
Chapter 10

Time-Dependent Perturbation

Theory

10.1 Introduction

We have dealt so far with Hamiltonians that do not depend explicitly on time. In nature, how-

ever, most quantum phenomena are governed by time-dependent Hamiltonians. In this chapter

we are going to consider approximation methods treating Hamiltonians that depend explicitly

on time.

To study the structure of molecular and atomic systems, we need to know how electro-

magnetic radiation interacts with these systems. Molecular and atomic spectroscopy deals in

essence with the absorption and emission of electromagnetic radiation by molecules and atoms.

As a system absorbs or emits radiation, it undergoes transitions from one state to another.

Time-dependent perturbation theory is most useful for studying processes of absorption

and emission of radiation by atoms or, more generally, for treating the transitions of quantum

systems from one energy level to another.

10.2 The Pictures of Quantum Mechanics

As seen in Chapter 2, there are many representations of wave functions and operators in quan-

tum mechanics. The connection between the various representations is provided by unitary

transformations. Each class of representation, also called a picture, differs from others in the
way it treats the time evolution of the system.

In this section we look at the pictures encountered most frequently in quantum mechanics:

the Schrödinger picture, the Heisenberg picture, and the interaction picture. The Schrödinger

picture is useful when describing phenomena with time-independent Hamiltonians, whereas

the interaction and Heisenberg pictures are useful when describing phenomena with time-

dependent Hamiltonians.
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10.2.1 The Schrödinger Picture

In describing quantum dynamics, we have been using so far the Schrödinger picture in which

state vectors depend explicitly on time, but operators do not:

ih
d

dt
t H t (10.1)

where t denotes the state of the system in the Schrödinger picture. We have seen in

Chapter 3 that the time evolution of a state t can be expressed by means of the propagator,

or time-evolution operator, U t t0 , as follows:

t U t t0 t0 (10.2)

with

U t t0 e i t t0 H h (10.3)

The operator U t t0 is unitary,

U† t t0 U t t0 I (10.4)

and satisfies these properties:

U t t I (10.5)

U† t t0 U 1 t t0 U t0 t (10.6)

U t1 t2 U t2 t3 U t1 t3 (10.7)

10.2.2 The Heisenberg Picture

In this picture the time dependence of the state vectors is completely frozen. The Heisenberg

picture is obtained from the Schrödinger picture by applying U on t H :

t H U† t t 0 (10.8)

where t andU† t can be obtained from (10.2) and (10.3), respectively, by setting t0 0:

U† t U† t t0 0 ei t H h and t U t 0 , with U t e i t H h . Thus, we

can rewrite (10.8) as

t H ei t H h t (10.9)

As H is frozen in time we have: d H dt 0. Let us see how the expectation value of

an operator A in the state t evolves in time:

t A t 0 ei t H h Ae i t H h 0 0 AH t 0 H AH t H

(10.10)

where AH t is given by

AH t U† t AU t ei t H hAe i t H h (10.11)

Equation (10.10) shows that the expectation value of an operator is the same in both the

Schrödinger and the Heisenberg pictures. From (10.10) and (10.11) we see that both the

Schrödinger and the Heisenberg pictures coincide at t 0, since 0 H 0 and

AH 0 A.
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10.2.2.1 The Heisenberg Equation of Motion

Let us now derive the equation of motion that regulates the time evolution of operators within

the Heisenberg picture. Assuming that A does not depend explicitly on time (i.e., A t 0)

and since U t is unitary, we have

d AH t

dt

U† t

dt
AU t U† t A

U t

t

1

ih
U†HUU†AU

1

ih
U†AUU†HU

1

ih
AH U†HU (10.12)

where we have used (10.3) to write U t t HU ih and U† t t U†H ih. Since

U t and H commute, we have U† t HU t H ; hence we can rewrite (10.12) as

d AH
dt

1

ih
AH H (10.13)

This is the Heisenberg equation of motion. It plays the role of the Schrödinger equation within
the Heisenberg picture. Since the Schrödinger and Heisenberg pictures are equivalent, we can

use either picture to describe the quantum system under consideration. The Heisenberg equation

(10.13), however, is in general difficult to solve.

Note that the structure of the Heisenberg equation (10.13) is similar to the classical equation

of motion of a variable A that does not depend explicitly on time d A dt A H , where

A H is the Poisson bracket between A and H (see Chapter 3).

10.2.3 The Interaction Picture

The interaction picture, also called the Dirac picture, is useful to describe quantum phenomena
with Hamiltonians that depend explicitly on time. In this picture both state vectors and opera-
tors evolve in time. We need, therefore, to find the equation of motion for the state vectors and
for the operators.

10.2.3.1 Equation of Motion for the State Vectors

State vectors in the interaction picture are defined in terms of the Schrödinger states t by

t I ei t H0 h t (10.14)

If t 0 we have 0 I 0 . The time evolution of t is governed by the

Schrödinger equation (10.1) with H H0 V where H0 is time independent, but V may
depend on time.

To find the time evolution of t I , we need the time derivative of (10.14):

ih
d t I

dt
H0e

i t H0 h t ei t H0 h ih
d t

dt

H0 t I ei t H0 hH t (10.15)
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where we have used (10.1). Since H H0 V and

ei H0t hV ei t H0 hVe i t H0 h ei t H0 h VI t e
i t H0 h (10.16)

with

VI t ei t H0 hVe i t H0 h (10.17)

we can rewrite (10.15) as

ih
d t I

dt
H0 t I H0e

i t H0 h t VI t e
i t H0 h t (10.18)

or

ih
d t I

dt
VI t t I (10.19)

This is the Schrödinger equation in the interaction picture. It shows that the time evolution of

the state vector is governed by the interaction VI t .

10.2.3.2 Equation of Motion for the Operators

The interaction representation of an operator AI t is given, as shown in (10.17), in terms of its
Schrödinger representation by

AI t ei H0t hAe i H0t h (10.20)

Calculating the time derivative of AI t and since A t 0, we can show the time evolution

of AI t is governed by H0:

d AI t

dt

1

ih
AI t H0 (10.21)

This equation is similar to the Heisenberg equation of motion (10.13), except that H is replaced
by H0. The basic difference between the Heisenberg and interaction pictures can be inferred
from a comparison of (10.9) with (10.14), and (10.11) with (10.20): in the Heisenberg picture

it is H that appears in the exponents, whereas in the interaction picture it is H0 that appears.
In conclusion, we have seen that, within the Schrödinger picture, the states depend on time

but not the operators; in the Heisenberg picture, only operators depend explicitly on time,

state vectors are frozen in time. The interaction picture, however, is intermediate between

the Schrödinger and the Heisenberg pictures, since both state vectors and operators evolve with

time.

