation with temperature is relevant thermodynamics is involved.
To study the temperature dependence of the compressibility of a fluid, that
of the permittivity of a dielectric, that of the permeability of a paramagnetic
material, that of the electromotive force of a cell, and in fact the temperature
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6 FUNDAMENTAL PRINCIPLES

dependence of any equilibrium property, thermodynamics is needed,

The name ‘thermodynamics’ is too firmly established to be changed,
but a better name is ‘thermophysics’ containing as branches ‘thermodynam-
ics’ or ‘thermomechanics’, ‘thermoelasticity’, ‘thermoelectrostatics’, ‘ther-
momagnetics’, ‘thermochemics’, and so on.

§1.02 Thermodynamic state. Phases

The simplest example of a system to which thermodynamics can be applied
is a single homogeneous substance. In this simplest case a complete descrip-
tion of its thermodynamic state requires a specification of its content, i.e.
amount of each chemical substance contained, and further a specification
of two other quantities such as for example volume and viscosity, or density
and pressure. If all the physical properties of the system in which we are
interested were independent of whether the system is hot or cold, then in
order to describe its state it would be sufficient to specify, apart from the
amount of each chemical substance contained, only one quantity, such as
volume. Usually some, if not all, of the properties of interest do depend on
whether the body is hot or cold and the specification of one extra independent
quantity fixes the degree of hotness or coldness. Thus this simple thermo-
hydrodynamic system has one more degree of freedom than the correspond-
ing hydrodynamic system.

If the system is not homogeneous, then in order to describe its thermo-
dynamic state we have to consider it as composed of a number, small or
large, of homogeneous parts called phases each of which is described by
specifying its content and a sufficient number of other properties; the suffi-
cient number for each thermo-physical phase is always one more than in the
corresponding hypothetical pAysical system with all its properties of interest
independent of whether it is hot or cold.

In some cases the complete description of the thermodynamic state of a
system may require it to be regarded as composed of an infinite number of
infinitesimal phases. If the physical properties vary continuously over
macroscopic parts of the system, this procedure offers no difficulty. An
example is a high column of gas in a gravitational field. If on the other
hand there are infinitely many discontinuities over finite regions, it may be
difficult if not impossible to give a complete description of the thermody-
namic state. An example is a gas flowing turbulently through an orifice.

In considering the properties of interfaces, we shall have to include
phases which are extremely thin in the direction normal to the interface.

To sum up, the complete description of the thermodynamic state of any
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system involves a description of the thermodynamic state of each of its
homogeneous phases, which may be few or many or infinite in number.
The description of the thermodynamic state of each phase requires the
specification of one more property than the description of the physical state
of an analogous hypothetical phase all of whose properties of interest are
independent of whether it be hot or cold.

§1.03 Thermodynamic process

If on comparing the state of a thermodynamic system at two different times
itis found that there is a difference in any macroscopic property of the system,
then we say that between the two times of observation a process has taken
place. If, for example, two equal quantities of gas are allowed to intermix,
this will constitute a process from a thermodynamic point of view provided
the two initially separate gases are distinguishable by any macroscopic
property, even though their difference is very slight as would be the case
for two isotopes. If, on the other hand, the two initially separate gases are
not distinguishable by any macroscopic property, then from a thermodynam-
ic point of view no process takes place although from a molecular point of view
there is a never-ceasing intermixing.

§1.04 Infinitesimal process

A process taking place to such an extent that there is only an infinitesimal
change in the macroscopic properties of a system is called an infinitesimal
process.

§1.05 Insulating walls. Adiabatic processes

The boundary or wall separating two systems is said to be insulating if it
has the following property. If any system in complete internal equilibrium
is completely surrounded by an insulating wall then no change can be pro-
duced in the system by external agency except by

(a) movement of the containing wall or part of it, or

(b) long range forces, e.g. movement of electrically charged bodies.
When a system is surrounded by an insulating boundary the system is said
to be thermally insulated and any process taking place in the system is called
adiabatic. The name adiabatic appears to be due to Rankine*.

* Maxwell, Theory of Heat, Longmans 1871 ed. p. 129.
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§1.06 Conducting walls. Thermal equilibrium

The boundary or wall separating two systems is said to be thermally con-
ducting if it has the following property. If any two separate systems each in
complete internal equilibrium are brought together so as to be in contact
through a thermally conducting wall then in general the two systems will be
found not to be in mutual equilibrium, but will gradually adjust themselves
until eventually they do reach mutual equilibrium after which there will of
course be no further change. The two systems are then said to have reached
a state of thermal equilibrium. Systems separated by a conducting boundary
are said to be in thermal contact.

§1.07 Zeroth law. Temperature

We are now ready to formulate one of the important principles of thermo-
dynamics.

If two systems are both in thermal equilibrium with a third system then
they are in thermal equilibrium with each other.

This will be referred to as the zeroth law of thermodynamics.

Consider now a reference system in a well-defined state. Then all other
systems in thermal equilibrium with it have a property in common, namely
the property of being in thermal equilibrium with one another. This property
is called temperature. In other words systems in thermal equilibrium are said
to have the same temperature. Systems not in thermal equilibrium are said
to have different temperatures.

§1.08 Thermostats and thermometers

Consider now two systems in thermal contact, one very much smaller than
the other, for example a short thin metallic wire immersed in a large
quantity of water. If the quantity of water is large enough (or the wire small
enough), then in the process of attaining thermal equilibrium the change in
the physical state of the water will be negligible compared with that of the
wire. This situation is described differently according as we are primarily
interested in the small system or in the large one.

If we are primarily interested in the small system, the wire, then we regard
the water as a means of controlling the temperature of the wire and we
refer to the water as a temperature bath or thermostat.

If on the other hand we are primarily interested in the large system, the
water, we regard the wire as an instrument for recording the temperature of
the water and we refer to the wire as a thermometer. This recording of
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temperature can be rendered quantitative by measuring some property of
the thermometer, such as its electrical resistance, which varies with temper-
ature.

§1.09 Temperature scales

The choice of thermometers is very wide especially as there is a choice both
of the substance constituting the thermometer and of the property
measured. Consequently there is a wide, effectively infinite, choice of temper-
ature scales. There is however one particular scale which has outstandingly
simple characteristics which can be described in a manner independent of
the properties of any particular substance or class of substances. This
temperature is called thermodynamic temperature or absolute temperature.
It was first defined by Kelvin* and is denoted by T. It is the only scale that
we shall use. It will be defined by its properties, especially its relation to
entropy. The question how 7 can best be measured must necessarily be post-
poned to chapter 3.

§1.10 Energy and heat. First law

Leaving temperature for the moment, we must now say something about
energy. The conception of energy arose first in mechanics and was extended
to electrostatics and electrodynamics. When these branches of physics are
idealized so as to exclude friction, viscosity, hysteresis, temperature gra-
dients, temperature dependence of properties, and related phenomena, the
fundamental property of energy can be described in two alternative ways.

I. When several systems interact in any way with one another, the whole
set of systems being isolated from the rest of the universe, the sum of the
energies of the several systems remains constant.

II. When a single system interacts with the rest of the universe (its
surroundings) the increase of the energy of this system is equal to the work
done on the system by the rest of the universe (its surroundings).

Under the idealized conditions mentioned above these two descriptions
are equivalent, but when these restrictions are removed the two descriptions
are no longer equivalent and we have to make a choice between them.
Of the alternatives we choose I and with this choice the energy is denoted by
U. The formulation I is then a statement of the conservation of energy.

Let us now consider in greater detail the interaction between a pair of

* W.Thomson, Proc. Cambridge Phil. Soc. 1848 1 69.
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systems, supposed isolated from the rest of the universe. Using superscripts
A, B to relate to the two systems we have

dU*+dUB=0 1.10.1
or
dUA=—dU®B 1.10.2

but in general this is not equal to the work wg, done by B on A. In other
words there can be exchange of energy between A and B of a kind other
than work. Such an exchange of energy is that determined by a temperature
difference and is called /eat. If then we denote the heat flow from B to A by
gpa, We have the following relations

dU*=wgs+gpa 1.10.3
dUP=w,g+qap 1.10.4
Wap+wpa=0 1.10.5
gas+qpa=0. 1.10.6

This set of relations together constitutes the first law of thermodynamics.

The sign of g is determined by the temperature difference between A and B,
and the universal convention is to define the sign of a temperature difference
in such a way that heat flows from the higher to the lower temperature.

The above analysis of the most general interaction between two systems can
immediately be extended to the most general interaction between a given
system and the rest of the universe. If we denote by U* the energy of the
system X, by g the heat flow from the surroundings to the system, and by w
the work done on the system, we have

dUr=q+w. 1.10.7

The extension of the mechanical principle of conservation of energy to
include changes in thermal energy and the flow of heat was a gradual process,
the earlier formulations being less rigorous than later ones. The principle
is implied in a posthumous publication of Carnot* (died 1832) and was
placed on a firm experimental basis by Joule' (1840-45). More explicit
statements of the principle were formulated by Helmholtz* (1847) and by

* Carnot, Réflexions sur la puissance motrice du feu, Bachelier, Paris, 1824. Reprinted in
1912 by Hermann, Paris and in 1953 by Blanchard, Paris, together with some notes
discovered after Carnot’s death in 1832 and communicated to the Académie des Sciences
in 1878 by Carnot’s brother.

t Joule, Phil. Mag. 1845 27 205.

* Helmholtz, Uber die Erhaltung der Kraft, Physik. Ges. Berlin 1847.
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Clausius* (1850). A completely rigorous formulation was given by Born'
(1921).

§1.11 Conversion of work to heat

The expression conversion of work to heat should be used with caution if at
all, since in general w and —g¢ are not numerically equal to each other. If
however a system X is taken through a complete cycle, then since its initial
and final states are identical the initial and final values of U* are the same
and so

AU*=0 w=-—gq (complete cycle). 1.11.1

We may then say that in the cycle the work w done on the system is converted
into the balance of heat —g¢ given off by the system during the cycle, that is
to say the excess of the heat given off over the heat absorbed in various parts
of the cycle.

Again if asystem X is kept in a steady state while work is done on it, then,
since its state remains unaltered, U does not change and so

AU*=0 w=—g (steady state). 1.11.2

Here again we may say that in the steady state the work w done on the system
is converted into the heat —gq given off by the system.

Except in the two special cases just mentioned, it is in general dangerous,
if not meaningless, to speak of the conversion of work into heat or vice-versa.
Unfortunately the expression is sometimes used incorrectly. Let us consider
two simple practical examples which serve to illustrate the correct and in-
correct use of the expression.

Consider as our system an ordinary electric heater, thatis to say a resistor
across which an electric potential difference E can be produced by closing a
switch. Suppose that initially the resistor is in thermal equilibrium with its
surroundings and the switch is open. When the switch is closed a current i
flows through the resistor and the electrical work done on the resistor in an
element of time dr is

w=Eidz. 1.11.3

In the first instant this work produces an increase in the energy U® of the
resistor R, so that

w=dU® (initially). 1.11.4

* Clausius, Ann. Phys. Lpz. 1850 79 368, 500.
t Born, Phys. Z. 1921 22 2I8.
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But immediately the temperature of the resistor becomes higher than that
of its surroundings and so there is a flow of heat —¢ from the resistor to
its surroundings. Thus in a given time

w=dU?—q  (generally). 1.11.5

As the temperature difference between the resistor and its surroundings
increases, so —g/w increases towards the value unity. Eventually a steady
state is reached, the temperature of the resistor no longer increases, and
we have

w=—g dU®=0 (steady state). 1.11.6

Only when this steady state has been reached, and not until then, may one
correctly speak of the conversion of the work w into the heat —gq.

