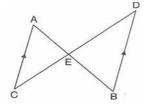
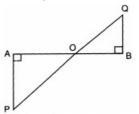
CBSE Test Paper 04 Chapter 6 Triangles

1. In the adjoining figure AC || BD. If, EB = 4 cm, ED = 8 cm, AC = 6 cm, AE = 3 cm then CE and BD are respectively (1)

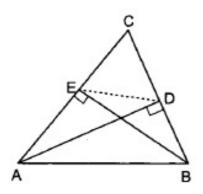


- a. 5 cm, 7 cm.
- b. 7.5 cm, 9.5 cm.
- c. 6 cm, 8 cm.
- d. 4 cm, 6 cm.
- 2. A street light is fixed on a pole 6 m above the ground. If a woman of height 1.5 m casts a shadow of 3, then distance between her and the base of the pole is _____. (1)
 - a. 12 m
 - b. 9 m
 - c. 8 m
 - d. 10 m
- 3. In an equilateral $\Delta ABC, \ AD ot BC \ and \ AD^2 = p. \ BC^2,$ then p is equal to (1)
 - a. $\frac{1}{2}$ b. $\frac{3}{4}$ c. $\frac{2}{3}$ d. $\frac{1}{3}$
- 4. A street light is fixed on a pole 6 m above the ground. If a woman of height 1.5 m casts a shadow of 3, then distance between her and the base of the pole is (1)
 - a. 12 m.
 - b. 8 m.
 - c. 9 m.
 - d. 10 m.
- 5. ABCD is a trapezium in which AB || DC and AB = 2DC. Diagonals AC and BD intersect at O. If $ar(\Delta AOB)$ = 84 cm², then $ar(\Delta COD)$ is equal to (1)

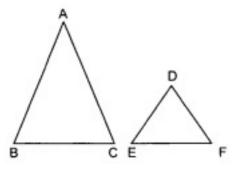
- a. 24 cm^2
- b. 42 cm²
- c. 28 cm²
- d. 21 cm^2
- 6. In the given figure, if $\angle A = 90^{\circ}$, $\angle B = 90^{\circ}$, OB = 4.5 cm, OA = 6 cm and AP = 4 cm, then find QB. (1)



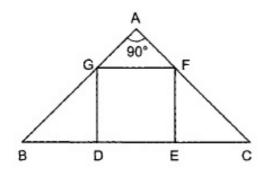
7. In Fig. AD and BE are respectively perpendiculars to BC and AC. Show that $\Delta ADC \sim \Delta BEC$ (1)



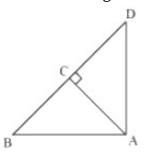
- 8. If \triangle ABC ~ \triangle DEF such that 2AB = DE and BC = 6 cm, find EF. (1)
- 9. In the given figure, $\triangle ABC \sim \triangle DEF$. If AB = 2DE and area of $\triangle ABC$ is 56 sq. cm, find the area of $\triangle DEF$. (1)



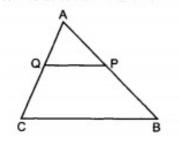
10. In Fig. DEFG is a square and $ar{}$ BAC = 90°. Prove that $\Delta AGF \sim \Delta DBG$ (1)



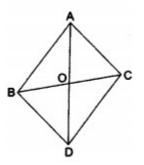
11. \triangle ABD is a right triangle right-angled at A and AC \perp BD. Show that AB² =BC \times BD (2)



- 12. In \triangle ABC, P and Q are points on sides AB and AC respectively such that PQ || BC. If AP = 4 cm, PB = 6 cm and PQ = 3 cm, determine BC. (2)
- 13. In the fig., P and Q are points on the sides AB and AC respectively of \triangle ABC such that AP = 3.5 cm, PB = 7 cm, AQ = 3 cm and QC = 6 cm. Find BC. (2)



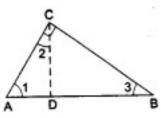
14. In the given figure, $\triangle ABC$ and $\triangle DBC$ are on the same base BC. If AD intersects BC at O, Prove that $\frac{\operatorname{ar}(\triangle ABC)}{\operatorname{ar}(\triangle DBC)} = \frac{AO}{DO}$. (3)



