63. 71. An electron and a proton of same velocity enter a The velocity of a helium nucleus travelling in a curved path in a magnetic field is V. The velocity magnetic field in transverse direction. The ratio of of a proton moving in the same curved path in the the radii of their paths is 3) 1: 1847 4) 1847:1 same magnetic field is 1)1:1 2) 1:8 1.V 2.4V 3.2V 4. V/2 72. A proton projected with kinetic energy K describes 64. An electron enters a magnetic field of 0.01 T with a circle of radius r in a uniform magnetic field. With a velocity of 10^7 m/s, describing a circular path of what kinetic energy should an a-particle be radius 0.6 cm. Then the value of e/m of electron is projected in the same magnetic field so that it $1.1.76 \times 10^{11} \text{ C/kg}$ $2.2.04 \times 10^{11} \text{ C/kg}$ describes a circle of radius 2r? $3.1.72 \times 10^{11} \text{ C/kg}$ 4.1.66 × 10¹¹ C/kg 1) $\frac{K}{4}$ 2) $\frac{K}{2}$ 3) 2K 65. In Thomson's method, a beam of electrons 4) 4K accelerated through a p.d. of 285 volt, passes 73. In Thomson's experiment for determining e/m, the undeflected through perpendicular electric and potential difference between the cathode and the magnetic fields of intensities 10⁵ V/m and 10⁻² wb/ anode is same as that between the deflecting plates m^2 respectively. Then the value of e/m of electron is (in the region of crossed fields). If the potential 1. $1.75 \times 10^{11} \text{ C/kg}$ 2. 1.66 \times 10¹¹ C/kg difference is doubled, by what factor should the 4. 1.89 \times 10¹¹ C/kg 3. 1.84 \times 10¹¹ C/kg magnetic field be increased to ensure that the A proton, a deuteron and an α -particle with the 66. electron beam remains undeflected? same K.E. enter a region of uniform magnetic field 1) $\sqrt{2}$ 2) 2 3) $2\sqrt{2}$ 4) 4 at right angles to the field. The ratio of the radii of An electron starts from rest and travels 0.9 m in their circular paths being 74. an electric field of 200 V/m. After this, it enters a $1.\sqrt{2}:1:1$ $2.1:\sqrt{2}:1$ magnetic field at right angles to its direction of $3.1:1:\sqrt{2}$ 4.1:1:1motion. If the radius of circular path of the electron A proton, a deuteron and an α -particle are 67. is 9 cm, the magnetic field induction is (Given accelerated through the same p.d. of V volt. The $e=1.6 \times 10^{-19}$ C, m=9x10⁻³¹kg) velocities acquired by them are in the ratio 1) 5 x 10⁻⁴ wb/m² 2) 5 x 10⁻⁵ wb/m² 4) 5 x 10^{-2} wb/m² 1. 1 : 1 : $\sqrt{2}$ 2. 1 : $\sqrt{2}$: 1 3) 5 x 10⁻³ wb/m² The electric field can just support a water droplet 75. 4. $\sqrt{2}:1:1$ 3.1:1:1 1.0x10⁻⁶m in diameter carrying one electron An electron enters a magnetic field of intensity 68. charge? 10^{-4} Wb/m², with a velocity of 10^{6} m/s and 1) $3.21 \times 10^4 \text{ v/m}$ 2) $2.31 \times 10^4 \text{ v/m}$ describes a circular path of radius 5.6 cm. The 3) $1.32 \times 10^4 \text{ v/m}$ 4) $6.42 \times 10^4 \text{ v/m}$ value of e/m of electron is 76. An α -particle of mass 6.65x10⁻²⁷kg travels at 1. 1.78 x 10¹¹ C/kg 2. 1.88 x 10¹¹ C/kg right angles to a magnetic field of 0.2T with a speed 3. 1.68 x 10¹¹ C/kg 4. 1.66 x 10¹¹ C/kg of $6x10^5$ m/s. The acceleration of the 69. Electrons enter a uniform magnetic field of intensity α -particle will be 150×10^{-4} T, perpendicular to it with a velocity of 2) 5.77x10¹¹ m/s² 1) 7.55x10¹¹ m/s² 1.76×10^8 m/s. Then the radius of the circular path 3) $7.55 \times 10^{12} \text{ m/s}^2$ 4) 5.77x10¹² m/s² in which they travel is 77. A proton and an a-particle are accelerated through (given e/m of electron = $1.76 \times 10^{11} \text{ C/kg}$). the same potential. The ratio of their velocities is 2.0.066m 1.0.0033 m 1)1:2 2) 1:4 3) 1:1 4) $\sqrt{2}$:1 3.0.0044m 4.0.0055m MIllikan's oil drop experiment 70. An electron moving with a speed of 2×10^7 m/s A water drop of radius 10⁻⁶ m is charged with one 78. enters a magnetic field of intensity 1.5 Wb/m², in a electron. The electric field required to keep it direction perpendicular to it. The force acting on it stationary is (given density of water $\rho = 1000 \text{ kg}/$ is (given $e=1.6 \times 10^{-19} c$) m^3 ; g = 9.8 m/s²) 1. 4.8 x 10⁻¹⁹ N 2. 4.8 x 10⁻¹⁷ N $1.2.566 \ge 10^5 \text{V/m}$ 2. 1.283 x 10⁵ V/m 4.1.6 x 10⁻¹⁷ N 3. 4.8 x 10⁻¹² N $3.3.849 \text{ x} 10^5 \text{ V/m}$ 4. 5.132 x 10⁵ V/m

		1	
79.	In a Millikan's oil drop experiment, an oil drop of		incident on it. The maximum KE of photoelectrons
	mass 0.64×10^{-14} kg, carrying a charge		emitted is [given ch= 2×10^{-25} Jm]
	1.6×10^{-19} C remains stationary between two		1. 3.1 eV 2. 2.48 eV
	plates seperated by a distance of 5 mm. Given		3. 0.62 eV 4. 5. 58 eV
	$g=9.8 \text{ m/s}^2$; the voltage that must be applied	88.	Light from a hydrogen discharge tube is incident
	between the plates being	00.	on the cathode of a photocell. The work function
	1 0		-
	1. 980 V 2. 1960 V 3. 3920 V 4. 2880 V		of the cathode surface is 3.8 eV. In order to reduce
80.	The voltage required to balance an oil drop carrying		the photoelectric current to zero, the voltage of
	10 electrons between the plates of a capacitor		anode relative to cathode must be
	which are 10 mm apart, is (Given mass of the oil		1.+9.8V 29.8 V 3.+0.4 V 42.3 V
	drop = 3.2×10^{-15} kg, e = 1.6×10^{-19} C)	89.	When light of wavelength 2480 A° is incident on a
	1.16 V 2.160 v 3.196 V 4.19.6V		metal surface electrons are emitted with a maximum
81.	In Millikan's oil drop experiment, an oil drop		KE of 2 eV. The maximum KE of photoelectrons,
	having charge is held stationary with an external		if light of wavelength 1240 A° is incident on the
	p.d of 400 V. If the radius of the drop is doubled		same surface would be
	without any change in charge, the p.d required to		1. 4eV 2. 1 eV 3. 2eV 4. 7eV
		00	
	keep the drop stationary is $1 \times 200 \text{ M} = 21100 \text{ M} = 21200 \text{ M} = 41200 \text{ M}$	90.	The kinetic energies of photoelectrons ejected from
DITO	1) 800 V 2) 1600 V 3) 3200 V 4) 200 V		a metal surface by light of wavelength 2000 A°
	TO ELECTRIC EFFECT:		range from 0 to 3.2×10^{-19} J. The stopping
82.	In a photoelectric effect experiment, photons of		potential required will be equal to
	energy 5 eV are incident on a metal surface. They		1. 2 V 2. 6.2 V 3. 4.2 V 4. 9 eV
	liberate photoelectrons which are just stopped by	91.	The cutoff voltage in a photoelectric experment is
	an electrode at a potential of -3.5 V with respect		3V. Then the maximum KE of photoelectrons
	to the metal. The work function of the metal is		emitted is
	1.1.5 eV 2.3.5 eV 3.5.0 eV 4.8.5 eV		1. 3V 2. 3 eV 3. 6 eV 4. 9 eV
83.	Photons of energy 6 eV are incident on a potassium	92.	In Millikan's experiment, the slope of v versus V_{0}
	surface whose work function is 2.1 eV. The		graph was found to be 4.125×10^{-15} Vs. Given e
	corresponding stopping potential required is		$= 1.6 \times 10^{-19}$ C, the value of Planck's constant is
	1. 8.1 eV 2. 6 eV 3. 2. 1 eV 4. 3.9 eV		$1.6.2 \times 10^{-34}$ Js $2.6.4 \times 10^{-34}$ Js
84.	A source of light is kept at a distance of 1 m from		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
. т.	a photocell. The stopping potential is found to be	02	U.V Light of wavelength 300 A° is incident on
		93.	
	V volt. If the distance is doubled, the stopping		sodium surface. Then the maximum velocity of
	potential in volt will be		photoelectrons emitted is [neglect the work
	V ANY ANY ANY		function of sodium].
	1. $\frac{V}{2}$ 2. 2 V 3. V 4. 4 V		1. $3.8 \times 10^6 \text{ ms}^{-1}$ 2. $4.8 \times 10^6 \text{ ms}^{-1}$
85.	Light of wavelength 5000 A° is incident on a		$3.6 \text{ x } 10^5 \text{ ms}^{-1} \qquad 4.3 \text{ x } 10^5 \text{ ms}^{-1}$
05.	metallic surface of work function 3.31 eV. Will	94.	A photoelectron is moving with a maximum velocity
			of 10^6 m/s. Given $e = 1.6 \times 10^{-19}$ c, and $m = 9.1 \times 10^{-19}$ c
	there be photoelectric emission or not?		10^{-31} kg, the stopping potential is
	1. Yes 2. No		1.2.5 V 2.2.8 V 3.2.0 V 4.1.4 V
	3. may or may not be emitted	95.	If U.V. Light of wavelengths 800 A° and 700 A°
	4. data insufficient		can liberate electrons with kinetic energies of 1.8
86.	Light of wavelength 4000 A° is incident on a metal		eV and 4 eV respectively from hydrogen atom in
	surface of work function 2.5 eV. Given		ground state, then the value of planck's constant is
	h=6.62 x 10^{-34} Js, c = 3 x 10^8 m/s, the maximum		$\begin{array}{c} \text{ground state, then the value of planck $constant is} \\ 1.\ 6.57 \text{ x } 10^{-34} \text{ Js} \\ \end{array} \qquad \begin{array}{c} 2.\ 6.63 \text{ x } 10^{-34} \text{ Js} \\ \end{array}$
	KE of photoelectrons emitted and the		
	corresponding stopping potential are respectively		3. $6.66 \times 10^{-34} \text{ Js}$ 4. $6.77 \times 10^{-34} \text{ Js}$
	1. 0. 6 eV, 0.6 V 2. 2.5 eV, 2.5 V	96.	Light of wavelength 4 x 10^{-7} m, incident on a
	3. 3.1 eV, 3.1 V 4. 0.6 eV, 0.3 V		photocell using caesium photo cathode. Then the
87.	The photoelectric threshold wavelength for a metal		corresponding stopping potential found will be
07.	· ·		(given work function of ceasium as 1.9 eV)
	is 5000 A°. Light of wavelength 4000 A° is		1. 3.1 eV 2. 1.9 V 3. 1.2 eV 4. 1.2 V
-	PHYSICS 26	65	ATOMIC PHYSICS