10.3 Time-Dependent Perturbation Theory

We consider here only those phenomena that are described by Hamiltonians which can be split

into two parts, a time-independent part H0 and a time-dependent part V t that is small com-
pared to H0:

H t H0 V t (10.22)
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where H0, which describes the system when unperturbed, is assumed to have exact solutions
that are known. Such splitting of the Hamiltonian is encountered in the following typical

problem. Consider a system which, when unperturbed, is described by a time-independent

Hamilonian H0 whose solutions—the eigenvalues En and eigenstates n —are known,

H0 n En n (10.23)

and whose most general state vectors are given by stationary states

n t e i t H0 h
n e i En t h

n (10.24)

In the time interval 0 t we subject the system to an external time-dependent perturbation,

V t , that is small compared to H0:

V t
V t 0 t
0 t 0 t

(10.25)

During the time interval 0 t , the Hamiltonian of the system is H H0 V t and the
corresponding Schrödinger equation is

ih
d t

dt
H0 V t t (10.26)

where V t characterizes the interaction of the system with the external source of perturbation.
How does V t affect the system? When the system interacts with V t , it either absorbs

or emits energy. This process inevitably causes the system to undergo transitions from one

unperturbed eigenstate to another. Themain task of time-dependent perturbation theory consists

of answering this question: If the system is initially in an (unperturbed) eigenstate i of H0,
what is the probability that the system will be found at a later time in another unperturbed

eigenstate f ?

To prepare the ground for answering this question, we need to look for the solutions of the

Schrödinger equation (10.26). The standard method to solve (10.26) is to expand t in

terms of an expansion coefficient cn t :

t
n

cn t e
i En t

n (10.27)

and then insert this into (10.26) to find cn t to various orders in the approximation. Instead of
following this procedure, and since we are dealing with time-dependent potentials, it is more

convenient to solve (10.26) in the interaction picture (10.19):

ih
d t I

dt
VI t t I (10.28)

where t I ei t H0 h t and VI t ei t H0 hV t e i t H0 h . The time evolution

equation t U t ti ti may be written in the interaction picture as

t I ei t H0 h t ei t H0 hU t ti ti ei t H0 hU t ti e
i H0ti h ti I

(10.29)
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or as

t I UI t ti ti I (10.30)

where the time evolution operator is given in the interaction picture by

UI t ti ei t H0 hU t ti e
i H0ti h (10.31)

Inserting (10.30) into (10.28) we end up with

ih
dUI t ti
dt

VI t UI t ti (10.32)

The solutions of this equation, with the initial conditionUI ti ti I , are given by the integral
equation

UI t ti 1
i

h

t

ti

VI t UI t ti dt (10.33)

Time-dependent perturbation theory provides approximate solutions to this integral equation.
This consists in assuming that VI t is small and then proceeding iteratively. The first-order
approximation is obtained by inserting UI t ti 1 in the integral sign of (10.33), leading to

U 1
I t ti 1 i h t

ti
VI t dt . SubstitutingUI t ti U 1

I t ti in the integral sign of
(10.33) we get the second-order approximation:

U 2
I t ti 1

i

h

t

ti

VI t dt
i

h

2 t

ti

VI t1 dt1
t1

ti

VI t2 dt2 (10.34)

The third-order approximation is obtained by substituting U 2
I t ti into (10.33), and so on. A

repetition of this iterative process yields

UI t ti 1
i

h

t

ti

VI t dt
i

h

2 t

ti

VI t1 dt1
t1

ti

VI t2 dt2

i

h

n t

ti

VI t1 dt1
t1

ti

VI t2 dt2
t2

ti

VI t3 dt3
tn 1

ti

VI tn dtn

(10.35)

This series, known as the Dyson series, allows for the calculation of the state vector up to the
desired order in the perturbation.

We are now equipped to calculate the transition probability. It may be obtained by taking the

matrix elements of (10.35) between the eigenstates of H0. Time-dependent perturbation theory,
where one assumes knowledge of the solutions of the unperturbed eigenvalue problem (10.23),

deals in essence with the calculation of the transition probabilities between the unperturbed

eigenstates n of the system.

10.3.1 Transition Probability

The transition probability corresponding to a transition from an initial unperturbed state i

to another unperturbed state f is obtained from (10.35):

Pi f t f UI t ti i

2

f i
i

h

t

0

ei f i t
f V t i dt
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i

h

2

n

t

0

ei f n t1
f V t1 n dt1

t1

0

ei ni t2
n V t2 i dt2

2

(10.36)

where we have used the fact that

f VI t i f ei H0t hV t e i H0t h
i f V t i exp i f i t

(10.37)

where f i is the transition frequency between the initial and final levels i and f :

f i
E f Ei
h

1

h
f H0 f i H0 i (10.38)

The transition probability (10.36) can be written in terms of the expansion coefficients cn t
introduced in (10.27) as

Pi f t c 0f c 1f t c 2f t
2

(10.39)

where

c 0f f i f i c 1f t
i

h

t

0
f V t i e

i f i t dt (10.40)

The first-order transition probability for i f with i f (and hence f i

0) is obtained by terminating (10.36) at the first order in VI t :

Pi f t
i

h

t

0
f V t i e

i f i t dt
2

(10.41)

In principle we can use (10.36) to calculate the transition probability to any order in VI t .
However, terms higher than the first order become rapidly intractable. For most problems of

atomic and nuclear physics, the first order (10.41) is usually sufficient. In what follows, we are

going to apply (10.41) to calculate the transition probability for two cases, which will have later

usefulness when we deal with the interaction of atoms with radiation: a constant perturbation
and a harmonic perturbation.

10.3.2 Transition Probability for a Constant Perturbation

In the case where V does not depend on time, (10.41) leads to

Pi f t
1

h2
f V i

t

0

ei f i t dt
2

1

h2
f V i

2 ei f i t 1

f i

2

(10.42)

which, using ei 1 2 4 sin2 2 , reduces to

Pi f t
4 f V i

2

h2 2
f i

sin2
f i t

2
(10.43)
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Figure 10.1 Plot of [sin2 f i t 2 ] 2
f i versus f i for a fixed value of t ; f i E f Ei 2.

As a function of time, this transition probability is an oscillating sinusoidal function with a

period of 2 f i . As a function of f i , however, the transition probability, as shown in Fig-

ure 10.1, has an interference pattern: it is appreciable only near f i 0 and decays rapidly

as f i moves away from zero (here, for a fixed t , we have assumed that f i is a continuous

variable; that is, we have considered a continuum of final states; we will deal with this in more

detail in a moment). This means that the transition probability of finding the system in a state

f of energy E f is greatest only when Ei E f or when f i 0. The height and the width

of the main peak, centered around f i 0, are proportional to t2 and 1 t , respectively, so the
area under the curve is proportional to t ; since most of the area is under the central peak, the
transition probability is proportional to t . The transition probability therefore grows linearly
with time. The central peak becomes narrower and higher as time increases; this is exactly the

property of a delta function. Thus, in the limit t the transition probability takes the shape

of a delta function, as we are going to see.