15. In a quadrilateral ABCD, P,Q,R,S are the mid-points of the sides AB, BC, CD and DA

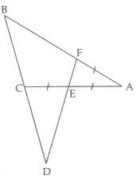
respectively. Prove that PQRS is a parallelogram. (3)

16. In the given figure, $\angle ACB = 90^{\circ}$ and $CD \perp AB$. Prove that $CD^2 = BD \cdot AD$. (3)



- 17. From an airport, two aeroplanes start at the same time. If speed of first aeroplane due North is 500 km/h and that of other due East is 650 km/h then find the distance between the two aeroplanes after two hours. (3)
- 18. ABCD is a trapezium in which AB || DC and P and Q are points on AD and BC, respectively such that PQ || DC. If PD = 18 cm, BQ = 35 cm and QC = 15 cm, find AD. (4)
- 19. Prove that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides. **(4)**
- 20. In the given figure, line segment DF intersect the side AC of a triangle \triangle ABC at the point E such that E is the mid–point of CA and \angle AEF = \angle AFE. Prove that: (4) $\frac{BD}{CD} = \frac{BF}{CE}$.

[Hint: Take point G on AB such that CG \parallel DF.]



CBSE Test Paper 04 Chapter 6 Triangles

Solution

1. c. 6 cm, 8 cm.

> **Explanation:** Given: AC | | BD and AC = 6 cm, AE = 3 cm, EB = 4 cm, ED = 8 cm, In triangles ACE and DEB, $\angle AEC = \angle DEB$ [Vertically opposite angles] $\angle ECA =$ \angle EDB [Alternate angles as AC || BD]

$$\therefore \triangle ACE \sim \triangle DEB [AA similarity]$$
EB ED

$$\therefore \frac{BD}{AE} = \frac{BD}{EC}$$

$$\Rightarrow \frac{4}{3} = \frac{8}{EC}$$

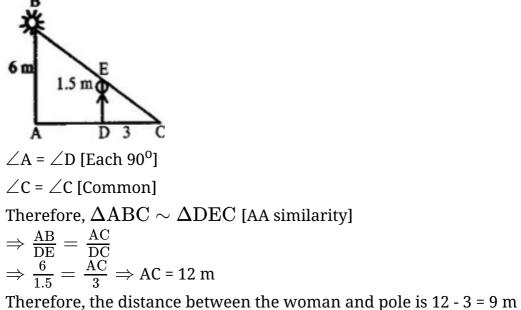
$$\Rightarrow EC = \frac{8 \times 3}{4} = 6 \text{ cm}$$
Also $\frac{EB}{AE} = \frac{BD}{AC}$

$$\Rightarrow \frac{4}{3} = \frac{BD}{6}$$

$$\Rightarrow BD = \frac{4 \times 6}{3} = 8 \text{ cm}$$

2. b. 9 m

Explanation: In triangles ABC and DEC,



b. $\frac{3}{4}$ 3.

Explanation: In an equilateral triangle, ABC, if AD \perp BC,

Then $AB^2 = AD^2 + BD^2$

$$\Rightarrow AB^{2} = AD^{2} + \left(\frac{BC}{2}\right)^{2}$$

$$\Rightarrow BC^{2} = AD^{2} + \frac{BC^{2}}{4}$$

$$\Rightarrow AD^{2} = BC^{2} - \frac{BC^{2}}{4}$$

$$\Rightarrow AD^{2} = \frac{3}{4}BC^{2}$$

Comparing with $AD^{2} = p. BC^{2}$
 $p = \frac{3}{4}$

4. c. 9 m.

Explanation: AB - Lamp post and DE - Woman

In triangles ABC and DEC,

$$\angle A = \angle D \text{ [Each 90^{0}]}$$

$$\angle C = \angle C \text{ [Common]}$$

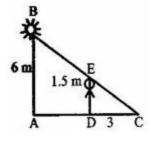
$$\therefore \Delta ABC \sim \angle DEC \text{ [AA similarity]}$$