07	A 5 mW and intig a gauge of a proton of (62 mm. Then		the surface is nearly (since $h = 6.6 \times 10^{-34}$ Is a
97.	A 5 mW radiating source operates at 662 nm. Then		the surface is nearly (given $h=6.6 \times 10^{-34}$ Js, $c=$
	the number of photons emitted by it per sec- ond $\frac{1}{2}$		$3 \times 10^8 \text{ m/s}$
	is (given h= 6.62×10^{-34} Js, c = 3×10^8 m/s)		$1.2.5 \times 10^{11} 2.5.0 \times 10^{11} 2.50 \times 10^{10}$
	1. 1.9×10^{16} 2. 1.67×10^{16}		$3.2.5 \times 10^{10} \qquad 4.5.0 \times 10^{10}$
	$3. 2.5 \times 10^{16} \qquad 4. 2.0 \times 10^{16}$	107.	An electromagnetic radiation of frequency 3×10^{15}
98.	A monochromatic source of light operating at 200		Hz falls on a photosurface whose workfunction is
	W emits 4 x 10^{20} photons / second. Then the		4 eV. Then the maximum velocity of the photo
	wavelength of light used is		electrons emitted from the surface is
	1. 3000 A° 2. 5000 A° 3. 4000 A° 4.6000 A°		(given $h = 6.6 \text{ x} 10^{-34} \text{ Js}, m = 9 \text{ x} 10^{-31} \text{ Kg}$)
99.	The work functions of sodium and copper are 2		1.1.7 x 10^6 ms ⁻¹ 2. 3.4 x 10^6 ms ⁻¹
	eV and 4 eV respectively. If the photoelectric cell	1.00	3. $2.5 \times 10^6 \text{ ms}^{-1}$ 4. $2.0 \times 10^6 \text{ ms}^{-1}$
	operates at 4000A° wavelength, then the metal to	108.	
	be used will be		threshold wavelength is 5040 A°. Then the value of
	1.sodium 2. copper		universal planck's constant is (given $c = 3 \times 10^8 \text{ m/s}$)
100	3. both 4. data insufficint		$1.6.7 \times 10^{-34} \text{ Js} \qquad 2.6.6 \times 10^{-34} \text{ Js}$
100.	If the frequency of light incident on a photosensitive	1.00	3. 6.8 x 10 ⁻³⁴ Js 4. 6.5 x 10 ⁻³⁴ Js
	metal plate be doubled, then the KE of	109.	-
	photoelectrons will be		of work function 2.2 eV. Photo electrons are emitted
	1. doubled 2. halved 3. quadrupled		from it with a maximum kinetic energy of 0.8 eV .
1.01	4. More than twice the previous value		Then the wavelength of incident radiation is
101.	Photons of frequencies 2.2×10^{15} Hz and 4.6×10^{15} Hz		1.6133 A° 2. 5133 A°
	are incident on a metal surface. The corresponding	110	3. 4133 A° 4. 7133 A°
	stopping potentials were found to be 6.6 V and 16.5 V	110.	The wavelength of incident light falling on a
	respectively. Given e=1.6 x 10 ⁻¹⁹ c, the value of universal		photosensitive surface is changed from 2000 to
	planck's constant is 1. 6.6 x 10 ⁻³⁴ Js 2. 6.7 x 10 ⁻³⁴ Js		2050 A^0 . The corresponding change in the
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		stopping potential is nearly
102	The number of photons emitted per second by a		1) 0.012V 2) 2.1V 3) 1.2V 4) 0.15V
102.	62 W source of monochromatic light of wavelength	111.	The work functions of metals A and B are in the
	4800 A° is		ratio 1:2. If light of frequencies f and 2 f are incident
	$1.1.5 \times 10^{19} 2.1.5 \times 10^{20}$		on metal surfaces of A and B respectively, the ratio
	$\begin{array}{c} 3.2.5 \times 10^{20} \\ 4.4 \times 10^{20} \end{array}$		of the maximum kinetic energies of photo electrons emitted is (f is greater than threshold frequency of
103.	Light quanta of energy 4.9 eV eject photoelectrons		A. 2f is greater than threshold frequency of B)
	from a metal with work function 4.5 eV. Then the		(1) 1:1 2) 1:2 3) 1:3 4) 1:4
	maximum momentum transmitted to the surface of	112.	The work function of a metal surface is 1 eV. A
	metal when each electron flies out is	112.	light of wavelength $3000A^0$ is incident on it. The
	1. $3.4 \times 10^{-25} \text{ kg ms}^{-1}$ 2. $6.8 \times 10^{-25} \text{ kg ms}^{-1}$		maximum velocity of the photoelectrons is nearly
	3. $4.0 \ge 10^{-25} \text{ kg ms}^{-1}$ 4. $1.7 \ge 10^{-25} \text{ kg ms}^{-1}$		1) 10^6 ms^{-1} 2) 10^4ms^{-1} 3) 10^2 ms^{-1} 4) 10 ms^{-1}
104.	Lights of wavelengths 2000 A° and 3000 A° emit	113.	
	photoelectrons from a metal surface whose threshold	-2.	of energy 20 eV are incident on the surface, then
	wavelength is 4000 A°. The ratio of the maximum		the stopping potential of the surface is
	KE's of the photo electrons emitted is nearly		1) 5 V 2) 10 V 3) 15 V 4) 20 V
	1. 1:3 2. 3:1 3. 6:1 4. 2 : 1	114.	A small metal plate (work function=2ev) is placed at
105.	Photons of energies 1 eV and 2.5 eV are incident		a distance of 2m from a monochromatic light source
	on a metal surface of work function 0.5 eV. Then		of wavelength 3.8 x 10 ⁻⁷ m and power 1.0 watt. If
	the ratio of maximum velocities with which the		the light falls normally on the plate, the maximum K.E.
	photoelectrons are emitted being		of electrons emitted from the plate is
100	1.1:4 2.4:1 3.2:1 4.1:2		1) 2.053 x 10^{-19} J 2) 3.253 x 10^{-19} J
106.	Light of wavelength 5000 A° falls on a sensitive		3) 5.253 x 10^{-19} J 4) 2.532 x 10^{-19} J
	surface. If the surface has received 10 ⁻⁷ Joule of		
	energy, then the number of photons incident on		
SR.P	PHYSICS 20	66	ATOMIC PHYSICS