As t we can use the asymptotic relation (Appendix A)

lim
t

sin2 yt

y2t
y (10.44)

to write the following expression:

1
1
2 f i

2
sin2

f i t

2
2 th h f i (10.45)

because f i 2 2h h f i . Now since h f i E f Ei and hence h f i E f Ei ,
we can reduce (10.43) in the limit of long times to

Pi f t
2 t

h
f V i

2
E f Ei (10.46)

The transition rate, which is defined as a transition probability per unit time, is thus given by

i f
Pi f t

t

2

h
f V i

2
E f Ei (10.47)
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The delta term E f Ei guarantees the conservation of energy: in the limit t , the

transition rate is nonvanishing only between states of equal energy. Hence a constant (time-

independent) perturbation neither removes energy from the system nor supplies energy to it. It

simply causes energy-conserving transitions.

Transition into a continuum of final states

Let us now calculate the total transition rate associated with a transition from an initial state

i into a continuum of final states f . If E f is the density of final states—the number
of states per unit energy interval—the number of final states within the energy interval E f and
E f dE f is equal to E f dE f . The total transition rate Wi f can then be obtained from
(10.47):

Wi f
Pi f t

t
E f dE f

2

h
f V i

2 E f E f Ei dE f (10.48)

or

Wi f
2

h
f V i

2
Ei (10.49)

This relation is called the Fermi golden rule. It implies that, in the case of a constant perturba-
tion, if we wait long enough, the total transition rate becomes constant (time independent).

10.3.3 Transition Probability for a Harmonic Perturbation

Consider now a perturbation which depends harmonically on time (i.e., the time between the

moments of turning the perturbation on and off):

V t ei t †e i t (10.50)

where is a time-independent operator. Such a perturbation is encountered, for instance, when

charged particles (e.g., electrons) interact with an electromagnetic field. This perturbation pro-

vokes transitions of the system from one stationary state to another.

The transition probability corresponding to this perturbation can be obtained from (10.41):

Pi f t
1

h2
f i

t

0

ei f i t dt f
†

i

t

0

ei f i t dt
2

(10.51)

Neglecting the cross terms, for they are negligible compared with the other two (because they

induce no lasting transitions), we can rewrite this expression as

Pi f t
1

h2
f i

2 ei f i t 1

f i

2
1

h2
f

†
i

2 ei f i t 1

f i

2

(10.52)

which, using ei 1 2 4 sin2 2 , reduces to

Pi f t
4

h2
f i

2 sin2 f i t 2

f i
2 f

†
i

2 sin2 f i t 2

f i
2

(10.53)

As displayed in Figure 10.2, the transition probability peaks either at f i , where its

maximum value is Pi f t t2 4h2 f i
2, or at f i , where its maximum
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Figure 10.2 Plot of [sin2 f i t 2 ] f i
2 versus f i for a fixed value of t , where

n n t , n n t , n n t , and n n t .

value is Pi f t t2 4h2 f
†

i
2. These are conditions for resonance; this means

that the probability of transition is greatest only when the frequency of the perturbing field is

close to f i . As moves away from f i , P f i decreases rapidly.
Note that the expression (10.53) is similar to that derived for a constant perturbation, as

shown in (10.43). Using (10.45) we can reduce (10.53) in the limit t to

i f
2

h
f i

2
E f Ei h

2

h
f

†
i

2
E f Ei h

(10.54)

This transition rate is nonzero only when either of the following two conditions is satisfied:

E f Ei h (10.55)

E f Ei h (10.56)

These two conditions cannot be satisfied simultaneously; their physical meaning can be under-

stood as follows. The first condition E f Ei h implies that the system is initially excited,

since its final energy is smaller than the initial energy; when acted upon by the perturbation,

the system deexcites by giving up a photon of energy h to the potential V t as shown in
Figure 10.3. This process is called stimulated emission, since the system easily emits a photon
of energy h . The second condition, E f Ei h shows that the final energy of the system

is larger than its initial energy. The system then absorbs a photon of energy h from V t and
ends up in an excited state of (higher) energy E f (Figure 10.3). We may thus view the terms

ei t and e i t in V t as responsible, respectively, for the emission and the absorption of a
photon of energy h .

In conclusion, the effect of a harmonic perturbation is to transfer to the system, or to receive

from it, a photon of energy h . In sharp contrast, a constant (time-independent) perturbation

neither transfers energy to the system nor removes energy from it.
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E f

Ei

h Ei E f

Stimulated emission
of a photon of energy h

?

6

Ei

E f

h E f Ei

Absorption of a
photon of energy h

Figure 10.3 Stimulated emission and absorption of a photon of energy h .

Remark

For transitions into a continuum of final states, we can show, by analogy with the derivation of

(10.49), that (10.54) leads to the absorption and emission transition rates:

W abs
i f

2

h
f V † i

2
E f

E f Ei h
(10.57)

W emi
i f

2

h
f V i

2
E f

E f Ei h
(10.58)

Since the perturbation (10.50) is Hermitian, f i i
†

f , we have

f i
2

f
†

i
2; hence

W abs
i f

E f E f Ei h

W emi
i f

E f E f Ei h

(10.59)

This relation is known as the condition of detailed balancing.

Example 10.1

A particle, which is initially (t 0) in the ground state of an infinite, one-dimensional potential

box with walls at x 0 and x a, is subjected for 0 t to a perturbation V t
x2e t . Calculate to first order the probability of finding the particle in its first excited state

for t 0.

Solution

For a particle in a box potential, with En n2 2h2 2ma2 and n x 2 a sin n x a ,
the ground state corresponds to n 1 and the first excited state to n 2. We can use (10.41)

to obtain

P12
1

h2 0
2 V t 1 e

i 21tdt
2 1

h2
2 x

2
1

2

0

e 1 i 21 tdt
2

(10.60)

where

2 x
2

1

a

0

x2 2 x 1 x dx
2

a

a

0

x2 sin
2 x

a
sin

x

a
dx

16a2

9 2

(10.61)
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t

0

e 1 i 21 tdt
2 e 1 i 21 t 1

1 i 21

2
1 e 2t 2e t cos 21t

2
21 1 2

(10.62)

which, in the limit t , reduces to

0

e 1 i 21 tdt
2

2
21

1
2

1 9 4h2

4m2a4
1
2

1

(10.63)

since 21 E2 E1 h 3 2h 2ma2 . A substitution of (10.61) and (10.63) into (10.60)
leads to

P12
16a2

9 2h

2
9 4h2

4m2a4
1
2

1

(10.64)

10.4 Adiabatic and Sudden Approximations

In discussing the time-dependent perturbation theory, we have dealt with phenomena where the

perturbation V t is small, but we have paid no attention to the rate of change of the pertur-
bation. In this section we want to discuss approximation methods treating phenomena where

V t is not only small but also switched on either adiabatically (slowly) or suddenly (rapidly).
We assume here that V t is switched on at t 0 and off at a later time t (the turning on and
off may be smooth or abrupt).