Now by way of contrast consider the system consisting of the electric
heater together with a fluid surrounding it, the whole being thermally
insulated. The work done on the system is still given by (3). But now since
the whole system Z, consisting of resistor and fluid, is thermally insulated ¢
is by definition zero, so that

w=dU* g=0 (thermal insulation). 1.11.7

We may now say that the work w is converted into energy; to speak of its
conversion to heat would be nonsense.

§1.12 Natural and reversible processes

We must now consider a classification of processes due to Planck*. All the
independent infinitesimal processes that might conceivably take place
may be divided into three types: natural processes, unnatural processes, and
reversible processes.

Natural processes are all such as actually do occur; they proceed in a direc-
tion towards equilibrium.

An unnatural process is one in a direction away from equilibrium; such a
process never occurs.

As a limiting case between natural and unnatural processes we have
reversible processes, which consist of the passage in either direction through
a continuous series of equilibrium states. Reversible processes do not
actually occur, but in whichever direction we contemplate a reversible pro-
cess we can by a small change in the conditions produce a natural process
differing as little as we choose from the reversible process contemplated.

* Planck, Ann. Phys. Lpz. 1887 30 563.
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We shall illustrate the three types by an example. Consider a system con-
sisting of a liquid together with its vapour at a pressure P. Let the equilib-
rium vapour pressure of the liquid be P.,. Consider now the process of the
evaporation of a small quantity of the liquid. If P <P,,, this is a natural
process and will in fact take place. If on the other hand P> P,,, the process
contemplated is unnatural and cannot take place; in fact the contrary
process of condensation will take place. If P=P,, then the process contem-
plated and its converse are reversible, for by slightly decreasing or increasing
P we can make either occur. The last case may be described in an alternative
manner as follows. If P=P,, — 4§, where § >0, then the process of evaporation
is a natural one. Now suppose & gradually decreased. In the limit §—0,
the process becomes reversible.

§1.13  Reversible process and reversible change

We have defined a reversible process as a hypothetical passage through
equilibrium states. If we have a system interacting with its surroundings
either through the performance of work or through the flow of heat, we
shall use the term reversible process only if there is throughout the process
equilibrium between the system and its surroundings. If we wish to refer to
the hypothetical passage of the system through a sequence of internal
equilibrium states, without necessarily being in equilibrium with its surround-
ings we shall refer to a reversible change. We shall illustrate this distinction
by examples.

Consider a system consisting of a liquid and its vapour in mutual equilib-
rium in a cylinder closed by a piston opposed by a pressure equal to the
equilibrium vapour pressure corresponding to the temperature of the system.
Suppose now that there is a flow of heat through the walls of the cylinder,
with a consequent evaporation of liquid and work done on the piston at
constant temperature and pressure. The change in the system is a reversible
change, but the whole process is a reversible process only if the medium
surrounding the cylinder is at the same temperature as the liquid and vapour;
otherwise the flow of heat through the walls of the cylinder is not reversible
and so the process as a whole is not reversible, although the change in the
system within the cylinder is reversible.

As a second example consider a flow of heat from one system in complete
internal equilibrium to another system in complete internal equilibrium.
Provided both systems remain in internal equilibrium then the change which
each system undergoes is a reversible change, but the whole process of heat
flow is not a reversible process unless the two systems are at the same
temperature.
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§1.14 Equilibrium and reversible changes

If a system is in complete equilibrium, any conceivable infinitesimal change
in it must be reversible. For a natural process is an approach towards
equilibrium, and as the system is already in equilibrium the change cannot
be a natural one. Nor can it be an unnatural one, for in that case the opposite
infinitesimal change would be a natural one, and this would contradict the
supposition that the system is already in equilibrium. The only remaining
possibilibity is that, for a system in complete equilibrium any conceivable
infinitesimal change must be reversible.

§1.15 Closed systems and open systems

A system of fixed material content is called a closed system and a system of
variable content is called an open system. Similarly a phase of fixed content
is called a closed phase and a phase of variable content is called an open phase.

We shall often be concerned with a closed system composed of two or
more open phases.

Provided a closed phase is at rest and in thermal equilibrium and provided
chemical reactions are excluded, the phase is always in internal equilibrium.
As already mentioned in §1.02 it has two degrees of freedom, that is to say
one more than a hypothetical hydrostatic fluid having properties independent
of temperature. The state of such a phase may therefore be defined by its
energy U and its volume V, but other choices are possible.

§1.16 Entropy

There exists a function S of the state of a system called the entropy of the
system having the following properties.

1. The entropy S* of a system X is the sum of the entropies of its parts,
a, B,... so that

SE=S5"4+SP+. ... 1.16.1

In this respect entropy is similar to mass, volume, and energy.
2. The entropy S* of a closed phase « is determined by the energy U® and
the volume V* of the phase so that

dS*=(05%/0U%),«d U+ (8S*/0V*)yud V. 1.16.2
3. (0S*/oU*)y« is always positive. 1.16.3

4. The entropy of an insulated closed system X increases in any natural
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change, remains constant in any reversible change, and is a maximum at
equilibrium. Hence

dS*20  (insulated closed system). 1.16.4

5. In any reversible adiabatic change the entropy remains constant. Thus
dS*=0  (reversible adiabatic). 1.16.5

These properties together determine the entropy completely except for an
additive constant to which any conventional value may be assigned.

§1.17 Thermal equilibrium

Consider a thermally insulated system composed of two closed phases each
maintained at constant volume and in thermal contact with each other.
Using the superscript * to denote the system and the superscripts * and
to denote the two phases we have

dv:=0 dvPf=0 1.17.1
dU =dU*+dUP=0 1.17.2
dS*=ds*+dsP>0 1.17.3

the inequality holding for a natural heat flow and the equality for a reversible
heat flow. By virtue of (1) we may rewrite (3) as

(05%/0U),«dU* +(8S*/0UP), sd UP 20 1.17.4
and by virtue of (2) this becomes
{(98*/0U%)ya—(8SP/0UP), 8} dU* 20. 1.17.5
We now define a positive quantity 7" by
T=(0U/aS), =1/(3S/dV), 1.17.6
and rewrite (5) as
(1/T*=1/T®)dU*=0 1.17.7

which is equivalent to
(TP~ T*)dU*=0. 1.17.8

Hence for a natural process dU*= —dU® has the same sign as 7% —T".

§1.18 Thermodynamic temperature

The property of T expressed by formula (1.17.8) is obviously that of a
temperature and T defined by formula (1.17.6) is called thermodynamic
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temperature. This temperature is independent of any particular property of
any particular substance. It will be used throughout this book and will be
‘referred to simply as temperature.

§1.19 Entropy and heat

For a single closed phase o we have
dS*=(0S*/0U%),«dU*+(3S*/0V*)pud V* 1.19.1

and conversely if we regard U® as a function of S* and V*

dU*=(0U%0S"),«dS* +(U*/0V*)sxd V*

=T*dS*+(QU*0V¥)g=d V™ 1.19.2

We recall that for a reversible adiabatic change S* remains constant and
consequently

dU*=(0U*/0V*)sudV*=w=—P*dV*  (S*=const.) 1.19.3
where P* denotes the pressure of the phase a. Hence
(OU%joV*)sa= — P* 1.19.4
and substituting (4) into (2) we obtain
dU*=T*dS*—-P*dV*. 1.19.5
Comparing this with the statement of the first law
dUf=gq+w=q—P*dVv* 1.19.6
we see that for a reversible change
T*dS*=q. 1.19.7

We shall now study the change in entropy when the system is neither
thermally insulated nor in complete internal equilibrium. Let the system X
be composed of phases a, B, . . . each in internal equilibrium. If two or more
parts of the system X have the same composition but different temperatures
these are to be regarded as different phases. Now consider an infinitesimal
change in Z in which the quantities of heat gained by the phases a, B, ...
are ¢% g®, . ... Evidently the changes inside the system £ are independent of
where the heat g% ¢P, ... comes from or where the heat —gq% —gP® ...
goes to. We may therefore without affecting the changes inside Z arrange for
o to exchange heat only with a system o’ which is in internal equilibrium and
has the same temperature T* as o; and similarly for B, . . .. We also arrange
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for the composite system X+ao'+B'+.. to be thermally insulated. We
accordingly have

dSE+dS* +dsP +...20. 1.19.8
We also have
dSa’=qa'/Ta’= __qu/'Ta

dS¥ = g¥/T% = — g%/ T 1.19.9
and so on. Substituting (9) into (8) we obtain
dS*= g%/ T*+q%TP+. . .. 1.19.10
In particular for any single phase o
ds*> ¢%/ T 1.19.11

the inequality relating to a natural change and the equality to a reversible
change.

The property of entropy described by (11) may alternatively be expressed
as follows*

ds*=d,5%+d,S* 1.19.12
d,S*=g"T" 1.19.13
d,8*20 1.19.14

where d.S* denotes the increase in S® associated with interaction of o
with its surroundings and d;S* denotes the increase in S* associated with a
natural change occurring inside o.

§1.20 Second law

The enunciation of the properties of entropy and of thermodynamic tem-
perature together constitute the second law of thermodynamics. The second
law was foreshadowed by the work of Carnot' (1824). The first and
second laws were co-ordinated by Clausius* (1850) and by Kelvin® (1851).

* Prigogine and Defay, Chemical Thermodynamics, English translation by Everett,
Longmans 1954 ch. 3.

t Carnot, Réflexions sur la puissance motrice du feu, Bachelier, Paris, 1824. Reprinted in
1912 by Hermann, Paris and in 1953 by Blanchard, Paris, together with some notes
discovered after Carnot’s death in 1832 and communicated to the Académie des Sciences
in 1878 by Carnot’s brother.

t Clausius, Ann. Phys. Lpz. 1850 79 368, 500.

§ W.Thomson, Trans. Roy. Soc. Edinb. 1853 20 261.
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Thermodynamic temperature was introduced by Kelvin* (1848). The concep-
tion of entropy was first used by Clausius' in 1854 and the name also by
Clausius* in 1865. The formulation used above follows closely that of
Callen® (1961).

§1.21  Units

The unit of energy in the ‘Systéme International’ is the joule denoted by J
and defined by J=kg m?s~2. Another unit still widely used by physical
chemists is the thermochemical calorie denoted by cal and defined by
cal=4.184 J exactly.

The unit of thermodynamic temperature in the ‘Systéme International’ is
the degree Kelvin denoted by K and defined by the statement that the thermo-
dynamic temperature T,, of the triple point of natural water is 273.16K
exactly!. The normal freezing point of water, defined as the freezing point
of water saturated with air at atmospheric pressure, is within the accuracy
of experiment 273.150K. The normal boiling point of water, defined as the
boiling point at a pressure of one atmosphere, is within the accuracy of expe-
riment 373.15K. The Celsiusscale of temperature denoted by °Cis defined by

x °C=(273.150 + x)K.

In physical chemistry the commonest unit of pressure is the atmosphere
denoted by atm and defined" by atm=1.01325x10°T m~3 exactly.

§1.22  Extensive properties

The mass of a system is clearly equal to the sum of the masses of its constit-
uent phases. Any property, such as mass, whose value for the whole system
is equal to the sum of its values for the separate phases is called an extensive
property.

Important examples of extensive properties are the energy U, the entropy
S, and the volume V. The energy U* of a system I is related to the energies
U*® of the separate phases o by

U=y U~ 1.22.1

* W.Thomson, Proc. Cambridge Phil. Soc. 1848 1 69.

t Clausius, Ann. Phys. Lpz. 1854 93 481.

* Clausius, Ann. Phys. Lpz. 1865 125 353.

§ Callen, Thermodynamics, Wiley 1961; Guggenheim, Proc. Phys. Soc. London 1962
79 1079.