115	In the above problem the maximum speed of	10.	
11.	emitted electrons will be nearly	124.	The K_{α} X-Ray emission line of Tungsten occur
	1) $7.036 \times 10^7 \text{m/s}$ 2) $7.036 \times 10^6 \text{m/s}$		at 0.021 nm. Then the energy difference betwee
	$3) 7.036 \times 10^{5} \text{m/s} \qquad 2) 7.036 \times 10^{4} \text{m/s}$		K and L levels in these atoms is about
X-R	AY SPECTRA:		1. 59 KeV 2.29 KeV
			3. 118 KeV 4. 87 KeV
110.	The λ_{\min} of a continuous X-Ray spectrum is 0.414	125.	The voltage applied to an X-ray bulb increases
	A° , when it operates at a p.d. of 30 KV. The		1.5 times the initial voltage. The short waveleng
	value of planck's constant, h, is (given $e = 1.6 x$ $10^{-19} C_{e} = 2 x 10^{8} m/c$)		limit of continuous X-ray spectrum shifts by 2
	10^{-19} C, c = 3 x 10^8 m/s) 1. 6.624 x 10^{-34} Js 2. 6.524 x 10^{-34} Js		pm. Then
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1) initial voltage applied is $160 \times 10^3 \text{kv}$
	_		2) initial voltage applied is 80×10^3 kv
117.	According to Moseley, for $K_{\alpha} line \sqrt{v} = a(z-b)$		3) initial wavelength is 75pm
	where $a = 5 \times 10^7$ Hz and $b = 1$. For a given		4) final wavelength is 150pm
	element, the wavelength of K_{α} line is 1/3 A°. Then	126.	e
			a continuous x-ray spectrum is emitted from the
	the atomic number of the element is $1,51,\ldots,2,61,\ldots,2,41,\ldots,4,55$		target. Which of the following wavelength is abse
110	1.51 2.61 3.41 4.55		in the x-ray spectrum if the x-ray tube is operating
118.	An X-Ray tube operates at a p.d. of 12.4 KV. Then the X Rays emitted will have a maximum		at 40,000 volt?
	Then the X-Rays emitted will have a maximum frequency of		1) $1.5 A^0$ 2) $0.5 A^0$ 3) $0.25 A^0$ 4) $1.0 A^0$
	1. 3×10^{15} Hz 2. 3×10^{16} Hz	c	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		mpton effect
119	If the p.d. applied across an X-Ray tube is 5 KV	127.	In a Compton effect experiment, the waveleng
117.	and the current through it is 2 mA, then the number		of incident photons is 3A°. If the incident radiation
	of electrons striking the target per second and the		is scattered through 60°, the wavelength
	speed with which the electrons strike the target		scattered radiation is nearly (given $h = 6.62 \times 10^{10}$
	are		Js, $m_0 = 9.1 \times 10^{-31} \text{ kg}$, $c = 3 \times 10^8 \text{ m/s}$) 1. 3.024 A° 2. 3.012 A°
	$1.1.25 \text{ x } 10^{16}, 4.2 \text{ x } 10^7 \text{ ms}^{-1}$		$3.3.048A^{\circ}$ $4.2.988A^{\circ}$
	2. 2.5 x 10^{16} , 4.2 x 10^7 ms ⁻¹	128	A photon of energy 1.02 Mev undergoes compto
	$3.2 \times 10^{16}, 4 \times 10^{7} \text{ ms}^{-1}$	120.	scattering from a block through 180°. Then th
	4.0,0		energy of the scattered photon is(Assume the value
120.	An X-Ray tube allows 5 mA at a p.d. of 100 KV.		of h, m_0 , c)
	Then the rate of production of heat at the target is		1.0.206 MeV 2.0.103 MeV
	(assuming that only 0.1% of incident energy is		3. 0.412 MeV 4. Zero
	converted into X-Radiations)	129.	A photon recoils back after striking a free electro
	1. 500 cal s ⁻¹ 2. 5 cal s ⁻¹		Then the value of compton shift is (Assume the
	3. 119.4 cal s ⁻¹ 4. zero		values of h, m m c)
121.	An X-Ray tube operates at 18KV. The velocity		1. 0.0242 Ű 2. 0.0484 Ű
	of the electrons bombarding the target being nearly		3. 0.0121 A° 4. 0.242 A°
	1. $8 \times 10^7 \text{ ms}^{-1}$ 2. $6 \times 10^7 \text{ ms}^{-1}$	MAT	ITER WAVES:
	3. 8 x 10^6 ms ⁻¹ 4. 6 x 10^6 ms ⁻¹	130.	The de Broglie wavelength of an electron whi
122.	Given R=1.097 x 10^7 m ⁻¹ , the wavelength of K_{α}		falls through a p.d. of 100 V is
	line of silver $(z=47)$ being (take b=1 for K series)		1. 1.227 A° 2. 12.27 A°
	1. 0.674 A° 2. 0.574 A°		3. 0.1227 A° 4. 2.454 A°
	3. 0.774 A° 4. 0.287 A°	131.	Electrons are accelerated through a p.d. of 150
123.	The frequency of an X-Ray photon of momentum		Given $m = 9.1 \times 10^{-31} \text{ kg}$, $e = 1.6 \times 10^{-19}$
	2.25×10^{-23} kg m/s is nearly		$h = 6.62 \text{ x } 10^{-34} \text{ Js}$, the de Broglie waveleng
	(given $h = 6.63 \times 10^{-34} \text{ Js}, c = 3 \times 10^8 \text{ m/s}$)		associated with it is
	1.10 ¹⁸ Hz 2. 10^{17} Hz 3. 10^{16} HZ 4. 10^{19} Hz		$1.1.5 A^{\circ} 2.1.0 A^{\circ} 3.3.0 A^{\circ} 4.0.5 A^{\circ}$
	PHYSICS 20	67	ATOMIC PHYSI

122 The de Dreedie waveleneth associated with an	
132. The de Broglie wavelength associated with an electron of energy 500 eV is given by	<u>HINTS</u>
$(\text{take } h = 6.63 \text{ x } 10^{-34} \text{ Js}, m = 9.11 \text{ x } 10^{-31} \text{ kg})$	$\overline{2V_{e}}$
$1.0.28A^{\circ}$ 2. 1.410 A° 3.0.66 A° 4.0.55 A°	56) $v = \sqrt{\frac{2Ve}{m}}$
133. A proton when accelerated through a p.d of V	
volt has wavelength λ associated with it. An	v_{\cdot} V_{\cdot}
_	$57) \frac{v_1}{v_2} = \sqrt{\frac{V_1}{V_2}}$
α -particle to have the same λ must be	
accelerated through a p.d of	(58) (i) $v \propto \sqrt{V}$
accelerated through a p.d of 1) V volt 2) 4V volt 3) 2V volt 4) $\frac{V}{8}$ volt	$(ii) E \propto V$
134. An electron and a proton are accelerated through	59) $\frac{F_1}{F_2} = \frac{q_1}{q_2} \times \frac{v_1}{v_2}$
the same potential difference. The ratio of their de	$F_2 q_2 v_2$
Broglie wavelengths (λ_e / λ_p) is	rBe
	$60) v = \frac{rBe}{m}$
1) 1 2) $\frac{m_e}{m_p}$ 3) $\frac{m_p}{m}$ 4) $\sqrt{\frac{m_p}{m}}$	
$(1) (1) (2) (m_p) (3) (m_e) (4) (1) (m_e)$	61) $v = \frac{V}{dB}$
135. A proton and an α -particle are accelerated	dB
through the same p.d. The ratio of their deBroglie	4 3
wavelengths is	(78) $E = \frac{mg}{3} = \frac{-\pi rr}{3} \rho g$
1	78) $E = \frac{mg}{e} = \frac{\frac{4}{3}\pi rr^{3}\rho g}{e}$
1) $\sqrt{2}$ 2) $\frac{1}{\sqrt{2}}$ 3) $2\sqrt{2}$ 4) 2	62) $i = ef$ where f = frequency
136. If the momentum of an electron is changed by p_m ,	
then the de Broglie wavelength associated with it	$63) r = \frac{mv}{eB} \Rightarrow v \propto \left(\frac{e}{m}\right)$
changes by 0.5% . The initial momentum of electron	eB (m)
will be	(V)
1) $p_m/200$ 2) $p_m/100$ 3) $200p_m$ 4) $100p_m$	$79) Eq = mg \Rightarrow \left(\frac{V}{d}\right)q = mg$
137. If the energy of a particle is reduced to one fourth,	
then the percentage increase in its de Broglie	$64) r = \frac{mv}{eB} \Longrightarrow \left[\frac{e}{m}\right] = \frac{v}{rB}$
wavelength will be	eB [m] rB
1) 41% 2) 141% 3) 100% 4) 71%	(e) E
138. If the velocity of a particle is increased three times, then the percentage decrease in its de Broglie	$65) \left(\frac{e}{m}\right) = \frac{E}{rB^2}$
wavelength will be	
1) 33.3% 2) 66.6% 3) 99.9% 4) 22.2%	80) $Eq = mg \Rightarrow \left(\frac{V}{d}\right)ne = mg$
KEY	$(d)^{no}$
56.2 57.1 58.3 59.1 60.3 61.4 62.2	$\sqrt{2m(KF)}$
63.3 64.4 65.1 66.2 67.4 68.1 69.2	66) $r = \frac{mv}{eB} = \frac{\sqrt{2m(KE)}}{eB}$
70.3 71.3 72.4 73.1 74.1 75.1 76.4	
77.4 78.1 79.2 80.3 81.3 82.1 83.4	67) $v = \sqrt{\frac{2eV}{m}} \Rightarrow v \propto \sqrt{\frac{e}{m}}$
84.3 85.2 86.1 87.3 88.2 89.4 90.1	$ ^{\mathcal{O}}) v = \sqrt{\frac{m}{m}} \rightarrow v \propto \sqrt{\frac{m}{m}}$
91.2 92.4 93.1 94.2 95.1 96.4 97.2	
98.3 99.1 100.4 101.1 102.2 103.1 104.2	$68. \frac{e}{m} = \frac{v}{rB}$
105.4 106.1 107.1 108.2 109.3 110.4 111.2	
112.1 113.3 114.1 115.3 116.1 117.2 118.4 119.1 120.3 121.1 122.2 123.4 124.1 125.3	$r = \frac{v}{v}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$69. r = \frac{v}{\left(\frac{e}{m}\right)B}$
120.5 127.2 120.1 127.2 130.1 131.2 132.4 133.4 134.4 135.3 136.3 137.3 138.2	$(m)^{\mu}$
	70. $F = qvBSin\theta$
SR.PHYSICS 2	68 ATOMIC PHYSICS

107.
$$\frac{1}{2}mv^2 = (hv - w)$$

108. $w = \frac{hc}{\lambda_0}$
109. Incident energy is $E=2.2+0.8=3ev$
 $\therefore \lambda = \frac{12400}{3}A^{\circ}$
110. $hc\left\{\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right\} = e(V_1 - V_2)$
111. $\frac{v_1^2}{v_2^2} = \frac{E_1 - w_1}{E_2 - w_2}$
112. $\frac{hc}{\lambda} = w + \frac{1}{2}mv^2$
113. $V_0 = \left(\frac{E - w}{e}\right)$
114. $\left(\frac{hc}{\lambda}\right) = w + KE$
115. $\frac{hc}{\lambda} = w + \frac{1}{2}mv^2$
116. $eV = \frac{hc}{\lambda_{\min}}$
117. $\sqrt{\frac{c}{\lambda}} = a(z - b)$
118. $eV = hv$
119. $i = \frac{ne}{t} \Rightarrow \frac{n}{t} = \frac{i}{e}; eV = \frac{1}{2}mv^2$
120. $\frac{H}{t} = \left(\frac{iV \times 99.1}{100}\right)$
121. $v = \sqrt{\frac{2eV}{m}}$
122. $\frac{1}{\lambda_a} = R[z - b]^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2}\right]$
123. Frequency $v = \frac{pc}{h}$
124. $\Delta E = \frac{12400}{\lambda(in A^{\circ})}$