Since ei f i t 1 i f i ei f i t t an integration by parts yields

i

h

t

0
f V t i e

i f i t dt
1

h f i

t

0
f V t i

t
ei f i t dt

1

h f i
f V t i e

i f i t
t

t 0

1

h f i

t

0

ei f i t

t
f V t i dt

1

h f i

t

0

ei f i t

t
f V t i dt (10.65)

where we have used the fact that V t vanishes at the limits (when it is switched on at t 0

and off at time t). The calculation of the integral depends on the rate of change of V t . In
what follows we are going to consider the cases where the interaction is switched on slowly or

rapidly.

10.4.1 Adiabatic Approximation

First, let us discuss briefly the adiabatic approximation without combining it with perturbation

theory. This approximation applies to phenomena whose Hamiltonians evolve slowlywith time;
we should highlight the fact that the adiabatic approximation does not require the Hamiltonian

to split into an unperturbed part H0 and a weak time-dependent perturbation V t . Essentially,
it consists in approximating the solutions of the Schrödinger equation at every time by the sta-

tionary states (energy En and wave functions n) of the instantaneous Hamiltonian in such



10.4. ADIABATIC AND SUDDEN APPROXIMATIONS 583

a way that the wave function at a given time is continuously and smoothly converted into an

eigenstate of the corresponding Hamiltonian at a later time. This result is the basis of an im-

portant theorem of quantum mechanics, known as the adiabatic theorem, which states that: if
a system is initially in the nth state and if its Hamiltonian evolves slowly with time, it will be
found at a later time in the nth state of the new (instantaneous) Hamiltonian. That is, the system
will make no transitions; it simply remains in the nth state of the new Hamiltonian.
Let us now discuss the adiabatic approximation for those cases where the Hamiltonian splits

into a time-independent part H0 and a time-dependent part V t , which is small enough so that
perturbation theory applies and which is turned on and off very slowly. If V t is turned on at
t 0 and off at time t in a slow and smooth way, it will change very little in the time interval
0 t t . The term f V t i t will be almost constant, so we can take it outside
the integral sign in (10.65):

Pi f t
1

h2 2
f i

t
f V t i

2 t

0

ei f i t dt
2

(10.66)

or

Pi f t
4

h2 4
f i

t
f V t i

2

sin2
f i t

2
(10.67)

The adiabatic approximation is valid only when the time change in the energy of the perturba-

tion during one period of oscillation is very small compared with the energy difference E f Ei
between the initial and final states:

1

f i t
f V t i E f Ei (10.68)

Since sin2 1 we see from (10.67) that, in the adiabatic approximation, the transition prob-

ability is very small, Pi f 1. In fact, if the rate of change of V t , and hence of H t , is

very small, we will have f V t i t 0, which in turn implies that the transition

probability is practically zero: Pi f 0. Once more, we see that no transition occurs when the
perturbation is turned on and off adiabatically. That is, if a system is initially (at t 0) in the

nth state n 0 of H0 with energy En 0 , then at the end (at time t) of an adiabatic pertur-
bation V t , it will be found in the nth state n t of the new Hamiltonian (H H0 V t )
with energy En t . As an illustrative example, consider a particle in a harmonic oscillator po-
tential whose constant is being changed very slowly from k to, say, 3k; if the particle is initially
in the second excited state, it will remain in the second excited state of the new oscillator.

Note that the transition probability (10.67) was derived by making use of two approxima-

tions: the perturbation theory approximation and the adiabatic approximation. It should be

stressed, however, that when the perturbation is not weak, but switched on adiabatically, we

can still use the adiabatic approximation but no longer in conjunction with perturbation theory.

10.4.2 Sudden Approximation

Again, let us start with a brief discussion of the sudden approximation without invoking pertur-

bation theory. If the Hamiltonian of a system changes abruptly (over a very short time interval)

from one form to another, we would expect the wave function not to change much, yet its
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expansion in terms of the eigenfunctions of the initial and final Hamiltonians may be differ-

ent. Consider, for instance, a system which is initially (t 0) in an eigenstate n of the

Hamiltonian H0:

H0 n E 0
n n n t ei E

0
n t h

n (10.69)

At time t 0 we assume that the Hamiltonian is suddenly changed from H0 to H and that it
preserves this new form (i.e., H ) for t 0; it should be stressed that the difference between the

two Hamiltonians H H0 does not need to be small. Let n be the eigenfunctions of H :

H n En n n t ei En t h n (10.70)

The state of the system is given for t 0 by

t
n

cne
i En t h

n (10.71)

If the system is initially in an eigenstate m of H0, the continuity condition at t 0 dictates

that the system remains in this state just after the change takes place:

0
n

cn n m cn n m (10.72)

The probability that a sudden change in the system’s Hamiltonian from H0 to H causes a

transition from the mth state of H0 to the nth state of H is

Pmn n m
2 (10.73)

We should note that the sudden approximation is applicable only for transitions between dis-

crete states.

Let us now look at the sudden approximation within the context of perturbation theory.

Consider a system which is subjected to a perturbation that is small and switched on suddenly.

When V t is instantaneously turned on, the term ei f i t in (10.65) does not change much

during the switching-on time. We can therefore take ei f i t outside the integral sign,

Pi f
1

h2 2
f i

ei f i t
2 t

0 t
f V t i dt

2

(10.74)

hence the transition probability is given within the sudden approximation by

Pi f t
f V t i

2

h2 2
f i

(10.75)

To conclude, notice that both (10.73) and (10.75) give the transition probability within the

sudden approximation. Equation (10.73) represents the exact formula, where the change in the

Hamiltonians, H H0, may be large, but equation (10.75) gives only an approximate result,
for it was derived from a first-order perturbative treatment, where we assumed that the change

H H0 is small, yet sudden.
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Example 10.2

A particle is initially (t 0) in the ground state of an infinite, one-dimensional potential well

with walls at x 0 and x a.
(a) If the wall at x a is moved slowly to x 8a, find the energy and wave function of the

particle in the new well. Calculate the work done in this process.

(b) If the wall at x a is now suddenly moved (at t 0) to x 8a, calculate the
probability of finding the particle in (i) the ground state, (ii) the first excited state, and (iii) the

second excited state of the new potential well.

Solution

For t 0 the particle was in a potential well with walls at x 0 and x a, and hence

En
n2 2h2

2ma2
n x

2

a
sin

n x

a
0 x a (10.76)

(a) When the wall is moved slowly, the adiabatic theorem dictates that the particle will make

no transitions; it will be found at time t in the ground state of the new potential well (the well
with walls at x 0 and x 8a). Thus, we have

E1 t
2h2

2m 8a 2

2h2

128ma2 1 x
2

8a
sin

x

8a
0 x a

(10.77)

The work needed to move the wall is

W E1 t E1
2h2

m 8a 2

2h2

2ma2
63 2h2

128ma2
(10.78)

(b) When the wall is moved rapidly, the particle will find itself instantly (at t 0) in the

new potential well; its energy levels and wave function are now given by

En
n2 2h2

2m 8a 2
n2 2h2

128ma2 n x
2

8a
sin

n x

8a
0 x 8a (10.79)

The probability of finding the particle in the ground state of the new box potential can be

obtained from (10.73): P11 1 1
2, where

1 1

a

0
1 x 1 x dx

2

8a

a

0

sin
x

8a
sin

x

a
dx

16

63
4 2 2

(10.80)

hence

P11 1 1
2 16

63

2

4 2 2 0 0077 0 7% (10.81)

The probability of finding the particle in the first excited state of the new box potential is given

by P12 2 1
2
, where

2 1

a

0
2 x 1 x dx

2

8a

a

0

sin
x

4a
sin

x

a
dx

8

15
(10.82)

hence

P12 2 1
2 8

15

2

0 1699 17% (10.83)
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A similar calculation leads to

P13 3 1
2 2

8a

a

0

sin
3 x

8a
sin

x

a
dx

2
16

55
4 2 2

2

24 2%

(10.84)

These calculations show that the particle is most likely to be found in higher excited states; the

probability of finding it in the ground state is very small.