$$\therefore \frac{AB}{DE} = \frac{AC}{DC}$$

$$\Rightarrow \frac{6}{1.5} = \frac{AC}{3}$$

$$\Rightarrow AC = 12 \text{ m}$$

Therefore, distance between woman and pole = AC - DC = 12 - 3 = 9 m



5. d. 21 cm²

Explanation: In triangles, AOB and COD,

 $\begin{array}{l} \angle AOB = \angle COD \text{ [vertically opposite angles]} \\ \angle ABO = \angle CDO \text{ [Alternate angles]} \\ \text{Therefore, } \Delta AOB \sim \Delta COD \text{ [AA similarity]} \\ \Rightarrow \frac{\text{area}(\Delta AOB)}{\text{area}(\Delta COD)} = \frac{AB^2}{DC^2} = \frac{(2DC)^2}{DC^2} = \frac{4}{1} \\ \Rightarrow \text{area} \left(\Delta COD\right) = \frac{84 \times 1}{4} = 21 \text{ cm}^2 \end{array}$

6. In \triangle PAO and \triangle QBO

 $\angle A = \angle B = 90^{\circ}$ $\angle POA = \angle QOB \text{ (Vertically Opposite Angle)}$ $\triangle PAO \sim \triangle QBO, (by AA \text{ criteria})$ $\frac{OA}{OB} = \frac{PA}{QB}$ or, $\frac{6}{4.5} = \frac{4}{QB}$ or, $QB = \frac{4 \times 4.5}{6}$ Therefore, QB = 3 cm

- 7. In Δ 's ADC and BEC, we have $\angle ADC = \angle BEC = 90^{\circ}$ [Given] $\angle ACD = \angle BCE$ [Common] So, by AA-criterion of similarity, we obtain $\Delta ADC \sim \Delta BEC$
- 8. Given that $\triangle ABC \sim \triangle DEF$

We know that when two triangles are similar, then the ratios of the lengths of their corresponding sides are equal.

$$\Rightarrow \frac{AB}{DE} = \frac{BC}{EF}$$
$$\Rightarrow \frac{1}{2} = \frac{6}{EF}$$
$$\Rightarrow EF = 12 \text{ cm}$$

9. $\triangle ABC \sim \triangle DEF$

Since for similar triangles, the ratio of the areas is the square of the ratio of their corresponding sides.

$$\therefore \frac{\text{Area} \triangle \text{ABC}}{\text{Area} \triangle \text{DEF}} = \frac{\text{AB}^2}{\text{DE}^2}$$

$$\Rightarrow \frac{56}{\text{area} \triangle \text{DEF}} = \frac{(2\text{DE})^2}{\text{DE}^2}$$

$$\Rightarrow \frac{56}{area \triangle \text{DEF}} = 4$$

$$\Rightarrow \text{area} \triangle \text{DEF} = \frac{56}{4} = 14 \text{ cm}^2$$

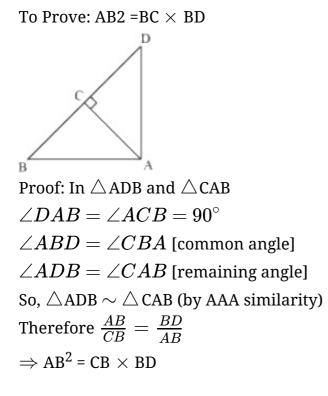
10. In Δ AGF and Δ DBG, we have

 \angle GAF = \angle BDG [Each equal to 90°]

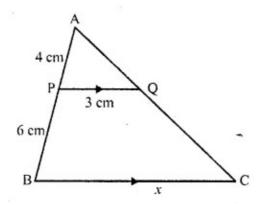
and, ∠AGF = ∠DBG [Corresponding angles]

 $\therefore \Delta \text{AGF} \sim \Delta \text{DBG}$ [By AA-criterion of similarity]

11. Given: \triangle ABD is a right triangle right-angled at A and AC \perp BD.



12. Let BC = x cm



In Δ 's APQ and ABC,we have,

$$\angle A = \angle A$$

 $\angle APQ = \angle ABC$

Therefore, by AA criteria of similar Δ 's , we have,

$$\therefore PQ ||BC$$

$$\therefore \Delta APQ \sim \Delta ABC$$

$$\therefore \frac{AP}{AB} = \frac{AQ}{AC} = \frac{PQ}{BC}$$

$$\Rightarrow \frac{AP}{AP+PB} = \frac{PQ}{BC}$$

$$\Rightarrow \frac{4}{4+6} = \frac{3}{x} \Rightarrow \frac{4}{10} = \frac{3}{x}$$

$$\Rightarrow x = \frac{10 \times 3}{4} = \frac{15}{2}$$

 $\therefore \mathrm{BC} = rac{15}{2}\mathrm{cm} = 7.5~\mathrm{cm}$

13. According to question it is given that P and Q are points on the sides AB and AC respectively of \triangle ABC such that AP = 3.5 cm, PB = 7 cm, AQ = 3 cm and QC = 6 cm.