125.
$$eV_0 = \frac{hc}{\lambda_{\min}} => V_0 \alpha \frac{1}{\lambda_{\min}}$$

126. $\lambda_{\min} = \frac{hc}{eV_0}$ any wave length which is lessthen
 λ_{\min} will not be present.
127. $(\lambda^1 - \lambda) = 0.0242(1 - \cos \phi)$
128. $\Delta \lambda = \frac{h}{m_0 c}(1 - \cos \phi); E_2 = E_1 - (\frac{12400}{\Delta \lambda})$
129. $\Delta \lambda = 0.0242(1 - \cos \phi)$
130. $\lambda = \sqrt{\frac{150}{v}}$
131. $\lambda = \sqrt{\frac{150}{v}}$
132. $\lambda = \frac{h}{\sqrt{2m(KE)}}$
133. $\lambda = \frac{1}{\sqrt{2m(KE)}} \Rightarrow V_1 q_1 m_1 = V_2 q_2 m_2$
134. $\lambda = \frac{h}{\sqrt{2Vqm}} \Rightarrow \frac{\lambda_e}{\lambda_p} = \sqrt{\frac{m_p}{m_e}}$
135. $\frac{\lambda_p}{\lambda c} = \sqrt{\frac{q_a}{q_p} \times \frac{m_a}{m_p}}$
136. $\frac{\lambda_1}{\lambda_2} = \frac{P_2}{P_1}$
137. $\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{KE_2}{KE_1}}$
138. $\frac{\lambda_1}{\lambda_2} = \frac{V_2}{V_1}$
LEVEL-III
CATHODE RAYS:
139. The path of the cathode rays in an electric field
can be approximated to a circle. In order to double
the radius of the circular path keeping velocity
constant
1) Double the electric field
2) Have the electric field
3) Increase the electric field

140.	A doubly ionized He ⁺² atom travels at right angles		1)8 V 2)4 V 3) 2 V 4)1 V
	to a magnetic field of induction 0.4 T at a velocity	147.	. A charged particle is moving in a uniform magnetic
	of 10 ⁵ m/s describing a circle of radius r. A proton		field in a circular path. The energy of the particle is
	traveling with same speed in the same direction in		doubled. If the initial radius of the circular path
	the same field will describe a circle of radius		was R, the radius of the new circular path after the
	1) r/4 2) r/2 3) r 4) 2r		energy is doubled will be
141.	In a Millikan's set-up, a charged oil drop falls under gravity		1) R/2 2) $\sqrt{2}$ R 3) 2R 4) R/ $\sqrt{2}$
	with a certain terminal speed. The drop is held stationary	148.	
	applying suitable electric field and is found to carry 2 excess	1.00	located in a horizontal electric field having an
	electrons. Suddenly the drop is found to move upwards		intensity of $6.28 \times 10^5 \text{ v/m}$. The surrounding medium
	with the same terminal velocity. In this observation which		is air with coefficient of viscosity
	of the following possibilities appear to be most be fitting?		$\eta = 1.6 \text{ x } 10^{-5} \text{ NS/m}^2$. If this particle moves with a
	1) the electric field stops acting		uniform horizontal speed of 0.02 m/s , the number
	2) the drop looses the excess electrons		of electrons on it will be
	3) the drop picks up some additional electrons		1) 10 2) 20 3) 30 4) 40
	4) data insufficient	149.	, , , , ,
142.	In the Millikan's experiment, the oil drop is		cm in a magnetic field of 2×10^{-3} tesla. The speed
	subjected to a horizontal electric field of 2 N/C		and the potential difference through which the
	and the drop moves with a constant velocity making		electron should be accelerated to acquire this speed
	an angle of 45° with the horizontal. If the weight of		are ($e=1.6x1^{-19}c$, m=9.1 x 10 ⁻³¹ kg)
	the drop is W, then the electric charge, in coulomb,		1) 7x10 ⁷ m/s,13.9kV 2) 6x10 ⁴ m/s, 9.4kV
	on the drop is 1) W 2) W/2 3) W./4 4) W/8		3) $4.2 \times 10^4 \text{m/s}$, 12.4kV 4) $7 \times 10^8 \text{m/s}$, 1.39 kV
1/13	A charged oil drop falls with terminal velocity V_0	150.	8
145.	in the absence of electric field. An electric field E		of 10 ⁴ tesla. The angular frequency of revolution,
	keeps it stationary. The drop acquires additional		if mass is 9.1 x 10^{-31} kg and charge is $1.6x10^{-10}$
	charge q and starts moving upwards with velocity		¹⁹ coulomb, is
	V_0 . The initial charge on the drop was		1) 1.24 X 10 ⁷ rad/s 2) 2.42 X 10 ⁷ rad/s
	1) 4q = 2) 2q = 3) q = 4) q/2		3) 1.62 X 10 ⁷ rad/s 4) 1.758 X 10 ⁷ rad/s
144.	A charged oil drop is held stationary in an electric	151.	1 1 1
	field. The space surrounding the drop is exposed		500 V d.c supply. Assuming that an electron starts
	to a radioactive source and the drop moves with		from rest, its velocity after a nano second is 1) $1.5 < r = 106 m/s$
	different terminal velocities v, 2v, 3v etc. It is		1) 1.56 x 10 ⁶ m/s 2) 1.66 x 10 ⁶ m/s 3) 1.76 x 10 ⁶ m/s 4) 1.86 x 10 ⁶ m/s
	inferred that	152	A proton accelerated by a potential difference V
	1) Charge is conserved	132.	gets into the uniform electric field of a parallel plate
	2) Drop carries negative charge		capacitor whose plates extend over a length '1' in
	3) Charge is quantised		the motion direction. The field strength varies with
	4) Drop carries positive charge		time as $E=at$, where a is a constant. Assuming the
145.	A stream of electrons enters an electrical field		proton to be non-relativistic, the angle between
	normal to the lines of force with a velocity of 3×10^7		the motion directions of the proton before and after
	m/s. The electric intensity is 1800 v/m. While		its flight through the capacitor is, if the proton gets
	traveling through a distance of 10 cm, the electron		in the field at the moment $t=0$. (The edge effects
	beam is deflected by 2mm. Then e/m value in		are to be neglected)
	coulomb per kg is 1) $2x 10^{10}$ 2) $2x 10^{7}$ 2) $2x 10^{11}$ 4) $2x 10^{4}$		
116	1) $2x10^{10}$ 2) $2x10^{7}$ 3) $2x10^{11}$ 4) $2x10^{4}$ In Millikan's oil drop experiment, an oil drop of	1	$1 \tan^{-1} \left \frac{eal^2}{2m} \left(\frac{m}{2eV} \right)^{3/2} \right 2 \tan^{-1} \left \frac{el^2}{2} \left(\frac{m}{2eV} \right)^{1/2} \right $
140.	radius r and charge Q is held in equilibrium between	1)	2m(2eV) = 2(2eV)
	the plates of a charged parallel plate capacitor when		
	the potential difference is V.To keep a drop of		$\int eal^2(m) \int eal^2(m) \int l^2 E(m)^{3/2}$
	radius 2r and charge 2Q in equilibrium between	3)	$\tan^{-1}\left[\frac{eal^2}{2E}\left(\frac{m}{2V}\right)\right]$ 4) $\tan^{-1}\left[\frac{l^2E}{2m}\left(\frac{m}{2V}\right)^{3/2}\right]$
	the plates ,the potential difference required will be		

271

1.50	T /1 1 / 1 / 1 / 1 / 1		
153.	In a cathode-ray tube, an electron is accelerated		charge (Assume that the mass of the drop remains
	from rest through a potential difference of 1000volt		to be constant) $1 + 2 + 4 + 5$
	and enterd in a perpendicular electric field across		1) 1: 3: 4: 5 2) 1: 2: 3: 4 1) 1
	two parallel plates. The length of the deflecting plates	1.50	3) 2: 4: 6: 3 4) 4: 3: 2: 1
		159.	In the absence of electric field the oil drop falls
	the deflection of the electron in the electric field is		freely under gravity through a distance of 2.0 mm
	0.25 mm, the p.d. between the plates is		in 35.7 s. The radius of the drop, if the viscosity of
	1) 11.2 volt 2) 12.5 volt		air is $1.8 \times 10^{-5} \text{ Nsm}^{-2}$ and density of oil is 880
154	3) 10.5 volt 4) 16.4 volt		Kg/m ³ , is (neglect the buouyancy)
154.	A beam of protons with a velocity 4×10^5 m/s		1) 8.25×10^{-8} C 2) 7.25×10^{-7} C
	enters a uniform magnetic field of 0.3 tesla at an $\frac{1}{2}$	1.0	3) 6.25×10^{-8} C 4) 6.25×10^{-7} C
	angle of 60° to the magnetic field. The radius of	160.	A charged drop of radius 1.92mm is kept
	the helical path taken by the proton beam is nearly 12×10^{-3} m 22×10^{-5} m		stationary by the application of an electric field of 1.65×100 N/C in Millibra's gildren congriment
	1) 12 x 10 ⁻³ m 2) 12 x 10 ⁻⁵ m 3) 12 x 10 ⁻⁴ m 4) 21 x 10 ⁻³ m		1.65×10^6 N/C in Millikan's oil drop experiment.
155	3) 12×10^{-4} m 4) 21×10^{-3} m An electron beam accelerated from rest through a		The charge, if the density of oil is 920 Kg/m ³ , is 1) 1.72×10^{-18} 2) 1.62×10^{-19}
155.	potential difference of 5000V in vacuum is allowed		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	to impinge on a surface normally. The incident	161.	A drop of oil of radius 10^{-6} m carries a charge of
	current is 50mA, and if the electrons come to rest	101.	four times that of electron. If the density of oil is
	on striking the suface, the force on it is		2000 kg/m^3 , the potential difference which must
	1) 1.924×10^{-8} N 2) 2.1×10^{-8} N		be applied across the plates in Millikan's
	$3)1.6 \times 10^{-8} N \qquad 4) 1.6 \times 10^{-6} N$		experiment in order that the drop may float, when
156.	A particle of mass 1×10^{-20} kg and charge $+1.6 \times 10^{-10}$		the distance between the plates is 5mm apart, is
	19 C traveling with a velocity 1.28 x 10 ⁶ m/s in the		1) 620 V 2) 641 V 3) 541 V 4) 341 V
	+ x direction enters a region in which a uniform	162.	A charged drop with a mass of 5×10^{-14} Kg is in a
	electric field E and a uniform magnetic field of		plane horizontal capacitor, with the plates
	induction B are present such that $E_x = E_y = 0$,		separated by 0.01 m apart. When the electric field
	$E_z = 102.4 \text{kV/m} \text{ and } B_x = B_z = 0; B_v = 8 \text{ x } 10^{-2} \text{ wb/m}^2$		is absent, the air resistance makes the drop to fall
	. The particle enters this region at the origin at time		with a certain constant velocity. If a p.d of 6000
	t=0. The x,y and z coordinates of the particle at		volt is applied to the capacitor plates, the drop
	t=5 x 10 ⁻⁶ s are		falls with half the velocity. The charge on the drop
	1) (4.2,0,2) 2) (6.4,0,0) 3) (2,1.2,0) 4) (1,0,2)		is
157.	A particle of mass 9×10^{-31} kg, negative charge of		1) 3.083×10^{-13} C 2) 4.083×10^{-19} C
	1.6x10 ⁻¹⁹ coulomb is projected horizontally with a		3) 5.083 x 10 ⁻¹² C 4) 4.083C
	velocity of 10 ⁶ m/s into a region between two infinite	163.	H ⁺ , He ⁺ and O ⁺⁺ all having the same kinetic energy
	horizontal parallel plates of metal. The distance		pass through a region in which there is a uniform
	between the plates is 0.3cm and the particle enters		magnetic field perpendicular to their velocity. The
	0.1 cm below the top plate. The top and bottom		masses of H^+ , He^+ and O^{++} are respectively 1
	plates are connected to positive and negative		a.m.u, 4 a.m.u and 16 a.m.u. Then $1 \ge 14^{+}$
	terminals of a 30volt battery respectively. The		1) H ⁺ will be deflected most
	component of velocity just before it hits one of the		2) O^+ will be deflected most 2) Ustand O^+ will be deflected equally
	plates is 1) $4.2 \times 10^4 m/c$ 2) $1.88 \times 10^6 m/c$		3) He ⁺ and O ⁺⁺ will be deflected equally 4) hoth 1 and 2 are correct
	1) 4.2×10^4 m/s 2) 1.88×10^6 m/s 4) 1.78×10^3 m/s	164	4) both 1 and 3 are correct
150	3) 1.88×10^{6} m/s 4) 1.78×10^{3} m/s In the Millikan's Oil drop method, then d's applied	104.	A proton (mass m, charge e) projected with a velocity v passes undeviated through a region of
1.30.	In the Millikan's Oil drop method, the p.d's applied to the plates are measured as 750V, 250V, 187.5V		crossed electric and magnetic fields. With what
	and 150V so that the same oil drop is stationary,		velocity should an alpha particle (mass 4m, charge
	when it is made to pick up different charges by		-2e) be projected so that it passes undeviated
	ionizing the space between the plates continuously.		through the same region?
	The charges picked up are multiples of fundamental		$1) V \qquad 2) 2V \qquad 3) 4V \qquad 4) 8V$
	manapres of the manapres of fundamental		-,,,,,,,,,,-
SR.P	PHYSICS 27	72	ATOMIC PHYSICS