10.5 Interaction of Atoms with Radiation

One of the most important applications of time-dependent perturbation theory is to study the

interaction of atomic electrons with an external electromagnetic radiation. Such an application

reveals a great deal about the structure of atoms. For simplicity, we assume that only one atomic

electron is involved in the interaction and that the electron spin is neglected. We also assume

that the nucleus is infinitely heavy.

In the absence of an external perturbation, the Hamiltonian of the atomic electron is H0
P2 2me V0 r , where me is the mass of the electron and V0 r is the static potential due to
the interaction of the electron with the other electrons and with the nucleus.

Now, if electromagnetic radiation of vector potential A r t and electric potential r t is
applied on the atom, the Hamiltonian due to the interaction of the electron (of charge e) with
the radiation is given by

H
1

2me
P

e

c
A r t

2
e r t V0 r

H0 e r t
e

2mec
2A P ih A

e2A2

2mec2
(10.85)

where we have used the relation P A A P ih A. Since r t 0 for radiation with

no electrostatic source and since A 0 (Coulomb gauge), and neglecting the term in A2,
we may write (10.85) as

H H0
e

mec
A P H0 V t (10.86)

where

V t
e

mec
A r t P (10.87)

This term, which gives the interaction between the electron and the radiation, is small enough

(compared to H0) to be treated by perturbation theory. We are going to use perturbation theory
to study the effect of V t on the atom. In particular, we will focus on the transitions that are
induced as a result of this perturbation.

At this level, we cannot proceed further without calculating A r t . In what follows, we
are going to show that, using A r t for an electromagnetic radiation, we obtain a V t which

has the structure of a harmonic perturbation: V t e i t †ei t . Therefore, by analogy
with a harmonic perturbation, we would expect the atom to emit or absorb photons and then

undergo transitions from one state to another. For the sake of completeness, we are going to

determine A r t in two different ways: by treating the radiation classically and then quantum
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mechanically. We are going to show that, unlike a quantum treatment, a classical treatment
allows only a description of stimulated emission and absorption processes, but not spontaneous

emission. Spontaneous emission turns out to be a purely quantum effect.

10.5.1 Classical Treatment of the Incident Radiation

A classical1 treatment of the incident radiation is valid only when large numbers of photons
contribute to the interaction with the atom (recall that quantum mechanical effects are generally

encountered only when a finite number of photons are involved).
From classical electrodynamics, if we consider the incident radiation to be a plane wave of

polarization that is propagating along the direction n, the vector potential A r t is given by

A r t A0 r e
i t A0 r e

i t A0 ei k r t e i k r t (10.88)

with k kn. Since A r t satisfies the wave equation 2A 1 c2 2A t2 0, we have

k c. The Coulomb gauge condition A 0 yields k A0 0; that is, A r t lies in a
plane perpendicular to the wave’s direction of propagation, n. The electric and magnetic fields
associated with the vector potential (10.88) can be obtained at once:

E r t
1

c

A

t

i

c
A0 ei k r t e i k r t (10.89)

B r t A i k A0 ei k r t e i k r t n E (10.90)

These two relations show that E and B have the same magnitude, E B .
The energy density (or energy per unit volume) for a single photon of the incident radiation

can be obtained from (10.89) and (10.90):

u
1

8
E 2 B 2 1

4
E 2

2

c2
A0

2 sin2 k r t (10.91)

Averaging this expression over time, we see that the energy of a single photon per unit volume,

h V , is given by 2 2 c2 A0 2 h V and hence A0 2 2 hc2 V , which, when
inserted into (10.88), leads to

A r t
2 hc2

V
ei k r t e i k r t (10.92)

Having specified A r t by means of a classical treatment, we can now rewrite the potential
(10.87) as

V t
e

mec

2 hc2

V

1 2

P ei k r t e i k r t e i t †ei t (10.93)

where

e

me

2 h

V

1 2

Peik r † e

me

2 h

V

1 2

Pe ik r (10.94)

1A classical treatment of the electric and magnetic fields, E r t and B r t , and their corresponding electric and
vector potentials, r t and A r t , means that they are described by continuous fields.
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The structure of (10.93) is identical with (10.50); that is, the interaction of an atomic electron
with radiation has the structure of a harmonic perturbation. By analogy with (10.50) we can
state that the term e i t in (10.93) gives rise to the absorption of the incident photon of energy
h by the atom, and ei t to the stimulated emission of a photon of energy h by the atom. That

is, the absorption process occurs when the atom receives a photon from the radiation, and the

stimulated emission when the radiation receives or gains a photon from the decaying atom. At

this level, we cannot afford not to mention an important application of stimulated emission. In

this process we start with one (incident) photon and end up with two: the incident photon plus

the photon given by the atom resulting from its transition to a lower energy level. What would

happen if we had a large number of atoms in the same excited state? A single external photon

would trigger an avalanche, or chain reaction, of photons released by these atoms in a very short

time and all having the same frequency. This would lead to an amplification of the electromag-
netic field. How does this take place? When the incident photon interacts with the first atom, it

will produce two photons, which in turn produce four photons; these four photons then produce

eight photons (after they interact with four different atoms), and so on. This process is known

as the amplification by stimulated emission of the (incident) radiation. Two such radiation am-
plifications have been achieved experimentally and have led to enormous applications: one in

the microwave domain, known as maser (microwave amplification by stimulated emission of
radiation); the other in the domain of light waves, called laser (light amplification by stimulated
emission of radiation).

Following the approach that led to the transition rates (10.54) from (10.50), we can eas-

ily show that the transition rates for the stimulated emission and absorption corresponding to

(10.93) are given by

emi
i f

4 2e2

m2e V
f e ik r P i

2
E f Ei h (10.95)

abs
i f

4 2e2

m2e V
f eik r P i

2
E f Ei h (10.96)

These relations represent the expressions for the transition rates when the radiation is treated

classically.

What would happen when there is no radiation? If A 0 (i.e., the atom is placed in a

vacuum), equations (10.95) and (10.96) imply that no transition will occur since, as equation

(10.87) shows, if A 0 the perturbation will be zero; hence emi
i f 0 and abs

i f 0. As

a result, the classical treatment cannot account for spontaneous emission which occurs even in
the absence of an external perturbing field. This implies, for instance, that a hydrogen atom in

an n 2 energy eigenstate remains in this eigenstate unless it is perturbed by an external field.