I'C.R.Conférence Générale des Poids et Mesures 1954.
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Similarly, for the entropy, we have

SF=Y §* 1.22.2

and for the volume

VE=Y v* 1.22.3
When we are considering a system of one phase only we may obviously omit
the superscript and shall sometimes do so.

§1.23 Intensive properties

The density of a phase is clearly constant throughout the phase, because the
phase is by definition homogeneous. Further, the density of a phase of a
given kind and state is independent of the quantity of the phase. Any prop-
erty of a phase with these characteristics is called an intensive property.

The temperature 7* and the pressure P* of a phase o are important exam-
ples of intensive properties.

§1.24 Chemical content of phase

The content of a phase a is defined by the amount n} of each of a finite number
of independently variable chemical species in the phase. The unit of amount
might be chosen as the amount having a given mass but this mass would not
necessarily be the same mass for different chemical species. In fact, it is
usually most convenient to take as unit of amount the mole, that is a mass
proportional to that given by the accepted chemical formula of the particular
species. A purely thermodynamic definition of the mole as unit of amount
will be given in §3.13. In anticipation of this we shall use the mole as the
unit of amount for each chemical species.

§1.25 Chemically inert species

We must emphasize that in the previous section we specified that the chemical
species by which the chemical content of the phase is described must be
independently variable. In the absence of any chemical reaction there is no
difficulty, but if some of the species can react chemically the recipe required
for selecting a set of independently variable species is not so simple. In order
to postpone this complication we shall exclude the possibility of chemical
reactions until we come to §1.43 when we revert to the subject.
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§1.26 Partial and proper quantities

We have seen that the state of a closed phase o may be completely defined
by its energy U® and its volume V*, or by its entropy S* and its volume V*.
It follows that an open phase may be completely defined by U®, V*, and the
amount #} of each chemical species 7, or alternatively by S*, 7%, and the n’s.
But other choices are possible such as 7%, V%, and the n{’s. In particular the
set 7%, P? and the n?’s is especially convenient.

Now let X* denote any extensive property of the phase a such as V* or
U® or S* Then we can derive intensive properties, which we denote by X7,
defined by

X?=(3Xu/a”7)r, P,y (j?éi)- 1.26.1

We shall call V}* the partial volume, U;* the partial energy, and S} the partial
entropy, and so on, of the species / in the phase o.
At given temperature and pressure we have then
dX*=) (0X*/onf)dn{=) Xidn;  (const. T, P). 1.26.2

Since X* is homogeneous of first degree in the #{’s we have by Euler’s
theorem

X =Y n{(0X*/on})=) niXj. 1.26.3
7 g

We may accordingly regard X* as made up additively by a contribution X}
from each unit amount of i.
We also define another intensive property X, by the formula

Xi=XYY =Y mi X3 nt. 1.26.4

We call Vy, the proper volume of the phase a; we call Ug, the proper energy
of the phase o, and we call S, the proper entropy of the phase a.
In the simple case of only a single chemical species i we have

Xi=Xn=X’/nf  (single species). 1.26.5

We emphasize that whereas V*, U® S* and any other X* are extensive
properties, V7, UF, S, and any other X are intensive properties. Since nj}
is normally measured in moles it follows that V; and ¥V, would be measured
in m*mole™" or cm®mole™!, U? and UZ in J mole™! or cal mole™*, and
S7 and S% in J K™! mole™! or cal K™ ! mole™!.

Corresponding to every equation homogeneous of the first degree in the
extensive variables there is an analogous equation between the partial
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quantities and another analogous equation between the proper quantities.
For example from the fundamental equation for a closed phase

dU*=T1"dS*—pP*dy*" 1.26.6

-3

we obtain by differentiating with respect to »f
dU;j=T*"dS; - P*d1}® 1.26.7
whereas by dividing by X, #f we obtain
dU;, =T"dS;,— P*dV;. 1.26.8

It is perhaps worth while drawing attention here to the fact that the
quantity X need not be a thermodynamic property of the system. It is only
required that X shall be an extensive property. We shall merely mention
one example of such a non-thermodynamic property. If r denotes the
refractive index of a binary mixture, we define the rotal refractivity R of the

system by
R=(*-1)V|(r*+2) 1.26.9

so that R is clearly an extensive property. We then define partial refractivities
in the usual way by

R, =(R[on,)7. .0, 1.26.10
R2 =(aR/an2)T’P’”l 1.26.11

and it then follows as usual that
R=n1R1+an2. 12612

The reason for choosing this particular example is the following. There
are theoretical grounds for expecting R to be an approximately additive
quantity, in which case R;, R, would be independent of the composition of
the mixture and have the same values as for the two pure substances. This
is more or less supported by experiment. There are however theoretical
grounds for expecting in certain cases deviations from simple additivity
and this is also confirmed by experiment. The quantitative theoretical
discussion of such deviations from simple additivity could be improved
by the use of the partial refractivities defined as above.

§1.27  Chemical potentials

We recall formula (1.19.5) for a closed phase o at temperature 7 and
pressure P
dU*=TdS*~PdV*  (closed phase). 1.27.1
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This may be extended to an open phase in the form
dU*=TdS*—PdV*+) pidn}  (open phase) 1.27.2

where each 4} is defined by
i =(QU"[0n)ss, yu, n e (j#0). 1.27.3

i is called the chemical potential of the species i in the phase a. The dimen-
sions of u are energy/amount and it is therefore an intensive quantity.

§1.28 Characteristic functions. Fundamental equations

Formula (1.27.2)
dU*=TdS*—PdV*+), uidn} 1.28.1
i

relates U* to the independent variables S%, V%, and the n{’s, and U* is said to
be a characteristic function for these variables. Characteristic functions
for other variables are readily obtained by the device known as a Legendre
transformation*. In particular

d(U*—TS%)=—S*dT—PdV*+Y uidn? 1.28.2
i
d(U*+PV*)=TdS*+ V*dP+Y pidn’ 1.28.3
d(U* = TS*+PV*)= —S*dT + V*dP+Y pidn?. 1.28.4

Since these formulae are all homogeneous of first degree in U*®, S%, V* nj,
it follows by Euler’s theorem that

U*—TS*+PV*=Y niul. 1.28.5

The quantity U*—TS* on the left of (2) is called the Helmholtz function
and will be denoted by 4#* The quantity U*+PF* on the left of (3) is
denoted by H* and is called enthalpy; this name was first proposed by
Kamerlingh Onnes’. The quantity U*—T7S*+PV* on the left of (4) is
called the Gibbs function and is denoted by G*. Using this notation we have
the set of formulae

dU*=TdS*—PdV*+Y idn? 1.28.6

* Courant and Hilbert, Methoden der Mathematischen Physik, Springer 1937 §1.6.
t Porter, Trans. Faraday Soc. 1922 18 140.
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A4 = ~ 54T ~PAV*+ . ptdn} 1.28.7
dH*=TdS*+ V*dP+Y uidn; 1.28.8
dG*= ~S*dT + V*dP+Y uidn} 1.28.9

G’=§; n}us. 1.28.10

Whereas U® is a characteristic function for the independent variables S°,
V*, nf, we see that 4 is a characteristic function for 7, V*, n; so is H* for
S® P, ui, and so is G for T, P, ni.

By comparison of (9) with (1.26.1) or (10) with (1.26.3) we see that

Wi=Ge 1.28.11

Thus in each phase the chemical potential of each species i is equal to the
partial Gibbs function of this species.

The equations (6) to (9) are called fundamental equations for the four
sets of variables S, V, n;; T, V, n;; S, P, n;; T, P, n;. The four characteristic
functions U, #&, H, and G were introduced by Gibbs who denoted them by
&, ¥, x, and { respectively.

The characteristic functions U, &, H, and G are sufficient for all require-
ments. They are however not the only possible ones. For example by simple
transformation of (6) we have

dS*=T7'dU*+ T 'PAdV*—T" 'Y pidnt 1.28.12

showing that S* is a characteristic function for the variables U®*, V%, n}.
Again let us define two new quantities ./ and Y by

J=S-U/T=-#|T 1.28.13

Y=S-U/T—-PV|T=~-G|T. 1.28.14

We now differentiate (13) and (14) and substitute for dS* from (12) ob-
taining
d/=T2UdT+ T 'PdV*~T7' Y pdn} 1.28.15

dY*=T?H*dT—-T"'V*dP-T" 'Y pdn} 1.28.16

from which we see that J®, like 4%, is a characteristic function for the varia-
bles 7, V*, n}, and that Y*, like G*, is one for the variables 7T, P, n.
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The functions J and Y were introduced by Massieu* (1869) and the latter
was widely used by Planck'. We accordingly call J the Massieu function
and Y the Planck function. It is interesting to note that these characteristic
functions are six years older than & and G introduced by Gibbs.

By means of a fundamental equation all the thermodynamic functions
can be expressed in terms of the characteristic function and its derivatives
with respect to the corresponding independent variables. For example
choosing G*(T, P, n}) we obtain directly from (4)

S*=—3G*/oT 1.28.17
H*=G*—T0G*/dT 1.28.18
V*=0G*/oP 1.28.19
U*=G*—TdG*dT — POG*/oP 1.28.20

pi =0G*[on; 1.28.21

out/dT =0%G*/on?dT =0*G*/0T dnf= —0S*/ont= — S¢ 1.28.22
Ou/OP=0%G*/On*0P=0G*OPdn* =3V *ont =V} 1.28.23

o/ T)OT = — S}/ T — i/ T*= — H}/T?, 1.28.24

§1.29  Mole fractions

We are often interested only in the intensive properties of a phase and not at
all in the amount of the phase. It is then convenient to describe the phase
entirely by intensive variables. The set of variables commonly used is T, P, x;
where x; denotes the miole fraction defined by

x;=ni/z nk 1.29.1
k

where X, denotes summation over all the species.
By definition the mole fractions satisfy the identity

Y x=1. 1.29.2

If the number of independent species or components is c, then of the c+2
quantities T, P, x; used to describe the state of the phase, apart from its
amount, only c+1 are independent owing to (2). We therefore say that a
single phase of ¢ components has c+1 degrees of freedom.

* Massieu, C.R. Acad. Sci., Paris 1869 69 858.
t Planck, Treatise on Thermodynamics, translated by Ogg, Longmans, 3rd ed. 1927.
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§1.30 Gibbs—Duhem relation

We may, if we choose, describe the state of a single phase a, apart from its
size, by the set of intensive quantities 7, P, u;. The number of these is ¢+ 2.
We have however seen that the number of degrees of freedom of a single
phase is only c+ 1. It follows that T, P, uf cannot be independently variable,
but there must be some relation between them corresponding to the identity
between mole fractions. We shall now derive such a relation.

We differentiate (1.28.10) and obtain

dG =Y pidnf+Y niduy;. 1.30.1

From (1) we subtract (1.28.9) and obtain
S*dT—V*dP+Y nidu;=0. 1.30.2

This is the sought relation between 7T, P, and the u!’s. It is known as the
Gibbs—Duhem relation®. It is particularly useful in its application to changes
at constant temperature and pressure, when it may be written

Y xfduf=0 (T, Pconst.). 1.30.3

§1.31 Multiphase systems

In the preceding sections most of the formulae have been written explicitly
for a single phase. Corresponding formulae for a system X consisting of
several phases are obtained by summation over all the phases. In particular
from the fundamental equations in §1.28 we obtain

dU*=Y 7°ds*-Y P“dV“+Z;,u7dn? 1.31.1
dF*= -3 $*dT*~3 P*dV*+} Y pidn} 1.31.2
dH*=Y T*dS*+Y V*dP*'+} ) yidn} 1.31.3
dG*=-Y S*dT*+Y V*dP*+Y > uydng 1.31.4

where X; denotes summation over the components and X, denotes summa-
tion over the phases.
* Gibbs, Collected Works, Longmans, vol. 1, p. 88; Duhem, Le Potentiel Thermodynami-

que et ses Applications 1886, p. 33. The reference given by Hildebrand and Scott, Solu-
bility of Nonelectrolytes, Reinhold 1950, is spurious.
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We are still postulating the absence of chemical reactions. This restriction
will be removed in §1.43 and §1.44.