РНО	TO ELECTRIC EFFECT:	172. Photoelectrons emitted from a photo sensitive
165.	A small metal plate (work function=2ev) is placed	metal of work function 1eV describe a circle of
	at a distance of 2m from monochromatic light source	radius 0.1cm in a magnetic field of induction 10 ⁻
	of wavelength 4.8×10^{-7} m and power 1.0 watt.	tesla. The energy of the incident photons is
	The light falls normally on the plate. If a constant	(mass of electron = 9×10^{-31} kg)
	magnetic field of strength 10^4 T is applied parallel	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	to the metal surface, then the radius of the largest	X-RAY SPECTRA:
	circular path followed by the photo electrons is	
	1) 0.04 m 2) 0.04 cm 3) 0.04 mm 4)0.04 km	173. The X-ray wavelength of L_{α} line of platinum (z=78)
166.	For certain photosensitive material, a stopping	is 1.30 A ⁰ . The X-ray wavelength of L_{α} line of
	potential of 3.0 V is required for light of wavelength	Molybdenum ($z=42$) is (constant b=7.4)
	300 nm, 2.0 V for 400 nm and 1.0V for 600nm.	1) 5.41 A^{0} 2) 4.20 A^{0} 3) 2.70 A^{0} 4) 1.35 A^{0}
	The work function of the material is	174. In a Compton effect experiment, X-ray photons
	1) 2.5 ev 2) 1.5 ev 3) 2.0 ev 4)1.0 ev	of wavelength 0.22 A ⁰ suffer a Compton shift of
167	When a certain metallic surface is illuminated with	0.02 A^0 . The fractional change in the energy of the
/ -	monochromatic light of wavelength λ , the stopping	incident photons is
	potential for photoelectric current is	
	$3v_0$, when the same surface is illuminated with light	1) $\frac{1}{12}$ 2) $\frac{6}{7}$ 3) $\frac{5}{12}$ 4) $\frac{5}{7}$
	0	
	of wavelength 2λ , the stopping potential is v_0 . The	MATTER WAVES:
	threshold wavelength for this surface for	175. The de Broglie wavelength associated with an
	photoelectric effect is	electron of velocity 0.3 c and rest mass 9.1 x 10
	λ	³¹ kg is
	1) 6λ 2) 4λ 3) $\frac{\lambda}{4}$ 4) 8λ	1) 7.68 x 10^{-10} m 2) 7.68 x 10^{-12} m
168	Photons of energy 2.0 eV fall on a metal plate and	3) $5.7 \ge 10^{-12} = m$ 4) $9.1 \ge 10^{-12} = m$
	release photoelectrons with a maximum velocity	
	V. By decreasing λ by 25% the maximum velocity	KEY
		139.2 140.2 141.3 142.2 143.3 144.3 145.3
	of photoelectrons is doubled. The work function	
	of the metal of the material plate in eV is nearly	
	1) 2.22 2) 1.985 3) 2.35 4) 1.80	153.2 154.1 155.1 156.2 157.3 158.1 159.2
169.	When a metal surface is illuminated by light of wavelengths	160.2 161.2 162.2 163.4 164.1 165.1 166.4
	400 nm and 250 nm, the maximum velocities of the	167.2 168.4 169.1 170.3 171.2 172.1 173.1
	photoelectrons ejected are V and 2V respectively. The	174.1 175.2
	work function of the metal is	HINTS
	1) $2hc x 10^6 J$ 2) $1.5hc x 10^6 J$	mv^2 1
$\ _{I_{-}}$	3) hc x 10^6 J 4) 0.5hc x 10^6 J	139. Eq = $\frac{mv^2}{r} \Rightarrow E\alpha \frac{1}{r}$
170.	A small metal plate (work function=2ev) is placed	
	at a distance of 2m from a monochromatic light	mv 1
	source of wavelength 4.8 x 10^{-7} m and power 1.0	$r = \frac{1}{aB} \Rightarrow r \propto \frac{1}{(e)}$
	watt. The light falls normally on the plate. The	$r = \frac{mv}{qB} \Longrightarrow r \propto \frac{1}{\left(\frac{e}{m}\right)}$
	number of photons striking the metal plate per	(<i>m</i>)
	second per unit area will be	Eq
	1) $4.82 \ge 10^{12}$ 2) $4.82 \ge 10^{14}$	142. Tan $45^0 = \frac{Eq}{w}$
	3) $4.82 \ge 10^{16}$ 4) $4.82 \ge 10^{18}$	Eq = w
171.	A source of light is placed above a sphere of radius	$Lq - w$
	10cm. How many photoelectrons must be emitted	Eq
	by the sphere before emission of photoelectrons	450
	stops? The energy of incident photon is 4.2 eV	
	and the work function of the metal is 1.5 eV.	
	1) 2.08×10^{18} 2) 1.875×10^{8}	
	$3) 2.88 \times 10^{18} \qquad 4) 4 \times 10^{19}$	I w
L		

143.
$$6\pi \eta r V_0 = mg$$

 $Eq^1 = mg$
 $E(q^1 + q) = 6\pi \eta r V_0 + mg = 2mg = 2Eq^1$
145. $y = \frac{1}{2} \left(\frac{Eq}{m}\right) \left(\frac{x}{v}\right)^2$
146. $Eq = \frac{4}{3}\pi r^3 dg \Rightarrow \frac{Vq}{d} = \frac{4}{3}\pi r^3 dg \Rightarrow \frac{V_1q}{r_1^3} = \frac{V_2q}{r_2^3}$
147. $r \propto \sqrt{KE} \Rightarrow \frac{r_2}{r_1} = \sqrt{\frac{KE_2}{KE_1}}$
148. $Eq = 6\pi \eta rv \Rightarrow E(ne) = 6\pi \eta rv$
149. $Bqv = \frac{mv^2}{r}$
150. $w = \frac{Bq}{m}$
151. $V = \frac{Eq}{m}t$
152. $V_y = \left(\frac{Ee}{m}\right)t = \left(\frac{ate}{m}\right)t = \frac{eat^2}{2m}$
 $V_x = V$
 $\tan \theta = \frac{V_y}{V_x} and substituting$
 $t = \frac{1}{v} = \frac{1}{\sqrt{\frac{2Ve}{m}}}$
153. $y = \frac{1}{2}\frac{Eql^2}{mv^2} and \frac{1}{2}mv^2 = Vq$
 $\frac{q}{mv^2} = \frac{1}{2V}$
 $y = \frac{1}{2}El^2 \times \frac{1}{2V} = \frac{El^2}{4V} find V$
154. $r = \frac{mV \sin \theta}{Bq}$
155. $i = \frac{ne}{t} \Rightarrow n = \frac{it}{e}$
Force = n mv = n $\sqrt{2m \times K.E.}$
156. F=Eq and E is along Z-axis
Fis along Z-axis

F=Bqv and B and q are along y and x axis this force is along negative Z-axis. The resultant force is zero. Displacement along x-axis=x=Vt 157. $a = \frac{Eq}{m}$ and $V^2 = 2as$ Where s = 0.1 cm 158. $mg = Eq = \frac{V}{d}q$ For the same oil drop m is constant $\therefore q \alpha \frac{1}{V} \Longrightarrow q_1 : q_2 : q_3 = \frac{1}{V_1} : \frac{1}{V_2} : \frac{1}{V_2}$ 159. $r = \sqrt{\frac{9\eta v}{2\rho g}}$ Where $v = \frac{S}{t}$ 160. mg = Eq $\frac{4}{3}\pi r^3\rho g = \frac{V}{d}q$ 161. mg = Eq $\frac{4}{3}\pi r^3\rho g = \frac{V}{d}q$ 162. When there is no E, mg when thereE, $mg - Eq = 6\pi \eta r \frac{V}{2} - \dots - (2)$ 166. $V_s e = hv - w = \frac{12400}{\lambda in A^0} - w$ 3 = 4.18 - w168. $\frac{1}{2}mv_{\max}^2 = hv - w$ and $hv = \frac{hc}{\lambda}$ 170. $\frac{n}{t} = \frac{p}{hv}$ Where $\frac{n}{t}$ is number of photons emitted per second. These are distributed over a sphere of radius 2m. The number of photons per unit area $\frac{\frac{n}{t}}{Surface of the Sphere} = \frac{\frac{n}{t}}{4\pi r^2}$ 171. Stopping potential =4.2-1.5=2.7V

SR.PHYSICS

274

$$v = \frac{Q}{4\pi \ \varepsilon_0 r} \Longrightarrow Q = 3 \times 10^{-11}$$

172.
$$r = \frac{mV}{Bq} = \frac{p}{Bq} = \frac{\sqrt{2m \times KE}}{Bq}$$
$$KE = \frac{B^2 q^2 r^2}{2m} = hv - w$$
$$\mathbf{LEVEL IV}$$

 $ne = 3 \times 10^{-11}$

I.