This is in complete disagreement with experimental observations, which show that atoms in the

n 2 states undergo spontaneous emissions; they emit electromagnetic radiation even when no
external perturbation is present. The spontaneous emission is a purely quantum effect.

10.5.2 Quantization of the Electromagnetic Field

We have seen that a classical treatment of radiation leads to transition rates that account only

for the processes of absorption and stimulated emission; spontaneous emission of photons by

atoms is a typical phenomenon that a classical treatment fails to explain, let alone predict. The
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classical treatment is valid only when very large numbers of photons contribute to the radiation;

that is, when the intensity of the radiation is so high that only its wave aspect is important. At

very low intensities, however, the particle nature of the radiation becomes nonnegligible. In this

case we have to consider a quantum mechanical treatment of the electromagnetic radiation. To

obtain a quantum description of the radiation, we would necessarily need to replace the various

fields (such as E r t , B r t , and the potential vector A r t ) with operators.
In the absence of charges and currents, the electric and magnetic fields are fully specified

by the vector potential A r t . Since A r t is transverse (perpendicular to the wave vector k),
it has only two nonzero components along the directions of two polarization (unit) vectors, 1

and 2, which lie in a plane perpendicular to k. We can thus expand A r t in a Fourier series
as follows:

A r t
1

V
k

2

1

A k ei k r k t A
k
e i k r k t (10.97)

where we have assumed that the electromagnetic field is confined to a large volume V with
periodic boundary conditions. We are going to see that, by analogy with the quantization of

a classical harmonic oscillator, the quantization of radiation can be achieved by writing the
electromagnetic field in terms of creation and annihilation operators.
The Hamiltonian of the complete system (atom and the external radiation) is H H0

Hr V t , where H0 is the Hamiltonian of the unperturbed atom, Hr is the Hamiltonian of the
electromagnetic field, and V t is the interaction of the atom with the radiation. To find Hr we
need to quantize the energy of the electromagnetic field which can be obtained from (10.97):

Hr
1

8
d3r E2 r t B2 r t

V

8 c2
k

2

1

hk 2A
k
A k (10.98)

with 2 1, where we have used k ck, E r t 1 c A t , and B r t A.
Instead of the two variables A k and A k

, we can introduce a new set of two canonically

conjugate variables:

Q k

1

4 c2
A

k
A k P k

i k

4 c2
A

k
A k (10.99)

Combining (10.98) and (10.99) we can write

Hr
k

2

1

1

2
P2

k

2
k

2
Q2

k
(10.100)

This expression has the structure of a Hamiltonian of a collection of independent harmonic

oscillators. This is compatible with the fact that electromagnetic waves in a vacuum result

from the (harmonic) oscillations of the electromagnetic field; hence they can be described by

means of a linear superposition of independent vibrational modes. To quantize (10.100) we

simply need to find the operators Q k and P k that correspond to the variables Q k and P k ,

respectively, such that they obey the canonical commutation relations:

Q
1k1

P
2k2

ih
1 2 k1 k2

(10.101)
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Following the same quantization procedure of a classical harmonic oscillator, and introducing

the lowering and raising operators

a k
k

2h
Q k

i

2h k
P k a

†
k

k

2h
Q k

i

2h k
P k (10.102)

which lead to Q k h 2 k a
†
k

a k and P k i h k 2 a
†
k

a k , we can show

that the Hamiltonian operator corresponding to (10.100) is given by

Hr
k

2

1

h k N k

1

2
(10.103)

with N k a
†
k
a k .

By analogy to the harmonic oscillator, the operators a k and a
†
k
obey the following com-

mutation relations:

a
1 k1

a
†

2 k2 1 2 k1 k2
a
1 k1

a
2 k2

a
†

1 k1
a
†

2 k2
0 (10.104)

and serve respectively to annihilate and create a photon of wave number k and polarization .

The eigenvalues of N k are n k 0 1 2 ; by analogy with the harmonic oscillator, its

eigenvectors are

n k

1

n k!
a
†
k

n k

0 (10.105)

where 0 is the state with no photons, the vacuum state, and n k is a state of the elec-

tromagnetic field with n k photons with wave vector k and polarization . The number n k

therefore represents the occupation number mode. The actions of a k and a
†
k
on n k are

given by

a k n k n k n k 1 a
†
k
n k k 1 n k 1 (10.106)

The eigenstates of the Hamiltonian (10.103) can be inferred from (10.105):

n
1k1

n
2k2

n
3k3

j

n
j k j

(10.107)

with the energy eigenvalues (of the radiation)

Er
k

h k n k

1

2
(10.108)

The state n
1k1

n
2k2

n
3k3

describes an electromagnetic field with n
1k1
photons in the

mode 1 k1 (i.e., n
1k1
photons with wave vector k1 and polarization 1), n

2k2
photons in the
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mode 2 k2 , and so on. Substituting (10.99) into (10.102), we get a k k 2 hc2 A k

and a
†
k k 2 hc2 A

†
k
; hence

A k

2 hc2

k
a k A

†
k

2 hc2

k
a
†
k

(10.109)

An insertion of these two relations into (10.97) gives the vector potential operator:

A r t

k

2

1

2 hc2

kV
a ke

i k r k t a
†
k
e i k r k t (10.110)

The interaction V t as given by (10.87) reduces to V t e mec A r t P or

V t
e

me
k

2 h

kV
a ke

ik r Pei k t a
†
k
eik r Pe i k t (10.111)

or

V t

k

2

1
ke
i k t †

k
e i k t (10.112)

where

k

e

me

2 h

kV
a ke

ik r P
†
k

e

me

2 h

kV
a
†
k
e ik r P (10.113)

The terms k and
†
k
correspond to the absorption (annihilation) and emission (creation) of

a photon by the atom, respectively. As in the classical case, the interaction (10.112) has the

structure of a harmonic perturbation.

Remark

The quantization of the radiation is achieved by writing the electromagnetic field in terms of cre-

ation and annihilation operators, by analogy with the harmonic oscillator. This process, which

is called second quantization, leads to the replacement of the various fields (such as the vector
potential A r t , the electric field E r t , and the magnetic field B r t ) by operator quanti-
ties, which in turn are expressed in terms of creation and annihilation operators. For instance,

the Hamiltonian and the vector potential of the radiation are given in the second quantization

representation by equations (10.103) and (10.110), respectively.

10.5.3 Transition Rates for Absorption and Emission of Radiation

Before the atom and the radiation interact, their initial state is given by i i n k ,

where i is the state of the unperturbed atom and n k is the state vector of the radiation.

After the interaction takes place, the state of the system is given by f f n k f .