§1.32 Adiabatic changes in closed system
We recall that for any infinitesimal change in a closed system Z
dUt=w+q. 1.32.1
If the change is adiabatic, then by definition
q=0, dU*=w (adiabatic). 1.32.2

All infinitesimal adiabatic changes can moreover, according to the defini-
tions in §1.13 and §1.19, be classified as follows:

dUE=w, dS*>0  (natural adiabatic) 1.32.3
dU*=w, dS*=0 (reversible adiabatic). 1.32.4

Suppose now that the whole system is enclosed by fixed rigid walls, so that
w=0. We then have the classification

dU*=0 dV*=0 dS*>0 (natural adiabatic) 1.32.5
dU*=0 dV*=0 dS*=0 (reversible adiabatic). 1.32.6

Suppose now, instead, that each phase a is partly bounded by a piston
acting against a constant pressure P%, so that

w=—) P*dV*=-Y d(P*V*)=—d(} P*V"). 1.32.7
Then we have
dU*=—-d(} P*V°) 1.32.8
dH*=d(U*+Y. P*V™*)=0. 1.32.9
Consequently in this case we have the classification
dH*=0 dP*=0 dS*>0 (natural adiabatic) 1.32.10
dH*=0 dP*=0 dS*=0 (reversible adiabatic). 1.32.11

§1.33 Isothermal changes in closed systems

Instead of a thermally insulated system, let us now consider a system whose
temperature 7 is kept uniform and constant. This may be achieved by keeping
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the system in a temperature bath at the temperature 7. Then according to
the properties of entropy expounded in §1.19 and in particular formula
(1.19.11) we have the classification of infinitesimal changes

dT=0 d(TS)*>q (natural isothermal) 1.33.1
dT=0 d(TS)*=q (reversible isothermal). 1.33.2

We also have according to the first law of thermodynamics, in particular
formula (1.10.7),

g=dU*—w. 1.33.3

Substituting from (3) into (1) and (2) in turn we obtain
dT=0 w>d#* (natural isothermal) 1.33.4
dT=0 w=d#&* (reversible isothermal). 1.33.5

In particular if the system is enclosed by fixed rigid walls, so that w=0, the
classification becomes

dT=0 dV=0 dA&*<0 (natural isothermal) 1.33.6
dT=0 dV=0 d&F*=0  (reversible isothermal). 1.33.7

If on the other hand each phase « is partly bounded by a piston acting
against a constant pressure P%, then

w==Y P*dV*= =Y d(PV*)= —d(} P'V*)

=d(F-G)F 1.33.8
from the definition of G. Substituting from (8) into (4) and (5), we obtain
dT=0 dP*=0 dG*<0 (natural isothermal) 1.33.9

dT=0 dP*=0 dG*=0 (reversible isothermal). 1.33.10

§1.34  Equilibrium conditions. General form

We saw in §1.14 that if a system is in complete equilibrium then any con-
ceivable change in it must be reversible. This enables us to put the conditions
for equilibrium into various forms each of general validity.

If we first consider an infinitesimal change at constant volume, the system
being thermally insulated, we have according to (1.32.6) the equilibrium
conditions

ds*=0 dy*=0 dU*=0. 1.34.1
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If instead we consider an infinitesimal change keeping each phase a at
constant pressure P%, the whole system being thermally insulated, we have
according to (1.32.11) the equilibrium conditions

ds*=0 dP*=0 dH*=0. 1.34.2
Thirdly let us consider an infinitesimal change at constant volume and

constant uniform temperature (isothermal change). We now have according
to (1.33.7) the equilibrium conditions

dT=0 dVvi*=0 d&*=0. 1.34.3

Lastly by considering an infinitesimal change keeping each phase at a con-
stant pressure P* and a constant uniform temperature T, we have according
to (1.33.10) the equilibrium conditions

dT=0 dP*=0 dG*=0. 1.34.4

Any one of the four sets of equilibrium conditions (1), (2), (3), (4) is
sufficient by itself. They are all equivalent and each has an equal claim to
be regarded as fundamental.

§1.35 Stability and metastability

In order to make clear what is meant by stability and instability in thermo-
dynamic systems, we shall first discuss the significance of these expressions
in a purely mechanical system. To this end, in figure 1.1 are shown in

+6)

+&®

a
Fig. 1.1. Stable and unstable equilibrium

section three different equilibrium positions of a box on a stand. In positions
a and ¢ the centre of gravity G is lower than in any infinitesimally distant
position, consistent with the box resting on the stand; the gravitational
potential energy is a minimum, and the equilibrium is stable. If the position
of the box be very slightly disturbed, it will of itself return to its former
position. In position b, on the other hand, the centre of gravity G is higher



FUNDAMENTAL PRINCIPLES 29

than in any infinitely near position, consistent with the box resting on the
stand, the gravitational potential energy is a maximum, and the equilibrium
is unstable. If the position of the box be very slightly disturbed, it will of
itself move right away from its original position, and finally settle in some
state of stable equilibrium such as ¢ or ¢. As maxima and minima of the
potential energy must alternate, so must positions of stable and of unstable
equilibrium, Only stable equilibria are realizable in practice since the realiza-
tion of an unstable equilibrium requires the complete absence of any possible
disturbing factors.

Whereas positions a and ¢ are both stable, one may describe a as more
stable than c. Or one may say that a is absolutely stable, while c is unstable
compared to a. By this is meant that in position ¢ the potential energy is
less than in any position differing only infinitesimally from ¢, but is greater
than the potential energy in position a.

Similarly, the equilibrium of a thermodynamic system may be absolutely
stable. On the other hand it may be stable compared with all states differing
only infinitesimally from the given state, but unstable compared with some
other state differing finitely from the given state; such states are called
metastable. Truly unstable states analogous to b are unrealizable in thermo-
dynamics, just as they are in mechanics.

The fact that all thermodynamic equilibria are stable or metastable, but
never unstable, is equivalent to the fact that every natural process proceeds
towards an equilibrium state, never away from it. Bearing this in mind and
referring to the inequalities (1.32.5), (1.32.10), (1.33.6), and (1.33.9), we
obtain the following alternative conditions for equilibrium:

for given U* and V* that S* is a maximum 1.35.1
for given H* and Ps that S* is a maximum 1.35.2
for given T and V that &% is a minimum or that J* is a
maximum 1.35.3
for given T and P¥s that G* is a minimum or that Y* is a
maximum. 1.35.4
Since (0U,3S)y = (0H|3S)p=T>0, we may replace the first two conditions
above by two others so as to obtain the more symmetrical set of equivalent
conditions

for given S* and V* that U* is a minimum 1.35.5
for given S* and P¥s that H* is a minimum 1.35.6
for given T and V* that #F is a minimum 1.35.7

for given T and P¥s that G* is a minimum. 1.35.8
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Since T is a more convenient independent variable than S, the last two con-
ditions are more useful, but nowise more fundamental, than the previous two.

Each of the above is the condition for stable equilibrium or for metastable
equilibrium according as the minimum (or maximum) is absolute or only
relative to neighbouring states.

§1.36 Thermal internal stability

Consider a closed single phase. Let its entropy be S, its volume V, and its
energy U. Imagine one half of the mass of this phase to change so as to
have an entropy 3(S+93S) and volume 4V while the other half changes so
as to have an entropy #(S—38S) and volume 4V. According to Taylor’s
expansion the energy of the first half becomes

HU+(@U/aS)3S +4(8°U/0S*)(3S)?} 1.36.1

when we neglect small quantities of third and higher orders; all partial
differentiations in (1) are at constant V. The energy of the second half
becomes similarly

H{U—(dU[0S)8S + (22 U/S?)(8S)2}. 1.36.2

Hence by a ddition the energy of the whole system has increased by the second
order small quantity

1(0*U/0S2), (8S)> 1.36.3

while the total entropy and volume remain unchanged. Now a condition for
a system to be in stable equilibrium is that, for given values of the entropy
and the volume, the energy should be a minimum. If then the original state
of the system was stable, the change considered must lead to an increase of
energy and the expression (3) must be positive. Hence we obtain as a neces-
sary condition for stable equilibrium

(0*U/3S?), >0. 1.36.4
Since according to (1.17.6)
©UjeS), =T 1.36.5
we can replace (4) by
(0S/0T), >0. 1.36.6

The physical meaning of (6) is that when at constant volume heat is absorbed
by a stable phase its temperature is raised.
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§1.37 Hydrostatic equilibrium

Consider a system X of several phases in equilibrium at the temperature 7.
Suppose the phase a to increase in volume by an amount dV* and the phase §
to decrease by the same amount, the temperature and volume of the whole
system and the composition of each phase remaining unchanged. Then,
according to (1.34.3), the condition for equilibrium is

dFF=dF*+dF*=0 1.37.1
or by using (1.28.7)
—PdVe+ PPV =0 1.37.2
and so
P*=P". 1.37.3

That is to say that any two phases in hydrostatic equilibrium must be at
the same pressure.

If we now consider two phases at the same temperature 7" and different
pressures P* and PP, there will then not be hydrostatic equilibrium. There
will be a tendency for the system to approach hydrostatic equilibrium by a
change in which the volume of one phase, say «, increases by d¥* and that
of the other phase B decreases by the same amount. Such a change is by
definition a natural one. If we keep the temperature constant, we therefore
have, according to (1.33.6)

dF*+dFP<0 1.37.4
or using (1.28.7)
— PdV*+ PPV <0. 1.37.5
If we suppose dV* to be positive, it follows that
P*> PP, 1.37.6

That is to say, that the phase o with the greater pressure P* will increase in
volume at the expense of the phase B with the smaller pressure PP,

§$1.38  Hydrostatic internal stability

Consider again a closed single phase. Let its temperature be T, its volume V,
its energy U, and its entropy S. Imagine half of the phase to change so as to
have a volume $(¥+8V), and the other hailf to change so as to have a
volume 4(¥V—3V), the temperature remaining uniform and unchanged.
Then by an argument precisely analogous to that of the §1.36 we find that
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the Helmholtz function of the whole system has increased by the second

order small quantity
1@ &[0V, (3V)? 1.38.1

while the temperature and total volume are unchanged. Now a condition
for a system to be in stable equilibrium is that for given values of temperature
and volume, the Helmholtz function should be a minimum. If then the original
state of the system was stable, the change considered must lead to an in-
crease of the Helmholtz function and the expression (1) must be positive.
Hence we obtain as a necessary condition for stable equilibrium

©*F[d0V?)r>0. 1.38.2
Since according to (1.28.7)

@©@F0V)y =—P 1.38.3
we can replace (2) by

(@V/3P)7<0. 1.38.4

This means that when the pressure of a stable phase is increased, the
volume must decrease.

§1.39  FEquilibrium distribution between phases

Consider a system of several phases, all at the same temperature 7, but not
necessarily at the same pressure. Suppose a small amount dn} of the species i
to pass from the phase P to the phase a, the temperature of the whole system
being kept constant. Then according to (1.31.2) we have

dAF* ==Y P'dV'+uidn}—pldns 1.39.1
Y

omitting the terms which obviously vanish. Since the total work w done on
the whole system is —X, P"d}”, it follows from (1.33.4) that the process
considered will be a natural one if

dAF*<—-YPdV"  (natural process). 1.39.2
Y

Comparing (1) with (2) we obtain

(4 —uP)dnt<0  (natural process). 1.39.3
Thus dr? in a natural process has the same sign as u?—uf. In other words
each chemical species i tends to move from a phase where its potential y;

is higher to another phase in which its potential is lower. Hence the name
potential or chemical potential for p,.
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If, instead of natural processes, we consider reversible processes we have
equalities instead of inequalities; in particular instead of (3) we have

(uf—uP)dn?=0  (reversible process) 1.39.4
or
pi=p?  (equilibrium). 1.39.5
We have obtained the important result that the condition for two phases to
be in equilibrium with respect to any species is that the chemical potential
of that species should have the same value in the two phases.