Read the passage given below X-rays are generated when high speed electrons are suddenly stopped by high atomic number targets. X-rays are electromagnetic waves of wavelength between 100A⁰ to 0.1 A⁰. They travel with velocity of light. There are two types of X-rays. a) Continuous X-rays b) Characteristic X-rays

When electron with high energy penetrate target atoms, they strikes the electrons of inner shells and knock out them from the atoms, then deficiency of electrons is created in the inner shell. Electrons from higher shell jumps into this shell to full fill this deficiency. In this process photons with energies equal to difference of energies of initial and final shells are emitted. These are characteristic X-rays. So, the frequency of characteristic X-rays depends on the nature of target and independent of applied voltage across filament and target.

Moseleys law for characteristic X-rays is

$$\frac{1}{\lambda} = R(z-b)^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right).$$
 Moseleys law is

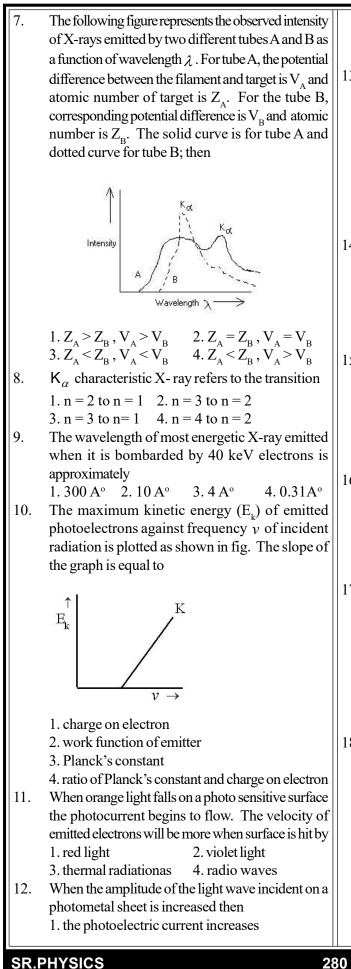
Applicable to characteristic X-rays only. It means it is applicable to only those transitions of atoms during which an X-ray photon is emitted. Hence it can't be applied to all the transitions.

For higher values of n_1 and n_2 , energy difference will be small. Therefore, emitted photon will not be an X-ray photon. Hence Moseley's law can't be applicable for such transitions. As an example hydrogen can't emit X-ray as the energy levels in hydrogen atoms are very close to each other. **Answer the following questions.**

1. Moseleys law is

1) applicable to all those atoms to which Bohr's theory is not applicable.

- 2) applicable to all energy levels of same atoms only. 3) not applicable for higher values of n_1 and n_2 .
- 4) not applicable for higher values of z
- 2. The frequency of characteristic X-rays 1) Nature of target 2) Nature of filament 3) Applied voltage across filament and target 4) All are correct 3. Hydrogen atom does not emit X-rays because 1) it has single electron 2) it is very small in size 3) its energy levels are too far apart 4) its energy levels are too close to each other 4. Characteristic X-rays are produced when 1) high energy incident electrons are accelerated 2) low energy incident electrons are accelerated 3) high energy incident electrons knock out electrons from the inner shells of the target atoms. 4) when valence electrons of the target element are are knocked out 5. X-rays are 1) stream of electrons 2) stream of protons 3) electromagnetic radiations 4) stream of uncharged particles Read the following passage II. If a particle of mass m moves with velocity v, then de Broglie waves as associated with the moving particle. The Wavelength of de Broglie wave is $\lambda = \frac{h}{\sqrt{2mK}}$, where K in the energy of the moving particle. When photons of energy 4.25 eV strike the surface of a metal A, the ejected photo electrons have maximum kinetic energy K_A eV and debroglie wavelength λ_A . The maximum K.E. of photo electrons liberated from another metal B by photons of energy 4.7 eV is K_{B} . The Kinetic energies are related as $K_A - K_B = 1.5$ eV. If the de-Broglie wavelength of these photoelectron is $\lambda_{B} = 2\lambda_{A}$, then answer the following questions. 1. The value of K_A is 2) 2.25 eV 3) 4.5 eV 4) 4.7 eV 1) 2 eV 2. The value of K_R is 1) 1.2 eV 2) 0.5 eV 3) 1 eV 4) 1.5 eV 3. The work function of A is 1) 2.25 eV 2) 4.20 eV 3) 2.5 eV 4) 1.5 eV 4. The work function of B is 1) 2.25 eV 2) 4.2 eV 3) 2.5 eV 4) 4 eV


KEY

I. 1.3 2.1 3.4 4.3 5.3 II. 1.1 2.2 3.1 4.2

PREVIOUS EAMCET QUESTIONS
1. According to Moseley's law the frequency
$$v$$
 of
 k_c line and the atomic number (2) of the element
have the relation (A & B are constants)
[EAMCET2005F]7.
Light -3 x 10¹⁷ is incident on a
metal surface. If only one percent of photons inci-
dent on the surface emitphoto electrons,
then the number of electrons emitted per second
per unitarea from the surface emitphoto electrons,
then the number of electrons emitted per second
per unitarea from the surface emitphoto electrons,
then the number of electrons emitted per second
per unitarea from the surface emitphoto electrons,
then the number of electrons emitted per second
per unitarea from the surface rest event
per unitarea from the surface in the surface of
the surface situation to the field with speeds in the ratio
1: 12 x 10¹⁸ = 10 x 10¹⁷ def
3: 12 x 10¹⁸ = 10 x 10¹⁸ def
3: 12 x 10¹⁸ = 10 x 10¹⁸ def
3: 12 x 10¹⁸ = 10 x 10¹⁸ def
3: 12 x 10¹⁸ = 10 x 10¹⁸ def
3: 12 x 10¹⁹ = 10 x 10¹⁹ def
3: 12 x 10¹⁹ = 10 x 10¹⁹ def
3: 12 x 10¹⁹ = 10 x 10¹⁹ def
3: 12 x 10¹⁹ = 10 x 10¹⁹ def
3: 12 x 10¹⁹ = 10 x 10¹⁹ def
3: 12 x 10¹⁹ = 10 x 10¹⁹ def
3: 12 x 10¹⁹ = 10 x 10¹⁹ def
3: 10¹⁹ def
3: 10¹⁰ def
4: 11 and charges
1: 12 x 10¹⁹ = 10 x 10¹⁹ def
3: 11 x 10¹⁹ def
4: 11 and charges
1: 12 x 10¹⁹ def
3: 11 x 10¹⁹ def
3: 11 x 10¹⁹ def
4: 11 x 10¹⁹ def
4: 11 and charges
1: 12 x 10¹⁹ def
4: 11 x 10¹⁹ def
4: 1

	1. A is true and B is false	35.	The photoelectric work function of a metal surface
28.	2.A is false and B is true		is 2 eV. When light of frequency 1.5x10 ¹⁵ Hz is
	3. Both A and B are true		incident on it, maximum kinetic energy of the
	4.Both A and B are false.		photoelectrons, approximately is
	A charged particle of mass $5x10^{-6}$ kg is held		1.8 eV 2.6 eV 3.2 eV 4.4 eV
	stationary in space by placing it in an electric field of		e
	strength 10^6NC^{-1} directed vertically downwards.	36.	The $\frac{e}{m}$ value of electron is
	The charge of the particle is $(g = 10 \text{ ms}^{-2})$		1. 1.6x10 ¹¹ C/kg 2.1.6x10 ⁻¹⁹ C/kg
	· ·		ç ç
	$120 \times 10^{-4} \mu C$ $25 \times 10^{-5} \mu C$	27	$3.1.759 \times 10^{11} \text{C/kg}$ $4.9.1 \times 10^{-31} \text{C/kg}$
	3. $5 \times 10^{-5} \mu C$ 4. $20 \times 10^{-5} \mu C$	37.	The number of electrons emitted by a surface exposed to light is directly proportional to
29.	When a metal surface is illuminated by light of		1. Frequency of light 2. Work function
	wavelengths 400 nm and 250 nm, the maximum		3. Thereshold wavelength 4. Intensity of light
	velocities of the photoelectrons ejected are v and	38.	Moseley's law states that
	2v respectively. The work function of the metal is		1. $\sqrt{\upsilon} = a(Z-b)$ 2. $\upsilon = a^2(Z-b)$
	1. $2\lambda cx10^{6} J$ 2.1. $5\lambda cx10^{6} J$		3. $v = \sqrt{a(Z-b)}$ 4. $\sqrt{v} = a(Z-b)^2$
	³ · $\lambda cx 10^{6} J$ ⁴ · 0.5 $\lambda cx 10^{6} J$	39.	In a photo electric phenomenon, the number of
30.	The energy of X-ray photon of wavelength 1.65 A° is	57.	photo electrons emitted depends on
	A ² 18 1. 3.5 keV 2. 5.5 keV 3. 7.5 keV 4.9.5 keV		1. the intensity of incident radiation
31.	In a photoelectric experiment, the maximum		2. the frequency of incident radiation
	velocity of photoelectrons emitted		3. the velocity of incident radiation
	1. depends on intensity of incident radiation	40.	4. the work function of the photocathode
	2. does not depend on cathode material	40.	According to Moseley's law, the frequency of a spectral line in X-ray spectrum varies as
	3. depends on frequency of incident radiation		1. atomic number of the element
	4. does not depend on wavelength of incident radiation		2. square of atomic number of the element
32.	The threshold frequency for photoelectric effect		3. square root of atomic number of the element
52.			4. fourth power of atomic number of the element
	of a metal surface is found to be 4.8×10^{16} Hz.	41.	The photo electric work function for a metal surface
	The stopping potential required when the metal is		is 4.125 eV. The cut-off wavelength for this surface is
	irradiated by radiation of frequency 5.6x10 ¹⁶ Hz		1. 4125 A° 2.2062.5 A° 3.3000 A° 4.6000A°
	is $(taking h = 6.6x10^{-34} Js and$	42.	X-rays are
	e = 1.6x10 ⁻¹⁹ C)		1. stream of electrons
	1. 22.4 V 2. 33V 3. 66 V 4. 198 V		2. stream of protons
33.	If the operating voltage of an X-ray tube is		 electromagnetic radiation stream of uncharged particles
	increased	43.	The threshold wavelength is 2000 A°. The work
	1. X-ray intensity increases		function is
	2. X-ray wavelength limit on the maximum side		1. 6.25 eV 2. 6.2 eV 3. 6.2 MeV 4. 6.2 keV
	increases 3. X- ray wavelength limit on the maximum side	44.	A particle carrying a charge e perpendicular to a
	decreases		uniform magnetic field of induction B with a
	4. X-ray intensity decreases.		momentum p, then the radius of the circular path is
34.	The photoelectric threshold wavelength for		1. $\frac{Be}{p}$ 2. $\frac{pe}{B}$ 3. $\frac{p}{Be}$ 4. Bep
	potassium (work function being 2 eV) is		p B Be Be
	1. 310 nm 2. 620 nm 3. 6200 nm 4. 3100 nm		
SR J	PHYSICS 2	78	ATOMIC PHYSICS