Let us look first at the case of emission of a photon. If after interaction the atom emits

a photon, the final state of the system will be given by f f n k 1 , since

the electromagnetic field gains a photon; hence its state changes from n k n k 1 .
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Formally, this process can be achieved by creating a photon, that is, by applying
†
k
or a

†
k
on

the photonic state n k :

f
†
k i

e

me

2 h

kV
f e ik r P i n k 1 a

†
k
n k

e

me

2 h

kV
n k 1 f e ik r P i (10.114)

When n k 0 (i.e., no radiation), equation (10.114) shows that even in the absence of an
external radiation, the theory can describe events where there is emission of a photon. This is
called spontaneous emission. This phenomenon cannot be described by means of a classical
treatment of radiation. But if n k 0, then n k is responsible for induced or stimulated
emissions; the bigger n k , the bigger the emission probability.

In the case of a photon absorption, the system undergoes a transition from an initial state

i i n k to the final state f f n k 1 . This can be achieved formally

by applying the annihilation operator a k on n k :

f k i
e

me

2 h

kV
f eik r P i n k 1 a k n k

e

me

2 h

kV
n k f eik r P i (10.115)

The transition rates corresponding to the emission or absorption of a photon of energy

h k hck, wave number k, and polarization can be obtained, by analogy with (10.95) and

(10.96), from (10.114) and (10.115):

emi
i f

4 2e2

m2e kV
n k 1 f e ik r P i

2
E f Ei h k (10.116)

abs
i f

4 2e2

m2e kV
n k f eik r P i

2
E f Ei h k (10.117)

10.5.4 Transition Rates within the Dipole Approximation

Approximate expressions of the transition rates (10.116) and (10.117) can be obtained by ex-

panding e ik r :

e ik r 1 ik r
1

2
k r 1 i

c
n r

1

2

2

c2
n r 2 (10.118)

This expansion finds its justification in the fact that k r is a small quantity, since the wave-
length of the radiation (visible or ultraviolet) is very large compared to the atomic size: kr
2 a0 2 10 10m 10 6m 10 3. In the case of nuclear radiation (such as radia-

tion), kr is also in the range of 10 3, with rnucleus 10 15m.
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The electric dipole approximation corresponds to keeping only the leading term in the ex-

pansion (10.118): e ik r 1; hence

f e ik r P i f P i (10.119)

This term gives rise to electric dipole or E1 transitions. To calculate this term, we need to use
the relation

X H0 X
P 2

2me
V r X

P2x
2me

ih

me
Px (10.120)

which can be generalized to [r H0] ihP me. Hence, inserting P me ih [r H0] into
(10.119) and using H0 i Ei i and H0 f E f f , we have

f P i
me
ih

f [r H0] i
m

ih
Ei E f f r i

ime f i f r i (10.121)

The substitution of this term into (10.119) leads to

f eik r P i ime f i f r i (10.122)

Inserting (10.122) into (10.116) and (10.117), we obtain the transition rates, within the dipole
approximation, for the emission and absorption of a photon of energy h k by the atom:

emi
i f

4 2e2 2
f i

kV
n k 1 f r i

2
E f Ei h k (10.123)

abs
i f

4 2e2 2
f i

kV
n k f r i

2
E f Ei h k (10.124)

10.5.5 The Electric Dipole Selection Rules

Since r is given in spherical coordinates by r r sin cos i r sin sin j r cos k,
we can write

r r x sin cos y sin sin z cos (10.125)

Using the relations sin cos 2 3 Y11 Y1 1 , sin sin i 2 3 Y11 Y1 1 ,

and cos 4 3Y10, we may rewrite (10.125) as

r
4

3
r

x i y

2
Y11

x i y

2
Y1 1 zY10 (10.126)

which in turn leads to

f r i
4

3 0

r3Rn f l f r Rni li r dr

Yl f m f
x i y

2
Y11

x i y

2
Y1 1 zY10 Ylimi d

(10.127)
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where we have used r i Rni li r Ylimi and r f Rn f l f r Yl f m f .

The integration over the angular degrees of freedom can be calculated by means of the

Wigner–Eckart theorem; we have shown in Chapter 7 that

d Yl f m f Y1m Ylimi l f m f Y1m li mi

3 2li 1

4 2l f 1
li 1 0 0 l f 0 li 1 mi m l f m f (10.128)

Inserting (10.128) into (10.123) and (10.124), we obtain emi
i f li 1 mi m l f m f

2

and abs
i f li 1 mi m l f m f

2. Thus the dipole selection rules are specified by the

selection rules of the Clebsch–Gordan coefficient li 1 mi m l f m f :

The transition rates are zero unless the values of m f and mi satisfy the condition mi
m m f or m f mi m . But since m takes only three values, m 1, 0, 1, we

have

m f mi 1 0 1 (10.129)

The permissible values of l f must lie between li 1 and li 1 (i.e., li 1 l f li 1),

so we have 1 l f li 1 or

l f li 1 0 1 (10.130)

Note that, since the Clebsch–Gordan coefficient li 1 mi m l f m f vanishes for

li l f 0, no transition between li 0 and l f 0 is allowed.

Finally, since the coefficient li 1 0 0 l f 0 vanishes unless 1 li 1 l f 1 or

1 li l f 1, then li l f must be an odd integer:

l f li odd integer (10.131)

This means that, in the case of electric dipole transitions, the final and initial states must

have different parities. As a result, electric dipole transitions like 1s 2s, 2p 3p, etc.,

are forbidden, while transitions like 1s 2p, 2p 3s, etc., are allowed.

10.5.6 Spontaneous Emission

It is clear from (10.123) that the rate of emission of a photon from an atom is not zero even

in the absence of an external radiation field (n k 0). This corresponds to the spontaneous
emission of a photon. The total transition rate corresponding to spontaneous emission can be
inferred from (10.123) by taking n k 0:

emi
i f

4 2 2
f i

V
d f i

2 E f Ei h (10.132)

where d f i is the matrix element for the electron’s electric dipole moment d er :

d f i f d i e f r i (10.133)



10.5. INTERACTION OF ATOMS WITH RADIATION 595

The relation (10.132) gives the transition probability per unit time corresponding to the transi-

tion of the atom from the initial state i to the final state f as a result of its spontaneous

emission of a photon of energy h . Thus the final states of the system consist of products

of discrete atomic states and a continuum of photonic states. The photon emitted will be de-

tected in general as having a momentum in the momentum interval p p dp located around
p hk h c. The transition rate (10.132) needs then to be summed over the continuum of
the final photonic states. The number of final photonic states within the unit volume V , whose
momenta are within the interval p p dp , is given by

d3n
Vd3 p

2 h 3
V p2dp d

2 h 3
Vh3 2

2 h 3c3
d d

V 2

2 c 3
d d (10.134)

Thus, the transition rate corresponding to the emission of a photon in the solid angle d is

obtained by integrating (10.132) over d :

dW emi
i f

V

2 3c3
d 2 emi

i f d
1

2 c3
d f i

2d 2
f i E f Ei h d

1

2 hc3
d f i

2d 2
f i i f d (10.135)

where we have used the fact E f Ei h 1 h i f with i f Ei E f h.
Carrying out the integration, we can reduce (10.135) to

dW emi
i f

3

2 hc3
d f i

2d (10.136)