§1.40 Phase stability

Consider again a closed single phase. Let its temperature be T, its pressure P,
and its Gibbs function G. Imagine the amount of the component i to increase
in one half of the phase from i#; to 3(n; +9n;) while the amount in the other
half of the phase changes from 4#; to 3(n; — dn,), the temperature and pressure
remaining uniform and unchanged. Then by an argument precisely analo-
gous to those of §1.36 and § 1.38 we find that the Gibbs function of the whole
system has increased by the second order small quantity

3(0°G/onf)r, b, n,(5"i)2 (j#i) 1.40.1

while the temperature and pressure remain unchanged. Now a condition
for a system to be in stable equilibrium is that for given values of temperature
and pressure, the Gibbs function should be a minimum. If then the original
state of the system was stable, the change considered must lead to an increase
of the Gibbs function and the expression (1) must be positive. Hence we
obtain as a necessary condition for stable equilibrium

(0*G/on})r, p, (80> >0 (j#i). 1.40.2
Since according to (1.28.9)
(6G/an;)r,p,,,1=ui (j#i) 1.40.3

we can replace (2) by

(Ow;/ony)r, p,a,>0 (j#i). 1.40.4
This means that when substance i is added to a stable mixed phase the
chemical potential of i is increased.

§1.41 Gibbs’ phase rule

In §1.30 we mentioned that the state of a single phase o containing c in-
dependent species or components can, apart from its size, be completely
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described by the c+2 quantities T, P, gy, i3, . . . 4. Of these c+2 quantities
only c+1 are independent because of the Gibbs—Duhem relation

S*dT—V*dP+Y nidy,=0. 1.41.1

We accordingly say that a single phase has ¢+ 1 degrees of freedom.

We shall now extend this rule to a system of ¢ components in p phases
in mutual equilibrium. We continue to usethesame ¢ + 2 variables but there are
now p Gibbs-Duhem relations, one for each phase. Consequently the num-
ber of independent variables or the number of degrees of freedom is c—p+2.
This is Gibbs’ phase rule*.

We have implicitly excluded chemical reaction between the species and
we postpone discussion of the effect of any such complication to chapter 6.

§1.42 Membrane equilibrium

It is important to notice that, provided a system is at a uniform temperature,
the condition for equilibrium between two phases of each chemical species
is independent of that for other species and of that for hydrostatic equilib-
rium. If then two phases o and P are separated by a fixed wall permeable
to some components i but not to other components j, the condition for the
two phases to be in equilibrium as regards i is still

wr=pb 1.42.1
but in this case in general
PP#EPP il 1.42.2

Such a partial equilibrium is called a membrane equilibrium.

§1.43 Chemical reactions. Frozen equilibrium

Hitherto we have explicitly excluded chemically reacting species from the
system considered. We shall now explain how this restriction can be removed.

Owing to the slowness of attainment of some chemical equilibria, it can
happen that the change towards chemical equilibrium is negligible during a
time sufficient for other kinds of equilibrium to be observed and measured.
In other cases the attainment of chemical equilibrium if not sufficiently slow
for this to be the case can be made so by the addition to the system of a
small quantity of a substance called an anticatalyst or merely by rigid

* Gibbs, Collected Works, Longmans, vol. 1, p. 96.
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exclusion of all traces of some other substance called a catalyst. Even in
cases where the attainment of chemical equilibrium cannot be adequately
slowed down in practice it is possible and legitimate to consider the hypo-
thetical case wherein this has been achieved.

We are thus led to consider a system not in chemical equilibrium in which
however the chemical reactions leading towards its attainment have been
virtually suppressed. The system is then in a special kind of metastable
equilibrium called frozen equilibrium. The several chemical species present
are then virtually independent and so we can suppose a chemical potential p
assigned to each such species.

If we now suppose the addition of a suitable catalyst so as to thaw the
frozen equilibrium then generally changes of composition will take place as a
result of chemical reactions; such changes are of course natural processes.
In the special case that the state of frozen equilibrium corresponds to com-
plete chemical equilibrium, then no chemical change will take place on
thawing. If we imagine a virtual chemical change to take place, such a change
will then be a typical reversible change. If we write down the condition for
this, we therefore obtain a relation between the u’s which is a condition of
chemical equilibrium.

The final result may be described as follows. Instead of choosing a set of
independent chemical species or components, we use the set of all the chemical
species present whether independent or not and then obtain restrictive
relations on their behaviour. The actual form of these restrictive relations
will be obtained in the next section.

§1.44 Chemical equilibrium. Affinity

We consider a system of any number of phases maintained at a constant
temperature T and constant pressure P. Then according to (1.31.4)

dG*=Y Y pidn;} (T, Pconst.) 1.44.1

where now, in contrast to previous practice, the species i are no longer all
incapable of interacting chemically. According to (1.33.9) the condition
for a natural process is

dG*<0 (T, Pconstant)  (natural process). 1.44.2
Combining (1) and (2) we obtain as the condition for a natural process

Y ¥ pidni<0  (natural process). 1.44.3



36 FUNDAMENTAL PRINCIPLES

Any chemical reaction at a given temperature and pressure is described by
a formula. As typical examples we quote

CaCO;(s)—Ca0(s) + CO,(g)
N,(g)+3H,(g)~2NH;(g)
a-glucose(aq)—P-glucose(aq)

where (s) denotes a solid phase, (g) the gaseous phase, and (aq) denotes an

aqueous solution.
We can represent the most general chemical reaction symbolically by

Y vaA-Y vgB 1.44.4

meaning that v, moles of A and the like react together to give vg moles
of B and the like. The unit of quantity the mole is defined in such a way that
the stoichiometric numbers v can all be small integers. The symbols A and B
are supposed to specify not only the kind of each chemical species i but also in
what phase it is present; in other words the label A implies the pair of labels
i and a.

Now imagine the chemical process (4) to take place in the time df to the

extent
Z VAdéA‘—)Z deéB 1.44.5

where d¢ denotes a small number. Then d¢/d¢ is called the reaction rate
and the dnf, when i relates to A, is just —v,d&. The inequality (3) thus
becomes

Y vpupdé/di<y vypadé/dt  (natural process) 1.44.6
or if we assume d&/d¢r>0
Y vus<Y, vala (natural process). 1.44.7

Thus the chemical reaction can in fact take place from left to right only if
the inequality (7) holds, and conversely.

If we replace the inequalities by equalities we obtain as the condition for
the chemical change in either direction to be a reversible process

Y vapa=Y veup  (reversible process). 1.44.8

In other words the condition for equilibrium with respect to the chemical
process (5) is

Y vata=Y vgug  (equilibrium). 1.44.9

It is convenient for the sake of brevity and elegance to modify our notation
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relating to chemical changes. We begin by rewriting the chemical reactions
quoted at the beginning of this section

0=CaO0(s)+C0O,(g) - CaCOs;(s)
0=2NH;(g)—N(g) —3H.(g)
0=p-glucose(aq)—a-glucose(aq)

and generally in place of (4) we label the reaction by

0=Y vgB 1.44.10
B

where vg has negative values for the species previously denoted by A.
Suppose that in a small interval of time d¢ the reaction takes place to the

extent
0=Z vgdéB 1.44.11
B

then the reaction rate is defined by d&/d¢. The inequality (3) now becomes

Y vgupdé/dt<0  (natural process). 1.44.12
B

Thus for the reaction to take place —Zgvgug and d&/ds must have the
same sign. The sum —Xgvgug is called the affinity of the reaction.

It follows immediately that the condition for equilibrium is that the
affinity should be zero, that is to say

Y vgus=0  (equilibrium). 1.44.13
B

We may combine the inequality (12) and the equation (13) into the single

formula
(_Z VBﬂB)dc/dtgo. 1.44. 14
B

The affinity is formally related to the several characteristic functions by
—Z vaig=—(d Uz/af)si, yi=— (aHz/ﬁé)sx, P
B
= "(a/Fz/af)T. yvE= "(an/aé)T, P
=T(@J*0¢)r,yx=T@Y ), p
= T(85*/3&)yz, yx. 1.44.15

The affinity was thus defined by De Donder* in 1922. Of the several equa-
tions in formula (15) the most useful and most used is

* For detailed references see Prigogine and Defay, Chemical Thermodynamics, English
translation by Everett, Longmans 1954.
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—ng‘uB=—(aG/aé)T'P. 1.44.16

The affinity, bzing a linear combination of chemical potentials, is like the
chemical potentials an intensive quantity.
A different and better known notation is that introduced by G. N. Lewis*,

namely
=Y vgug=—AG 1.44.17
B

where the operator A denotes increase at constant temperature and constant
pressure when £ increases by unity. Both notations have their advantages
and both will be used.

§1.45 Choice of independent variables

For practical purposes the most convenient independent variables, other
than the composition, to describe any single phase are, usually, temperature
and pressure. We shall therefore require to express most thermodynamic
properties as functions of 7, P and shall be interested in their partial deriva-
tives with respect to T and P. In the case of gases, in contrast to liquids and
solids, it is sometimes convenient to choose as independent variables 7, V
instead of T, P. We shall accordingly also require to express thermodynamic
properties as functions of T, V and shall be interested in their partial deriva-
tives with respect to 7 and V.

§1.46 Thermal expansivity and isothermal compressibility

If we regard the volume of a phase of fixed composition as a function of
temperature and pressure, we have

dV =(0V/3T)pdT +(0V/0P)rdP. 1.46.
We define «, the thermal expansitity, by
a=V"1@VT), 1.46.2
and xr, the isothermal compressibility, by
kr=—V "1 @V/OP);. 1.46.3
Substituting (2) and (3) into (1) we obtain

* See Lewis and Randall, Thermodynamics and the Free Energy of Chemical Substances,
McGraw-Hill 1923, p. 226.
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dV=aVdT -k VdP 1.46.4
din V=adT —«;dP. 1.46.5
Alternatively if we choose to regard P as a function of 7T, V, we have
dP=ax;'dT—k7'V " 1dV. 1.46.6
From (5) we deduce
8% In V/dTOP = (0a/0P)r= — (Ok /3T )p. 1.46.7

§1.47 Maxwell’s relations

For a closed phase a in the absence of chemical reactions we have according
to (1.28.7) and (1.28.9)

dF*= —§*dT—PdV* 1.47.1
dG*= —S*dT + V*dP. 1.47.2
Consequently we have
(08%dV")p= —*A*dTdV*=(0P/OT) s =at/Ky 1.47.3
(0S°*/0P); = —0°G/oTOP=—(0V*/oT)p=—aV*.  1.47.4

These two relations, due to Maxwell*, are important since they express the
dependence of entropy on volume or pressure in terms of the more readily
measurable quantities o and x;.