45 A shoton of anarov 2.5 aV and wavelength 1	LEV
 45. A photon of energy 2.5 eV and wavelength λ falls on a metal surface and the ejected electrons have velocity 'v'. If the λ of the incident light is decreased by 20%, the maximum velocity of the emitted electrons is doubled. The work function of the metal is 2.6 eV 2.2.23 eV 2.5 eV 2.2.284 eV 46. A charged particle accelerated through a potential difference of 100V passes through uniform electric and magnetic fields so as to experience no deflection. E = 15x10⁶ Vm^{-1and} B = 5x10³ T. Then the specific charge ^e/_m is 	KEY 1. 2 2. 1 3.2 4. 4 5. 3 6. 2 7. 3 8. 1 9. 2 10. 3 11. 2 12.4 13.3 14.3 15.4 16.1 17.2 18.2 19.2 20.3 21.3 22.2 23.4 24.4 25.2 26.2 27.3 28.2 29.1 30.3 31.3 32.2 33.1 34.2 35.4 36.3 37.4 38.1 39.1 40.2 41.3 42.3 43.2 44.3 45.4 46.1 47.2 48.4 49.2 50.4 51.3 51.3 000000000000000000000000000000000000
1. 4.5x10 ⁴ C/kg 2. 9x10 ⁷ C/kg	1. eVh 2. $\frac{hV}{e}$ 3. $\frac{eh}{V}$ 4. $\frac{eV}{h}$
 3. 4.5x10³C/kg 4. 9x10⁵C/kg 47. Photo electric current can be increased by using 1. higher frequency radiation 2. higher intensity radiation 3. higher work function metal plates 4. none of these 	 Electrons with energy 80 keV are incident on tungsten target of an x-ray tube. X-rays emitted by the tube contain only a continuous x-ray spectrum (Bremsstrahlung)
 48. Emission of electrons in photo electric effect is possible, if 1. metal surface is highly polished 2. the incident light is of sufficiently high intensity 3. the light is incident at right angles to the surface 	 with a minimum wavelength of 0.155 A° 2. a continuous x-ray spectrum (Bremsstrahlung) with all wavelength 3. the characteristic x-ray spectrum of tungsten. 4. a continuous x-ray spectrum with minimum wavelength of 0.155 A° and the characteristic x-
 4. the incident light is of sufficiently low wavelength 49. The force experienced by the cathode rays when they pass through uniform electric field of intensity <i>E</i> is in the direction of the electric field in the direction opposite to that of the electric field at right angles to the electric field zero, because cathode rays do not have any charge 50. Light of frequency 1.5 times the threshold frequency is incident on a photosensitive material. If the frequency of the incident light is halved and the intensity is doubled, photoelectric current have any charge 	 ray spectrum of tungsten. Cathode rays produced in a certain discharge tube are deflected in the same direction if A magnetic field is applied tangential An electric field is applied normally A magnetic field is applied normally The work function of caesium is 1.8eV. Light of 5000 A° is incident on it. The maximum velocity of emitted electrons is nearly 5x10⁶m/s 2. 5x10⁵m/s
becomes 1. quadrupled 2. doubled 3. halved 4. zero 51. In photo electric effect, the photo electric current 1. increases when the frequency of incident photon increases 2. decreases when the frequency of incident photon decreases 3. does not depend upon the photon frequency but depends on the intensity of incident beam 4. depends both on the intensity and frequency of the incident beam.	 3. 5x10⁴m/s 4. 5x10³m/s 5. The frequency of X- rays, γ - rays and UV rays are respectively a, b and c. Then a < b; b < c 2. a > b; b < c a < b; b > c 4. a > b; b > c 6. The work function of a substance is 4.0 eV. The longest wavelength of light that can cause photoelectric emission from this substance is approximately 20 nm 310 nm 540 nm

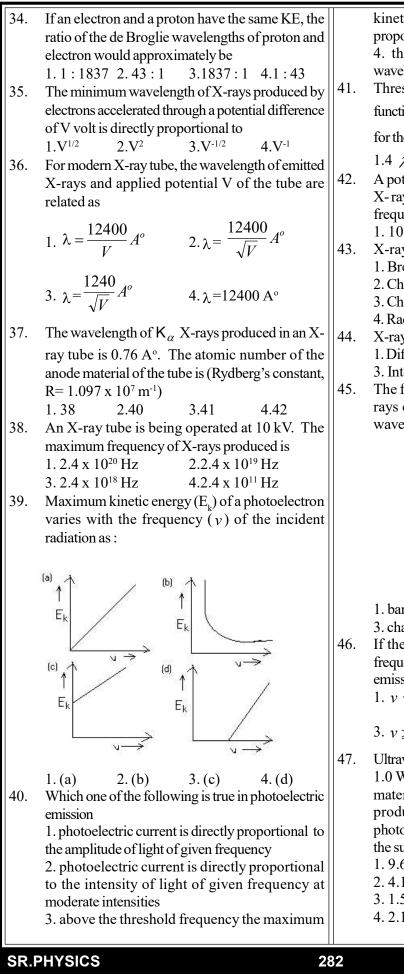
- 2. the photoelectric current remains unchanged
- 3. the stopping potential increases
- 4. the stopping potential decreases
- 13. When a point source of mono chromatic light is at a distance of 0.2 m from a photoelectric cell, the cut off voltage and the saturation current are 0.6 V and 18 mA respectively. If the same source is placed 0.6 m away from the photoelectric cell then 1. the stopping potential will be 0.2 V
 - 2. the saturation potential will be 0.6 V
 - 3. the stopping current will be 6 mA
 - 4. the saturation current will be 18 mA
- The wavelength of K_{α} line for an element of atomic 14.

number 43 is λ . Then the wavelength of K_{α} line for an element of atomic number 29 is

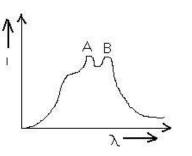
1.
$$\frac{9}{4}\lambda$$
 2. $\frac{43}{29}\lambda$ 3. $\frac{4}{9}\lambda$ 4. $\frac{42}{28}\lambda$

15. The velocity of the most energetic electrons emitted from a metal surface is doubled when the frequency v of incident radiation is doubled. The work function of the metal is

1.
$$\frac{2}{3}hv$$
 2. $\frac{hv}{2}$ 3. $\frac{hv}{3}$ 4. zero


For light of certain frequency (i)...... the threshold 16. frequency, the photoelectric current is (ii) proportional to the intensity of light. The blank spaces (i) and (ii) in above statement must be filled with 1. (i) below (ii) directly 2. (ii) above (ii) inversely 3. (i) above (ii) directly 4. (i) below (ii) inversely 17. Relation between the stopping potential V_o of a metal and the maximum velocity v of the photoelectrons is

1.
$$V_0 \alpha \frac{1}{v^2}$$
 2. $V_0 \alpha v^2$
3. $V_0 \alpha v 4$. $V_0 \alpha \frac{1}{v}$


- de Broglie wavelength ' λ ' is proportional to 18.
 - 1. $\frac{1}{\sqrt{E}}$ for photons and $\frac{1}{E}$ for particles
 - 2. $\frac{1}{E}$ for photons and $\frac{1}{\sqrt{E}}$ for particles
 - 3. $\frac{1}{E}$ for both photons and particles in motion