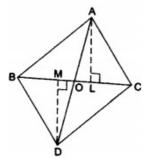
$$\frac{AP}{PB} = \frac{3.5}{7} = \frac{1}{2} \dots (I)$$

$$\frac{AQ}{QC} = \frac{3}{6} = \frac{1}{2} \dots (ii)$$
from (i) and (ii), we have
$$\frac{AP}{PB} = \frac{AQ}{QC}$$

$$\therefore PQ ||BC$$

$$\therefore \angle AQP = \angle ACB$$
and $\angle APQ = \angle ABC$ (corresponding angles)
$$\therefore \Delta AQP \sim \Delta ACB$$
 (AA similarity)
$$\Rightarrow \frac{PQ}{BC} = \frac{AQ}{AC} = \frac{AQ}{AQ+QC}$$
 (By definition of SSS similarity)
$$\Rightarrow \frac{4.5}{BC} = \frac{3}{9} \Rightarrow BC = 13.5 \text{ cm}$$

14. Given: riangle ABC and riangle DBC are on the same base BC and AD intersects BC at O.

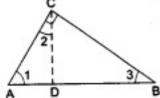


To Prove $\frac{\operatorname{ar}(\triangle ABC)}{\operatorname{ar}(\triangle DBC)} = \frac{AO}{DO}$. Construction Draw $AL \perp BC$ and $DM \perp BC$. Proof: In $\triangle ALO$ and $\triangle DMO$, we have $\angle ALO = \angle DMO = 90^{\circ}$ and $\angle AOL = \angle DOM$ (vertical opposite angles) $\therefore \triangle ALO \sim \triangle DMO$ [by AA-similarity] $\Rightarrow \frac{AL}{DM} = \frac{AO}{DO}$ $\therefore \frac{\operatorname{ar}(\triangle ABC)}{\operatorname{ar}(\triangle DBC)} = \frac{\frac{1}{2} \times BC \times AL}{\frac{1}{2} \times BC \times DM} = \frac{AL}{DM} = \frac{AO}{DO}$ [using (i)] Hence, $\frac{\operatorname{ar}(\triangle ABC)}{\operatorname{ar}(\triangle DBC)} = \frac{AO}{DO}$ 15. To Prove: PQRS is a parallelogram

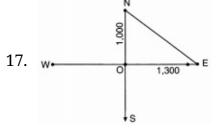
Construction: Join AC

Proof: In \triangle DAC $\frac{DS}{SA} = \frac{DR}{RC} = 1$ s = 1

16. It is given that in riangle ABC, $riangle ACB = 90^\circ$ and $CD \perp AB$.



To Prove: $CD^2 = BD \cdot AD$ **Proof :** In right $\triangle ADC$, we have $\angle 1 + \angle 2 = 90^{\circ}$(i) In right $\triangle ACB$, we have $\angle 1 + \angle 3 = 90^{\circ}$(ii) From (i) and (ii) we have $\angle 1 + \angle 2 = \angle 1 + \angle 3$ $\Rightarrow \angle 2 = \angle 3$ In $\triangle ADC$ and $\triangle CDB$, we have $\angle 2 = \angle 3$ (proved) and $\angle ADC = \angle CDB = 90^{\circ}$ $\therefore \quad \triangle ADC \sim \Delta CDB \qquad \text{[by AA-similarity]} \\ \therefore \quad \frac{AD}{CD} = \frac{CD}{BD} \\ \text{Hence, } CD^2 = BD \cdot AD.$



Distance covered by first aeroplane due North aftert two hours= ON = 500 \times 2 = 1000 km