§1.48 Dependence of thermodynamic functions on pressure

If, as will usually be our choice, we take as independent variables, other
than the composition of each phase, the temperature T and the pressure P
the relevant characteristic function is the Gibbs function G* and according
to (1.28.9) we have

(0G*[oP)r=V". 1.48.1
We also have Maxwell’s relation (1.47.4)
(8S4/0P) = —aV™, 1.48.2
Since the enthalpy H* is related to G* and S* by
H*=G*+TS" 1.48.3

we have using (1) and (2)
* Maxwell, Theory of Heat, Longmans 1885 ed. p. 169.
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(0H*/0P)r =(8G*/0P); + T(8S*/0P)y=V*(1—aT). 1.48.4

When we use the independent variables T, P the function U is much less
important than G, H. If nevertheless we should require its dependence on
the pressure, it is readily derived as follows. By definition

U*=H"-PV*" 1.48.5
and so by differentiation with respect to P at constant T we obtain

(0U*/0P); =(0H*/OP); — V*— P(8V*/0P)p=V*(kP—aT).  1.48.6

§1.49 Gibbs—Helmholtz relation

If, as will usually be our choice, we take as independent variables, other
than the composition of each phase, the temperature T and the pressure P
we have for the temperature dependence of the relevant characteristic
function G* according to (1.28.9)

(0G*/oT)p= ~S". 1.49.1
If we compare this with the definition of G*, namely
G*=H"-TS" 1.49.2
and eliminate S°* we obtain
H*=G*—T(0G*/0T)p. 1.49.3
For a system X composed of several phases at the same pressure we obtain
from (3) by addition
H*=G*—~T(3G*/dT),. 1.49.4

If we apply this relation to the final state II and to the initial state I in any
isothermal process and take the difference, we obtain

AH*=AG* — T(OAG*/0T)ps, pu 1.49.5

where P', P! denote the initial and final pressures respectively. Formula (5)
is known as the Gibbs—Helmholtz relation. This name is also sometimes given
to formula (4).

By simple transformation we can rewrite these formulae as

{8(GYT)joT}p=—~HYT? 1.49.6
{0(AG¥/T)[0T} pr, pu= — AH*|T? 1.49.7

or alternatively as
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{o(G*/T)[d(1/ T)}p=H* 1.49.8
{3(AGH T)/3(1/T)} pr, pn=AH~. 1.49.9

§1.50 Dependence of thermodynamic functions on T, V

As already stated, it is usually convenient to take T, P as independent varia-
bles. Only in the case of gases is it sometimes convenient to use instead the
independent variables T, ¥. The dependence of the various thermodynamic
functions on these variables is readily obtained and we give the chief results
for a phase of fixed composition in the order in which they are conveniently
derived without however giving details of the derivations.

dA*=—-S*dT —PdV* 1.50.1
dP=oax~'dT—(kV*) ™ 'dV* 1.50.2
dS*=(8S*/0T), dT +ax ™~ 'dV* 1.50.3
dU*=T(0S%/dT),dT+(«Tx ™' — P)dV*" 1.50.4
dJ*=T"2UdT+ T 'PdV™ 1.50.5

§1.51 Use of Jacobians

Many thermodynamic identities, including those obtained in the preceding
sections, can be obtained rapidly and elegantly by the use of Jacobians.
The procedures are due to Shaw*, who has shown how to apply them to
obtain a tremendous number of identities, some important, others merely
amusing. We shall here give a brief sketch of the method, which we shall
illustrate by a few simple examples. We would however emphasize that all
the simple and most important relations are deduced in this book without
using Jacobians, so that the reader not interested in their use may omit this
section which does not affect the rest of the book.
We recall that Jacobians are defined by

o, y) _ _ %) _ (?i‘) (92) _ (9’_‘) (@_V) 1.51.1
o(a, ) O(x, B)  \Oa/p \Of/a \OP/a \Oa/#
and that they obey the multiplicative law

0(x, y) 8(u, v) _ o(x, y) 151.2
O, v) &, B) O B)

* Shaw, Phil. Trans. Roy. Soc. London A 1935 234 299.
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which can be derived by simple geometrical or algebraical considerations
on transformation of coordinates.
As particular cases of (1) we have

[T -
ou/p  d(a, B) o(a, )
(a_.))) - a(a! y) - — a(ys a) . 1.51.4
o/« O, B) o(a, B)
Using (3) and (4) we derive from (2)
(@ic) _0(x,y) _(x ) / 8z 9) 1.51.5
0z/y 8(z,y) o« B)/ d(x B)

We now replace o, f§ by the pair of quantities which we regard as the usually
most convenient independent variables, namely the temperature 7 and the
pressure P. We further introduce the following new notation

w0 = i = () o) (G G e

In particular we have

1.51.3

Ox )
(5?)1,_1(3:, P)=—J(P, x) 1.51.7

(#)-

Using our new notation we have instead of (5)

(%)f ﬁ’: ;’; 1.51.9

The relations (6) and (9) together enable us to express any quantity of the
type (0x/0z), in terms of the partial differential coefficients of x, y, z with
respect to 7, P.

We shall illustrate by two examples, the first a useful one, the second far
fetched. We have

—J(x, T)=J(T, x). 1.51.8

(QZ) _J(TLH) __ (oH[oP) 1.51.10
oP/u J(P,H)  (3H[OT)s

arelation which we shall meet again in §3.20 where it is derived more simply.
We now take a more complicated, and less useful, example:
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oH\ _J(H,U) _(0H/OT)p(0U/OP)r—(OH/OP)(0U/OT)p
(a_c) v J(G,U) (8G/oT),(dU/3P);—(8G[oP)(dU/OT),
_ CV(kP—aT)-V(1—aT)YC—aPV)
© —SV(kP—aT)—V(C—aPV)
_ C(xkP—aT)—(1-aT)(C—aPV)
"~ —S(xP—aT)—(C—aPV)
where we have used formulae (1.48.1), (1.48.4), (1.48.6) and we have denoted
(OH/[oT), by C.
These illustrative examples by no means exhaust the uses to which Jaco-

bians can be put. The reader who isinterested is referred to the original papers
by Shaw.

1.51.11

§1.52 Reversible cycles

Suppose a system is taken through a complete cycle of states. Then as its
final state is identical with its initial state, its entropy must be the same at
the end as at the beginning. Thus

AS=0 (any cycle). 1.52.1
If at all stages the system is in equilibrium, so that no irreversible (natural)

change takes place, then

AS=Y gq,/T, (reversible changes) 1.52.2

where ¢; denotes the heat absorbed at the temperature T; and the summation
extends over all the temperatures through which the system passes. Sub-
stituting (2) into (1) we obtain

Y q:/T;=0  (reversible cycle). 1.52.3

Evidently, since T; is always positive, some of the ¢;’s must be positive and
some negative. It is convenient here to modify our notation so as to distin-
guish between the positive and negative ¢;’s. We accordingly replace (3) by

Y q,/T,=Y QJT, (reversible cycle) 1.52.4

where each g, is a positive quantity of heat taken in at the temperature 7,
and each Q, is a positive quantity of heat given out at the temperature T.

According to the first law of thermodynamics the work —w done by the
system during the cycle is given by
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_W=Z =Y q9,—Y Q. 1.52.5
The ratio n defined by
"=_W/Z qrz(z qr_ZQs)/Z qr=1_ZQs/Z qr 1.52.6

is called by engineers the thermodynamic efficiency of the cycle.

Let us suppose that there is a maximum temperature 7,,,, and a minimum
temperature T,,;,, between which temperatures the cycle is confined. The
following question arises. Subject to this restriction on the temperatures,
what is the maximum possible value of #? The answer is obviously obtained
by making

T=T., (all7) 1.52.7
To=Tnn  (all s). 1.52.8

This means that positive absorption of heat occurs only at the highest
temperature T,,,, and positive loss of heat occurs only at the lowest temper-
ature T,;,. No heat is exchanged with the surroundings at any temperature
intermediate between T, and Tp;,. In other words the passages from
Trnax t0 Tmin and the reverse are adiabatic. Thus the cycle consists entirely of
isothermal absorption of heat at T,,,,, isothermal emission of heat at T,,;,,
and adiabatic changes from T,,, t0 Tp;, and from T, to Tpay. Such a
cycle was first considered by Carnot* and is called Carnot’s cycle.
For Carnot’s cycle we have by substituting from (7) and (8) into (4)

Y 4/ Tax=2, Q/Tmin  (Carnot’s cycle). 1.52.9

Now substituting from (9) into (6) we obtain
7=1—Tin/ Trmax (Carnot’s cycle). 1.52.10

There is sometimes confusion between Carnot’s cycle and reversible cycles.
It will be observed that Carnot’s cycle is a very special case of a reversible
cycle.
A completely isothermal cycle is a special case of Carnot’s cycle. For such
a cycle
Twax=Tmin=T (isothermal cycle) 1.52.11

* Carnot, Réflexions sur la puissance motrice du feu, Bachelier, Paris, 1824. Reprinted
in 1912 by Hermann, Paris and in 1953 by Blanchard, Paris, together with some notes
discovered after Carnot’s death in 1832 and communicated to the Académie des Sciences
in 1878 by Carnot’s brother.
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Y q.=Y 0, (isothermal cycle) 1.52.12
w=0 (isothermal cycle) 1.52.13
n=0 (isothermal cycle). 1.52.14

Formula (13) is known as Moutier’s theorem*.

We shall have no occasion to make any further reference to cycles. They
are important in engineering thermodynamics for the treatment of engines
and refrigerators, but these fall outside the subject-matter of this book.

§1.53  Surface phases

We have hitherto assumed that every system consists of one or more com-
pletely homogeneous phases bounded by sharply defined geometrical
surfaces. This is an over-simplification, for the interface between any two
phases will rather be a thin layer across which the physical properties vary
continuously from those of the interior of one phase to those of the interior
of the other. We must now consider the thermodynamic properties of these
surface layers between two phases. We shall begin by considering a plane
interface and shall in §1.60 extend our considerations to a curved interface.

The following treatment is essentially that of van der Waals junior and
Bakker!. It is less abstract than the alternative treatment of Gibbs.}

Figure 1.2 represents two homogencous bulk phases, & and B, between

8 IB'
© |
|
Af—— — A
24

Fig. 1.2. Plane interface between two phases

* Moutier, Bulletin de la Société philomathique 1875 Aug. 11th.

T Van der Waals and Bakker, Handb. Experimentalphysik, 1928 vol. 6. See also Ver-
schaffelt, Bull. Acad. Belg. Cl. Sci. 1936 22 No. 4, pp. 373, 390, 402; Guggenheim,
Trans. Faraday Soc. 1940 36 398.

t Gibbs, Collected Works, Longmans, vol. 1, p. 219.
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which lies the surface layer . The boundary between o and « is the plane
AA’, that between ¢ and B the parallel plane BB'. All properties of & are
uniform in directions parallel to AA’, but not in the direction normal to AA’.
At and near AA’ the properties are identical with those of the phase «;
at and near BB’ they are identical with those of the phase B. Subject to these
conditions there is freedom of choice in placing the planes AA’ and BB'.
It will be possible and natural though not essential, so to place the planes
AA’ and BB’ that the uniform distance between them is submicroscopic and
usually less than 107% cm, if not less than 10~7 cm.

§1.54 Interfacial tension of plane interface

Since the surface layer ¢ is a material system with a well-defined volume
and material content, its thermodynamic properties require no special defini-
tion. We may speak of its temperature, Helmholtz function, composition, and
so on just as for a homogeneous bulk phase. The only functions that call
for special comment are the pressure and the interfacial tension. In any
homogeneous bulk phase the force across any unit area is equal in all direc-
tions and is called the pressure. But in o the force across unit area is not the
same in all directions. If, however, we choose any plane of unit area parallel
to AA" and BB’, then the force normal to it has the same value for all posi-
tions of the plane whether it lie in «, B, or o; this value of the force normal
to unit area is called the pressure P. Suppose, on the other hand, we choose
a plane perpendicular to AA’ and extending below AA’ and above BB’;
let this plane have the form of a rectangle of height 4 (parallel to AB) and
of thickness / (perpendicular to the plane of the paper). Then the force
across this plane will be equal to Phl—yl, where P is the above-defined
pressure and y is called the interfacial tension. If the height of this plane is
chosen to extend exactly from AA’ to BB’, then the force across it will be
equal to Pt/—yl if the height AB is denoted by t. Let the surface layer have
an area 4 and a volume V° so that

Ve=1A. 1.54.1

Suppose the area to be increased to 4 +dA, the thickness to t+dt, and the
volume to ¥°+dV°, the material content remaining unaltered. Then the
work done on o by the forces across AA’ and BB’ is —PAdt. The work
done by the forces parallel to the planes AA’ and BB’ is independent of the
shape of the perimeter and for the sake of simplicity we may suppose the
perimeter to be a rectangle. The work done by the latter forces is then
evidently — (Pr—y)dA. The total work done on o is therefore
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—PAdt—(Pr—y)dA= —P(Adt+1dA4)+ydA
= —PdV°+ydA. 1.54.2

This expression takes the place of —PdV” for a homogeneous bulk phase.