4.
$$\frac{1}{\sqrt{E}}$$
 for both photons and particles

-			
19.	X-rays are produced in an X-ray tube operating at a given accelerating voltage. The wavelength of continuous X-ray has values from 1. 0 to ∞ 2. l_{\min} to \forall where $l_{\min} > 0$ 3. 0 to l_{\max} where $l_{\max} \leq \forall$	26.	 Which of the following is dependent on the intensity of incident radiation in a photoelectric experiment 1. work function of the surface 2. amount of photoelectric current 3. stopping potential 4. maximum kinetic energy
20.	3. 0 to l_{\min} where $l_{\max} < ¥$ 4. $\lambda_{\min} to \lambda_{\max}$ where $0 < \lambda_{\min} and \lambda_{\max} < \infty$ The maximum velocity of an electron emitted by light of wavelength λ incident on the surface of a	27.	Light of certain wavelength and intensity ejects photoelectrons from a metal plate. Then the beam is replaced by another beam of smaller wavelength and smaller intensity. As a result
	metal of workfunction ϕ is 1. $\left[\frac{2(hc + \lambda\phi)}{m\lambda}\right]^{1/2}$ 2. $\frac{2(hc - \lambda\phi)}{m}$ 3. $\left[\frac{2(hc - \lambda\phi)}{m}\right]^{1/2}$ 4. $\left[\frac{2(hc\lambda - \phi)}{m}\right]^{1/2}$		 emission of photoelectrons stops no change occurs KE of photoelectrons increases but the strength of photoelectric current decreases KE of photoelectrons decreases but the strength of photocurrent increases
21.	3. $\left\lfloor \frac{m}{m} \right\rfloor$ 4. $\left\lfloor \frac{m}{m} \right\rfloor$ where h = Planck's constant, m = mass of electron and c=speed of light A photon of energy 8.6 eV is incident on a metal	28.	The energy of incident photon is 12.375 eV while the energy of scattered photon is 9.375 eV. The the KE of recoil electrons is 1. 3 eV 2. less than 3 eV
	surface of threshold frequency 1.6×10^{15} Hz. The kinetic energy of the photoelectrons emitted (in eV) nearly $1.1.6$ 2.6 3.2 $4.1.2$	29.	1. 5 eV2. less than 5 eV3. more than 3 eV4. 21.75 eVAn electron beam in x-ray tube is acceleratedthrough a potential difference of 50,000 volt.These are then made to fall on a tungsten target.
22.	The photoelectric threshold wave length sof a certain metal is 3000 A°. If radiation of 2000 A° is incident on the metal 1. protons will be emitted 2. electrons will be emitted 3. positrons will be emitted	30.	The shortest wavelength of the X-rays emitted by the tube is 1. 2.5 A° 2.0.25 nm 3.0.25 cm 4.0.025 nm The photoelectric current can be increased by 1. increasing frequency 2. increasing intensity
23.	4. electrons will not be emitted The work function of a substance is 4.0 eV. The longest wavelength of light that can cause photoelectron emission from this substance is approximately	31.	3. decreasing intensity 4. decreasing wavelength Light of wavelength λ strikes a photosensitive surface and electrons are ejected with kinetic energy E. If the kinetic energy is to be increased to 2E, the wavelength must be changed to λ' where
24.	1. 540 nm 2. 400 nm 3. 310 nm 4. 220 nm Light of wavelength 5000 A° falls on a sensitive plate with photoelectric work function 1.9 eV. The kinetic energy of the photoelectrons emitted will	32.	1) $\lambda' = \frac{\lambda}{2} \ 2$) $\lambda' = 2\lambda \ 3$) $\frac{\lambda}{2} < \lambda' < \lambda 4$) $\lambda' > \lambda$ Einstein's photoelectric equation states that
25.	be 1. 0.58 eV 2. 2.48 eV 3. 1.24 eV 4.1.16 eV In a photoemissive cell with exciting wavelength λ , the fastest electron has a speed v. If the exciting wavelength is changed to $\frac{3\lambda}{4}$, the speed of the fastest emitted electrons will be	33.	Example 1 in the sequence of the equation states that $E_k = h_V - W$, In this equation E_k refers to : 1. kinetic energy of all ejected electrons 2. mean kinetic energy of emitted electrons 3. minimum kinetic energy of emitted electrons 4. maximum kinetic energy of emitted electrons Maximum velocity of photoelectrons emitted by a
	1. $v\left(\frac{3}{4}\right)^{1/2}$ 2. $v\left(\frac{4}{3}\right)^{1/2}$ 3. less than $v\left(\frac{4}{3}\right)^{1/2}$ 4. greater than $v\left(\frac{4}{3}\right)^{1/2}$		photometer is $1.8 \ge 10^6$ m/s. Taking $\frac{e}{m} = 1.8 \ge 10^{11}$ C/kg for electrons, the stopping potential of emitter is 1.9 V 2. 11.8 V 3. 1.8 V 4. 10 ⁶ V
SP	PHYSICS 25	21	ATOMIC PHYSICS

kinetic energy of photoelectrons is inversely proportional to the frequency of incident light 4. the threshold frequency depends on the wavelength of incident light Threshold wavelength for a metal having work function ω_0 is λ . What is the threshold wavelength for the metal having work function 2 ω_0 ? 4. $\lambda/4$ 3. $\lambda/2$ 1.4 λ 2.2λ A potential difference of 42,000 volt is used in an X-ray tube to accelerate electrons. The maximum frequency of the X-radiations produced is 1. 10^{19} Hz 2. 10^{18} Hz 3. 10^{16} Hz 4. 10^{20} Hz X-rays are produced due to 1. Break up of molecules 2. Change in atomic energy level 3. Change in nuclear energy level 4. Radioactive disintegration X-rays will not show the phenomenon of 1. Diffraction 2. Polarization 3. Interference 4. Deflection by electric field The fig. represents the observed intensity of Xrays emitted by an X-ray tube as a function of wavelength. The sharp peaks A and B denote

band spectrum 2. continuous spectrum
 characteristic spectrum 4. white radiation
 If the work function of the metal is W and the frequency of the incident light is *v*, then there is no emission of photoelectrons if

 v < W/h
 v > W/h

$$. v < W/h \qquad 2.v$$

3.
$$v \ge W/h$$
 4. $v \stackrel{>}{<} W/h$

7. Ultraviolet light of wavelength 300 nm and intensity 1.0 W/m^2 falls on the surface of a photoelectric material. If one percent of the incident photons produce photoelectrons, then the number of photoelectrons emitted from an area of 1.0 cm^2 of the surface is nearly

1. 9.61 x 10^{14} per second 2. 4.12 x 10^{13} per second 3. 1.51 x 10^{12} per second 4. 2.13 x 10^{11} per second

64. When the accelerating voltage applied on the electrons increased beyond a critical value: 1. Only the intensity of the various wavelengths is increased72. When ultraviolet radiation i no photoelectrons are emit causes photoelectrons to be of :	
1. Only the intensity of the various wavelengths is causes photoelectrons to be	
	s ejected, it may consist
	infrond war
	2. infrared rays
	. X-rays
3. The spectrum of white radiation is unaffected 73. A cathode of photoelectric	
4. The intensities of characteristic lines relative to that the work function ch	
the white spectrum are increased but there is no change in their wavelength $(W_1 < W_2)$. If the current be are L and L all other c	
	- 2
1 10 $\frac{1}{2}$ 2 20 $\frac{1}{2}$ 2 20 $\frac{1}{2}$ 4 40 $\frac{1}{2}$	÷
1. 10 kV2. 20 kV3. 30 kV4. 40 kV66.A radio transmitter operates at a frequency of 8801. be diffracted by a crysta2. ionise a gas	11
KHz and a power of 10 KW. The number of 3. be deflected by magnetic	c fields
photons emitted per second are 4 be deflected by electric f	
$1.1.1/2 \times 10^{31}$ $2.132/\times 10^{34}$ 1.75 A particle of mass 10^{31} kg is	
$3.13.2/4 \times 10^{54}$ 4.0.0/5 $\times 10^{54}$ equal to $10^5 \mathrm{ms}^{-1}$ The way	
6/. The kinetic energy of photoelectrons depends upon the:	
1. Intensity of incident light1. $6.6 \times 10^{-8} \text{ cm}$ 22. The difference between the frequency of the2. $6.6 \times 10^{-8} \text{ cm}$ 2	2. 0.66 x 10 ⁻⁴ cm
incident light and the threshold frequency $3.6.6 \times 10^{-8} \text{ m}$ 4	. 10 cm
3 The sum of the frequency of incident light and 1.76. If electron is having a wave	
threshold frequency momentum is (gm cm s ⁻¹) u	
4. The ratio of the frequency of light used and the $1.6.6 \times 10^{-32}$ 2	2.6.6 x 10 ⁻²⁹
threshold frequency $3.6.6 \times 10^{-25}$ 4	6.6×10^{-21}
68. The threshold wavelength for sodium is 5 x 10^{-7} 77. An electron accelerated un	-
m. Photoemission occurs for light of: a certain wavelength λ .	-
1. Wavelength of 6×10^{-7} m and above 2000 times the mass of an 2	-
2. Wavelength of 5×10^{-7} m and below has to have the same wave	•
3. Any wavelength 4. All frequencies below 5×10^{14} Hz have to be accelerated und	*
$\begin{array}{c} 4. \text{ An inequencies below 5 x 10} & \text{inz} \\ 69. & \text{If Planck's constant is denoted by h and electronic} \\ \end{array} \qquad 1.100 \text{ V} \qquad 2.2000 \text{ V} 3. \text{ V} \\ \end{array}$	$V/2000V 4. \sqrt{2000} V$
charge by e, then photoelectric effect allows 78. A proton when accelerate	ed through a p.d. of V
determination of: χ with photoerceare effect and χ a volt has a wavelength χ a	
1. Only h 2. Only e 3. Both h and e 4. Only h/e α - particle in order to have	e the same wavelength
70. If the work function for a certain metal is λ must be accelerated three the second sec	ough a p.d. of
3.2×10^{19} joule and it is illuminated with light of frequency 1. V/8 volt 2. V/4 volt 3	3. V volt 4. 2V volt
8×10^{14} Hz. The maximum kinetic energy of the photo-	
electrons would be: $(h=6.63 \times 10^{-34} \text{ Js})$ 1. 2.1 x 10 ⁻¹⁹ J 2. 8.5 x 10 ⁻¹⁹ J <u>KEY</u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.3 6.2 7.4
71. In an X-ray tube, electrons accelerated through a 8.1 9.4 10.3 11.2 12	2.1 13.2 14.1 15.1
potential difference of 15000 V strike a copper 16.3 17.2 18.2 19.4 2	20.3 21.3 22.2 23.3
target. The speed of the emitted X-rays inside the 24.1 25.3 26.2 27.3 2	
tube is: $[e= charge on electron, m=mass of]$ 32.4 33.1 34.2 35.4 3	
electron, Z= atomic numbe of target] $40.2 \ 41.3 \ 42.1 \ 43.2 \ 4$ $48.2 \ 49.1 \ 50.3 \ 51.2 \ 52.2 \ 5$	
2×2e×15000 2×2e×15000 56.2,57.4,59.1,59.2,6	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
27e×15000 72.4 73.1 74.1 75.3 7	
3. $\sqrt{\frac{220 \times 10000}{m}}$ 4. 3 × 10 ⁸ m/s	