Distance covered by second aeroplane due East

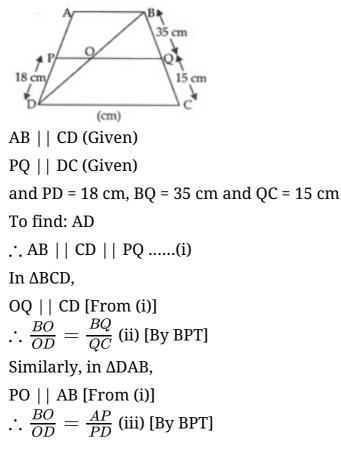
after two hours OE = $650 imes2=1300~\mathrm{km}$

As per shown in the figure the distance between the aeroplane will be equal to

NE,Now in ∆ONE

$$NE = \sqrt{ON^2 + OE^2} = \sqrt{1000^2 + 1300^2} = \sqrt{2690000} = 1640.12 km$$

18. In trapezium ABCD

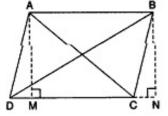


From (ii) and (iii) $\frac{AP}{PD} = \frac{BQ}{QC}$ $\Rightarrow \frac{AP}{18} = \frac{35}{15}$ $\Rightarrow AP = \frac{35}{15} \times 18 = 7 \times 6$ $\Rightarrow AP = 42 \text{ cm}$ $\therefore AD = AP + PD = 42 \text{ cm} + 18 \text{ cm} = 60 \text{ cm}.$

19. Given: ABCD is a parallelogram whose diagonals are AC and BD.

To prove: $AB^2 + BC^2 + CD^2 + DA^2 = AC^2 + BD^2$

Construction: Draw AM \perp DC and BN \perp D(Produced)



Proof: In right triangle AMD and BNC.

AD = BCOpp.sides of a ||gm

AM = BNBoth are altitudes of the same parallelogram to the same base

 $\therefore \bigtriangleup$ AMD $\cong \bigtriangleup$ BNCRHS congruence criterion

.:. MD = NC(1)......CPCT

In right triangle BND,

$$\therefore$$
 BD² = BN² + DN²By Pythagoras theorem

$$= BN^2 + (DC + CN)^2$$

$$= BN^2 + DC^2 + CN^2 + 2DC.CN$$

$$= (BN^2 + CN^2) + CN^2 + 2DC.CN$$

$$= BC^{2} + DC^{2} + 2DC.CN$$
(2)

In right triangle BNC with $\angle N = 90^{\circ}$

 $BN^2+CN^2 = BC^2$ By Pythagoras theorem

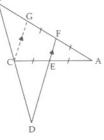
In right triangle AMC

 $\therefore AC^2 = AM^2 + MC^2$

=
$$AM^2 = (DC - DM)^2$$

= $AM^2 + DC^2 + DM^2 - 2DC.DM$
= $(AM^2 + DC^2) + DC^2 - 2DC.DM$
= $AD^2 + DC^2 - 2DC.DM$
 \therefore In right triangle AMD with $\angle M=90^{\circ}$
 $AD^2 = AM^2 + DM^2$ [By Pythagoras theorem]
= $AD^2 + AB^2 - DC.CN$ From(1)
Adding (3) and (2) ,we get
 $AC^2 + BD^2 = (AD^2 + AB) + (BC^2 + DC) = AB^2 + BC^2 + BC^2 + CD^2 + DA^2$

20. To Prove: $\frac{BD}{CD} = \frac{BF}{CE}$



Construction: Draw CG || EF. Proof: In $\triangle AGC \ CG || EF$ \therefore E is the mid point of AC \therefore F will be the mid point of AG. $\Rightarrow FG = FA$ But, EC = EA = AF [Given] $\therefore FG = FA = EA = EC$ (i) In $\triangle BCG \ and \triangle BDF$ EF || CG. (By construction) $\therefore \frac{BC}{CD} = \frac{BG}{GF}$ [By BPT] $\Rightarrow \frac{BC}{CD} + 1 = \frac{BG}{GF} + 1 \Rightarrow \frac{BC+CD}{CD} = \frac{BG+GF}{GF}$ $\Rightarrow \frac{BD}{CD} = \frac{BF}{GF}$ But, FG = CE [From (i)] $\Rightarrow \frac{BD}{CD} = \frac{BF}{CE}$ Hence, proved.