§1.55 Helmholtz function of surface layer

For the most general variation of the Helmholtz function of a homogeneous
bulk phase we have the fundamental equation (1.28.7)

dA%= —S*dT - PdV*+Y wdn;. 1.55.1

For a surface phase o the dependence of the Helmholtz function on the
temperature and the composition will be exactly analogous to that for a
bulk phase; this follows directly from the definitions of entropy and chemical
potentials. But for its dependence on size and shape we must replace
—PdV* by the expression (1.54.2). We thus obtain the formula

d#°=—-S°dT—PdV°+ydA+) ydnf. 1.55.2
There is no need to add superscripts to T, P, y; because these must have

values uniform throughout o, B, and ¢ in order that there may be thermal,
hydrostatic, and physico-chemical equilibrium.

§1.56 Integrated relation. Gibbs function of surface phase

Since equation (1.55.2) is homogeneous of first degree in £°, S°, V°, 4,
and nf it follows by Euler’s theorem that

A°+PV ~yA=Y nip;. 1.56.1

This formula is the analogue of
/F°’+PV“=Z n; 1.56.2
for a bulk phase.
In analogy with the definition of the Gibbs function G* of a bulk phase
G*=U"~TS*+PV*=4"+PV* 1.56.3
we now define the Gibbs function G° of the surface phase by

G'=U—TS°+PV°—yA=A°"+PV°—y4 1.56.4
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We deduce from (1.55.1) and (4)
dG°= —~S°dT+V°dP—Ady+Y p;dn 1.56.5
G°=Y niu. 1.56.6
From time to time papers have been published maintaining that y; has a
value 4 in the surface differing from its value % = u? in the two bulk phases.
The worst of these papers are sheer nonsense, the best of them merely con-
fused. In the better papers the quantity denoted by yf is a different quantity

from that denoted by y; in the present text which follows Gibbs.
The last two formulae are the analogues of

dG*=~S*dT + V*dP+Y p,dn} 1.56.7
G“:Z n; u; 1.56.8
for a bulk phase a. From the above relations it is evident that, as in a bulk
phase, the chemical potential y; is equal to the partial Gibbs function
defined by (0G/0n;)r, p, y,n,
§1.57 Analogue of Gibbs—Duhem relation

If we differentiate (1.56.6) we obtain
dG°=Y wdnf+Y nidy, 1.57.1
and subtracting (1.56.5) from this

S°dT—V°dP+ Ady+Y nfdu,=0 1.57.2

which is the analogue for a surface phase of the Gibbs—Duhem relation
(1.30.2) for a bulk phase.
If we divide (2) throughout by 4 we obtain the more convenient form;

SGdT—tdP+dy+) I'{dy;=0 1.57.3
where S denotes S°/4 and I'; denotes the amount of the species 7 in unit
area of the surface phase ¢ and is thus defined by

Iy=n{|A. 1.57.4

We recall that 7 is the thickness of the surface layer, that is to say the length
AB in figure 1.2.
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§1.58 Invariance of relations

We must now study what happens to the several formulae for surface layers
if either of the chosen boundaries is moved in a direction normal to itself.
We may regard the volume V° of the surface layer as defined in terms of the
volume V* of the whole system and the volumes ¥* and V® of the two bulk
phases by the equation

Ve=vVE_y*_yB, 1.58.1

Similarly U°, S°, and nj are defined by

Ue=U*-U*-UP 1.58.2
S°=8*—§*—SP 1.58.3
nf=nf—n—np. 1.58.4

If now the geometrical surface AA’ is moved so that ¥* is decreased by an
amount V%6 then it is evident that ¥° becomes increased by the same
amount V*3% At the same time U’ §° n{ become increased by U%5°,
S5%8%, n?d% It is readily verified that all the formulae of §1.54 to §1.57 remain
unaltered. Exactly the same considerations apply if the geometrical surface
BB’ is moved so that ¥? is decreased by an amount VP8P, In particular the
value of yA4 remains invariant and consequently the value of y remains
invariant. We shall see in §1.64 that for a curved surface the value of y is
not invariant.

§1.59 Gibbs geometrical surface

We have hitherto postulated that the inhomogeneous layer is completely
confined between the geometrical surfaces AA’ and BB’. This restriction
may be removed if we accept the possibility that some of the quantities
U°, §°, n{ may become negative. In particular we may make the two surfaces
AA’ and BB’ coincide somewhere inside the inhomogeneous layer. This
convention defined by

V°=0 1.59.1

was used by Gibbs. It is more elegant but more difficult to visualize than the
treatment based on figure 1.2 with ¥°>0. The single geometrical surface is
called the Gibbs geometrical surface.

According to Gibbs’ convention formulae (1.55.2), (1.56.1), (1.56.4),
(1.56.5), and (1.56.6) reduce to
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4= —S"dT +7dA+ Y pdn 1.59.2
U°—TS°—yA=Z ns u; 1.59.3
G*=U°—TS°—yA 1.59.4
dG°= —S°dT—Ad'y+‘i_,:, w;dnf 1.59.5
=3, nh, 1.59.6

respectively. These formulae and the value of y are all invariant with respect
to the position of the Gibbs geometrical surface.

In the simplest system, namely a single substance existing as liquid+
vapour with a planar boundary, it is convenient to place the Gibbs geome-
trical surface so that n°=0. Formula (2) then reduces to

dAF°=—-SdT +ydA. 1.59.7

§1.60 Interfacial tension of curved interface

We must now consider under what conditions the formulae already derived
for plane interfaces may be applied to curved interfaces. We shall see that
the formulae strictly derived for plane interfaces may be applied to curved
interfaces with an accuracy sufficient for experimental purposes provided
that the thickness of the inhomogeneous surface layeris small compared with
its radii of curvature*.

For the sake of simplicity let us first consider a system consisting of two
homogeneous bulk phases o and B connected by a surface layer o having the
form of a circular cylindrical shell. Figure 1.3 shows a cross-section of the
phases o and B separated by the surface layer o, bounded by the circular
cylinders AA’ and BB’ with common axis O. There is complete homogeneity
in the direction normal to the diagram. The properties of the surface layer &
are supposed identical at all points the same distance from the axis through
O. Throughout the phase o and extending up to AA’ there is a uniform
pressure P*; throughout the phase p, and extending down to BB’, there is a
uniform pressure PP, Between AA’ and BB’ the pressure P, parallel to the
radii of the cylinders AA’ and BB’ varies continuously, but not necessarily
monotonically, from the value P* to the value P*.

In the previous discussion of plane surfaces it was pointed out that the geo-
metrical planes AA’ and BB’ may be placed an arbitrary distance apart.

* Guggenheim, Trans. Faraday Soc. 1940 36 397.
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For the present discussion of curved surfaces it is on the contrary postulated
that the circular cylindrical surfaces AA’ and BB’ should be placed as near
together as is consistent with the condition that the inhomogeneous layer
be contained bztween them. According to this condition we may usually
expect the distance AB to be about 10”7 cm. We shall denote by a distances
measured radially from O, and in particular by a, and ag, the distances OA
and OB respectively.

o

Fig. 1.3. Curved interface between two phases

Whereas the force per unit area across any element of surface inside either
homogeneous phase is independent of the orientation of the element (Pascal’s
law), this is not the case in the inhomogeneous layer o. It is convenient to
denote the force per unit area in the direction parallel to the surface AA’
and BB’ by P,—Q. Both P, and Q are functions of a. Q is zero at
a=a, and at a=ajg, but, at least somewhere between, Q is greater than zero.
It is conceivable that Q might be negative somewhere between a=a, and
a=gqg, but its average value in this range is unquestionably positive.

According to elementary statics the mechanical equilibrium of the matter
enclosed by AA'B’'B requires that for all values of a

d(P.a)=(P,—Q)da 1.60.1
or
dP,= —(Q/a)da. 1.60.2

If we integrate (2) from a; to a, we obtain

PropP= f “(0ja)a. 1.60.3
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We now arbitrarily choose any length 4 subject only to the restriction

a,<a<ag 1.60.4
and we define a quantity 3 by
A 8
y=&f (Q/a)da. 1.60.5
From (3) and (5) we deduce
P*—PP=3/a  (circular cylinder). 1.60.6

For the sake of simplicity we have considered an interface with the form of a
circular cylinder. For a spherical interface we find by similar reasoning in-
stead of (6)

P*—PP=2j/a  (sphere). 1.60.7

We may call y interfacial tension, but its exact value depends on the choice of
2. We must now distinguish between the case a;—a,<a, and the case when
this inequality does not hold. In the former case the distinction between
a,, ag, and 4 is trivial; we may then replace (6) by

P*—PP=yja  (circular cylinder) 1.60.8
and (7) by
P*—PP=2y/a  {sphere). 1.60.9

For an interface of other shapes the geometry is somewhat more complicated
and the general formula obtained is

P —PP=y/0, +7/0, 1.60.10

where ¢, @, are the principal radii ot curvature of the interface. We shall
seein §1.62 how formula (9) is the basis for measuring y. The quantities
measured are P*— PP and a; the value of 7y is then calculated by formula (9).
In the contrary case when the inequality ay—a,<a, does not hold y can
neither be uniquely defined nor accurately measured. A mathematical
analysis of this situation is given in §1.64.

§1.61 Pressure within a bubble

Let us consider a bubble having the form of a thin spherical film of liquid
of internal and external radii a; and a.. If P' denotes the pressure nearer
to the centre than the film, P the pressure further from the centre than the
film, and P’ the pressure in the liquid film itself, we have, according to (1.60.9)
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P'—P'=2y/a, 1.61.1

P'—P=2y/a, 1.61.2
so that .

P'—P°=(2/a;+2/a.)y 1.61.3

or neglecting the difference between a; and a,

P'— P =4yja. 1.61.4

§1.62 Determination of interfacial tension

The commonest method of determining the value of the interfacial tension y
depends on formula (1.60.9). This method is shown diagrammatically in
figure 1.4. Two fluid phases o and B are represented, the one shaded the

P P
!
ng g
8 7,
. A 7 A - A"
7 g g 7

Q Qo

Fig. 1.4. Capillary rise due to interfacial tension

other not shaded. They are separated partly by the plane surfaces AA”
and A'A’’, and partly by the curved surface BB’ in the capillary tube
PP'Q'Q of internal radius ». We may, with sufficient accuracy, regard the
surface BB’ as a segment of a sphere. Let the centre of this sphere be denoted
by O and let @ be the angle between OB and the horizontal OX or alter-
natively the angle between the tangential plane to BB’ at B and the wall of
the vertical capillary tube. Then the radius of curvature of the surface BB’
is ricos 6.

Let P° denote the pressure at the plane surfaces AA” and A’A"". It will
also be the pressure inside the capillary tube at the height AA’. Let the pres-
sures at the height BB be denoted by P* in the phase o and by P* in the phase
B. Then

P*=P°—o%gh 1.62.1
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PP=P° —oPgh 1.62.2

where ¢, of denote the densities of the phases o and B, g is the acceleration
due to gravity, and A is the height AB. But, according to (1.60.9), since the
radius of curvature is r/cos@

P®— P*=2y(cos §)/r. 1.62.3
Comparing (1), (2), and (3) we obtain
2y(cos 8)/r=(0"—0")gh. 1.62.4

Thus, from measurement of ¢%, ¢, r, 8, and # we can calculate y.

In the case that the surface BB’ is concave towards the bottom, its radius
of curvature will have the opposite sign, and so 4 will also have the opposite
sign. That is to say, BB’ will lie below AA’.

§1.63 Independence of interfacial tension of curvature

Let us now turn to the question whether the interfacial tension depends on
the curvatures. We shall see that when the question is precisely defined it
answers itself. In asking the question it is not sufficient to state that we vary
the curvatures; we require also to state what we keep constant. For the
question to be useful it should apply to the actual conditions of the experi-
mental measurement of interfacial tension. For definiteness let us consider
the capillary rise method described in the preceding section. The values of
the temperature T and the chemical potentials u; are uniform throughout
the system, and so, whatever be the size and shape of the capillary, these
variables have the same values at the curved surface, where the surface tension
is measured, as in the bulk phases. Hence to be useful the question should be
worded: how does y depend on g, ¢, for given values of T and the y;’s?
According to equation (1.57.3) the variation of y under these restrictions
is given by

dy=1dP. 1.63.1

In its present application the ambiguity in the exact meaning of P does
not matter, since it can be verified that (P*—PP)t is negligible. If now we
consider a curved interface, say in a capillary, in equilibrium with a plane
interface and we integrate (1) from the pressure at the plane surface to the
pressure at the curved interface (either side of it) we again find that the
integral of the right side is always negligible. Consequently y has effectively
the same value for the curved surface as for the plane surface with which it is
in equilibrium. This is a statement of a principle usually assumed whenever
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an interfacial tension is measured. It is experimentally verified by the fact
that within the experimental accuracy the same value is found for the inter-
facial tension when capillaries of different size are used, but this verification
can be realized only for capillaries with diameters considerably greater than
the lower bound allowed by the theory.

Gibbs summed up this situation in the words ‘it will generally be easy to
determine the surface tension in terms of the temperature and the chemical
potentials of the several component species with considerable accuracy
for plane surfaces, and extremely difficult or impossible to determine the
fundamental equation more completely’.

§1.64 Mathematical analysis of curved interface

We have seen that it is extremely difficult if not impossible to devise any
experiment which will determine the dependence of interfacial tension on
curvature. This follows from the fact that the thickness of the interface is
always extremely small compared with its radius of curvature; if this were
not so, the interfacial tension could not be measured at all. The present
section is concerned with a more exact mathematical analysis of this situa-
tion*. The reader is warned that the physical conclusions are entirely neg-
ative.

For the present discussion it is sufficient to consider only a spherical
interface and it is convenient to follow Gibbs in describing the properties
of the system by means of a single geometrical spherical surface lying inside
the interfacial layer and concentric with it. For a chosen geometrical
surface of area 4 the interfacial tension y is defined by the relation

UP=TS*-Y ynf=—PV*—P*VP1y4 1.64.1

or by the equivalent relation

U*—TS*+PPVE=Y yuni=—(P*—PP)V*+yA. 1.64.2

Since all the quantities on the left, in particular U*, S¥, V¥, n? are invariant
with respect to a change in the choice of the Gibbs geometrical surface, it
follows that the right side is also invariant. But since a change in the Gibbs
geometrical surface involves a change in ¥* but not in P* nor in PP we may
expect it also to change the value of y. In order to investigate this change we
denote the radius of the Gibbs geometrical surface by «. We have

* Guggenheim, Research 1957 10 478.
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V*=4na’3 1.64.3
A=4na® 1.64.4

and consequently
ya? —3(P*— P?)a® = invariant. 1.64.5

Differentiating (5) with respect to a we obtain
P*—P?=2y/a +dy/da. 1.64.6

If we denote by a, the value of a at which y has a minimum value y, we obtain
from (6)
P*—PP=2y /a, 1.64.7

which is of the same form as if there were a tension located exactly at the
Gibbs geometrical surface of radius a,. This surface is accordingly called
the surface of tension. Substituting from (7) into (5) we obtain

Vaz_g‘ytaa/at:%fytatz 1.64.8
y/y.=3ala,+3al|a®. 1.64.9
From the form of (9) due to Kondo* it follows that y, is indeed a minimum,
not a maximum, and that the minimum is unique. Many relations are
simplified by choosing the surface of tension as the Gibbs geometrical surface

since any term containing dy/da vanishes.
It is convenient for some purposes to define a quantity ¢ by

adlad=1+3e. 1.64.10
It is clear that e< 1 if the thickness of the interface is small compared with
its radius of curvature. Using (10) we can rewrite (9) as
=31 +3e) +4(1+36)7*
=1+¢>+0(e%) 1.64.11
where O(e?) denotes small terms of order &>.
If we denote the amount of the substance i per unit volume in the interiors

of the bulk phases o and B by ¢ and ¢f respectively, then the surface con-
centration I'; is defined by

n?:c?l/“-}-ciﬁVB-}-FiA, 1.64.12

Since 1} is of course independent of the choice of the Gibbs geometrical
surface it follows that the right hand side of (12) must be invariant. In terms
of the radius a this implies

* Kondo, J. Chem. Phys. 1955 25 662.
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(¢t —cP)a® + I';a* =invariant. 1.64.13
For a single substance we may drop the subscript i and write
3(c*—c?)a® +I'a* =invariant. 1.64.14
In particular
= cPa® +Ta*=4(c*—cP)al +T'al. 1.64.15

We now choose a value of @ to make I' vanish. We indicate this by the sub-
script , and call the Gibbs geometrical surface with this radius the auxiliary
surface. We have then

Lal=3(c"~cP)a~a?). 1.64.16
It is convenient for some purposes to rewrite (16) as
I j(c*—cP)=¢,a, 1.64.17
where ¢, is defined by
ajla}=1+3e,. 1.64.18

Thermodynamics alone can predict neither the magnitude of ¢, nor the sign
of ¢, nor the dependence of ¢, on a,. Molecular theory indicates that |g,|<1
if a, is large compared with molecular dimensions. If we denote by 7, the
value of 7y referred to the auxiliary surface, we have according to (11)

valne=3(1+36)* +3(1+36,)7F
=1+¢e2+0(el) 1.64.19

where O(e)) denotes small terms of order &2.

Having defined y, uniquely we shall now study how the surface tension
between a spherical portion of liquid of a single substance and its surround-
ing vapour depends on the radius of the sphere or, to be more precise,
how y, depends on a,. We have at constant temperature the thermodynamic
relations

dy,=—-rI,du 1.64.20
dy=dy*=dpP*/c* 1.64.21
dp=duP=dP¥c? 1.64.22

where ¢* and cP are the concentrations defined by c=n/V. From (21) and
(22) we deduce using (7)

du=d(P*— PP)j(c*— c*)=d(2y/a)/(c* — cP) 1.64.23
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and substituting this into (20)
dy,= “Ft(ca—cp)_ ld(Z‘yt/a‘). 1.64.24

Formula (24) does not really tell us much about the dependence of y, on
a, because we have no means of measuring I',. By using (17) we can trans-
form (24) to
dy,= —e,a,d2y/a,) 1.64.25
or
dln y,/d In a,=2¢,/(1 +2¢,). 1.64.26

The relation (26) is due to Tolman*. It is elegant but uninformative because
g, is defined according to (18) in terms of a,/a,. As already mentioned
thermodynamics tells us nothing about the magnitude or even the sign of ¢,
and, as emphasized by Koenig!, we have no means of measuring ¢,. Instead
of claiming that (26) tells us anything about dy,/da, it would be more realistic
to say that if we could measure dy,/da,, that is to say the dependence of
surface tension on curvature, we could then use (26) to calculate ¢, and so
a,/a,. In fact dy/da, is too small to be experimentally determined and this
merely confirms that |e,|<1.

The several experimental methods of determining surface tension are ali
based on the use of an equation formally resembling (7). In fact the experi-
mental value y, of the surface tension is calculated from the formula

Ye=3(P*— P%)a, 1.64.27

where a, is the radius of the spherical interface estimated either visually or
in the capillary-rise method estimated from the radius of the capillary.
The most that can be said about the relation of a, to g, is that

a.ja,=1+0OC(e,). 1.64.28
Consequently the most that can be said about the relation of y. to v, is

Ye/Pe=14+0C(e,). 1.64.29

§1.65 Basis of thermodynamic laws

The zeroth law in §1.07, the first law in §1.10, and the second law in §1.20
have all been quoted as fundamentally independent assumptions. From this
point of view their justification is the empirical fact that all conclusions from

* Tolman, J. Chem. Phys. 1949 17 333.
t Koenig, J. Chem. Phys. 1950 18 449.
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these assumptions are without exception in agreement with the experimentally
observed behaviour in nature.

The form in which these laws have been enunciated is essentially that
used by Born*. There are other alternative forms; some more, others less
abstract, but all of an entirely empirical nature; that is to say that their
justification is agreement between their implications on the one hand and
experiment on the other.

It is, however, possible to obtain a deeper insight into the fundamental
principles from a statistical point of view. It is in fact possible to derive
these principles from our knowledge of the structure of matter including
the elements of quantum theory together with a single statistical assumption
of a very general form. It is a matter of taste whether to choose as a basis
several empirical principles which make reference neither to atomic theory
nor to quantum theory, or to choose a single principle superposed on atomic
theory and quantum theory. The former choice, the one adopted in this
book, is the method of classical thermodynamics; the latter choice corresponds
to the more modern science which we call statistical thermodynamics.

There are however other relations of a general nature which follow
naturally and directly from the statistical thermodynamic formulation, but
which cannot be derived from the zeroth, first, and second laws of classical
thermodynamics. The relations to which we refer are of several types con-
cerning respectively
(a) entropy changes in highly disperse systems (i.e. gases);

(b) entropy changes in very cold systems (i.e. when T—0);

(c) entropy changes associated with mixing of very similar substances

(e.g. isotopes).

The three types are of comparable importance. They resemble one another
in relating to entropy changes. Their formulation in terms of classical
thermodynamics is either complicated or inaccurate or else involves reference
to conceptions inherently foreign to classical thermodynamics. As already
mentioned they all follow naturally and directly from the statistical thermo-
dynamic formulation.

We shall devote the following chapter to a digression on statistical
thermodynamics, describing in general terms the methods of this
science just sufficiently to give the reader an idea of the source of the relations
in question without attempting to derive them in detail. The reader interested
in the complete derivations must refer to a standard text-book on statistical
thermodynamics.

* Born, Phys. Z. 1921 22 218.
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§1.66 Third law

It has been customary to refer to the three types of general relations men-
tioned in the preceding section in three quite different ways. The relations
of type (a) are referred to as the determination of entropy constants, those
of type (b) as the third law of thermodynamics and those of type (c) merely
as the formulae for entropy of mixing. This biased discrimination between
types of relations of comparable importance and generality is difficult to
defend. We accordingly reject this unbalanced terminology and instead
choose as our third law the following statement.

By the standard methods of statistical thermodynamics it is possible to
derive for certain entropy changes general formulae which cannot be
derived from the zeroth, first, or second laws of classical thermodynamics.
In particular one can obtain formulae for entropy changes in highly disperse
systems (i.e. gases), for those in very cold systems (i.e. when T—0), and for
those associated with the mixing of very similar substances (e.g. isotopes).