The transition rate (10.136) corresponds to a specific polarization; that is, the photon emitted

travels along the direction n (since k kn), which is normal to . To find the transition rate

corresponding to any polarization, we need to sum over the two polarizations of the photon:

2

1

d f i
2

1 d f i 1
2

2 d f i 2
2 d f i

2 d f i 3
2 (10.137)

Since the three directions of d f i are equivalent, we have

d f i 1
2 d f i 2

2 d f i 3
2 1

3
d f i

2 (10.138)

Thus, an average over polarization yields

2

1

d f i
2 d f i

2 1

3
d f i

2 2

3
d f i

2 (10.139)

Substituting (10.139) into (10.136), we obtain the average transition rate corresponding to the

emission of the photon into the solid angle d :

dW emi
i f

3

3 hc3
d f i

2d (10.140)

An integration over all possible (photonic) directions ( d f i 2 is not included in the integration
since we are integrating over the angular part of the photonic degrees of freedom only and not
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over the electron’s) yields d 4 . Thus, the transition rate associated with the emission

of the photon is

W emi
i f

4

3

3

hc3
d f i

2 4

3

3e2

hc3
f r i

2
(10.141)

where E f Ei h.
The total power (or intensity) radiated by the electron is obtained by multiplying the total

rates (10.141) by h :

Ii f h W emi
i f

4

3

4

c3
d f i

2 4

3

4e2

c3
f r i

2
(10.142)

The transition rates derived above, (10.141) and (10.142), were obtained for single-electron

atoms. For atoms that have Z electrons, we must replace the dipole moment d er with the
dipole moment of all Z electrons: d e Z

j 1 r j .
The mean lifetime of an excited state can be obtained by adding together the total transi-

tion probabilities per unit time (10.141) for all possible final states:

1

W

1

f Wi f
(10.143)

Example 10.3

A particle of charge q and massm is moving in a one-dimensional harmonic oscillator potential
of frequency 0.

(a) Find the rate of spontaneous emission for a transition from an excited state n to the

ground state.

(b) Obtain an estimate for the rate calculated in (a) and the lifetime of the state n when

the particle is an electron and 0 3 1014 rad s 1.

(c) Find the condition under which the dipole approximation is valid for the particle of (b).

Solution

(a) The spontaneous emission rate for a transition from an excited state n to 0 is given

by (10.141):

W emi
n 0

4

3

3q2

hc3
0 X n

2
(10.144)

where En E0 h n 1
2 0

1
2 0 n 0. Since a n n n 1 and

a† n n 1 n 1 , and since X h 2m 0 a† a , we have

0 X n
h

2m 0
0 a† a n

h

2m 0
n 1 0 n 1 n 0 n 1 (10.145)

Thus only a transition from 1 to 0 is possible; hence n 1, 0, and 0 X 1

h 2m 0 . The emission rate (10.144) then becomes

W emi
1 0

4

3

3q2

hc3
0 X 1

2 4

3

3
0q
2

hc3
h

2m 0

2

3

2
0q
2

mc3
(10.146)
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(b) If the particle is an electron, we have q e:

W emi
1 0

2

3

2
0e
2

mec3
2

3

2
0h

mec2
2

3

hc

mec2

2
0

c
(10.147)

Using mec2 0 511MeV, hc 197 33MeV fm, we have

W emi
1 0

2

3

hc

mec2

2
0

c

2

3 137

197 33MeV fm

0 511MeV

9 1028 s 2

3 108ms 1
5 6 105 s 1 (10.148)

The lifetime of the 1 state is

1

W emi
1 0

3

2

mec3

2
0e
2

1

5 6 105sec 2
0 18 10 5 s (10.149)

(c) For the dipole approximation to be valid, we need kx 1, where x was calculated
in (10.145) for n 1: x h 2me 0 . As for k, a crude estimate yields k c
E1 E0 hc 0 c. Thus, we have

kx
0

c

h

2me 0

h 0

2mec2
1 h 0 2mec

2 (10.150)

This is indeed the case since 2mec2 1 022MeV is very large compared to

h 0 hc
0

c
197 33MeV fm

3 1014 s 1

3 108ms 1
2 0 10 7MeV (10.151)

10.6 Solved Problems

Problem 10.1

(a) Calculate the position and the momentum operators, XH t and PH t , in the Heisen-
berg picture for a one-dimensional harmonic oscillator.

(b) Find the Heisenberg equations of motion for XH t and PH t .

Solution

In the Schrödinger picture, where the operators do not depend explicitly on time, the Hamil-

tonian of a one-dimensional harmonic oscillator is given by

H
P2

2m

1

2
m 2X2 (10.152)

(a) Using the commutation relations

[H X ]
1

2m
[P2 X ]

ih

m
P (10.153)

[H P]
1

2
m 2[X2 P] ihm 2X (10.154)
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along with

eABe A B [A B]
1

2!
[A [A B]]

1

3!
[A [A [A B]]] (10.155)

we may write (see Eq. (10.11))

XH t ei t H hXe i t H h X
it

h
[H X]

1

2!

i t

h

2

[H [H X]]

X
t

m
P

t 2

2!
X

t 3

3!

1

m
P

t 4

4!
X

t 5

5!

1

m
P

X 1
t 2

2!

t 4

4!

1

m
P t

t 3

3!

t 5

5!

(10.156)

or

XH t X cos t
1

m
P sin t (10.157)

A similar calculation yields (see Eq. (10.11))

PH t ei t H hPe i t H h P
it

h
[H P]

1

2!

i t

h

2

[H [H P]]

P 1
t 2

2!

t 4

4!
m X t

t 3

3!

t 5

5!

(10.158)

or

PH t P cos t m X sin t (10.159)

(b) To find the equations of motion of XH t and PH t , we need to use the Heisenberg
equation d AH t dt 1 ih [AH t H ] which, along with (10.153) and (10.154), leads to

dXH t

dt

1

ih
[XH t H ]

1

ih
ei t H h[X H ]e i t H h 1

ih

ih

m
ei t H hPe i t H h

(10.160)

dPH t

dt

1

ih
[PH t H]

1

ih
ei t H h[P H ]e i t H h ihm 2

ih
ei t H hXe i t H h

(10.161)

or

dXH t

dt

1

m
PH t

d PH t

dt
m 2XH t (10.162)

Problem 10.2

Using the expressions derived in Problem 10.1 for XH t and PH t , evaluate the following
commutators for a harmonic oscillator:

XH t1 PH t2 XH t1 XH t2 PH t1 PH t2
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Solution

Using (10.157) and (10.159) along with the commutation relations [X P] ih and [X X]
[P P] 0, we have

[XH t1 PH t2 ] X cos t1
1

m
P sin t1 P cos t2 m X sin t2

[X P] cos t1 cos t2 [P X] sin t1 sin t2

ih [cos t1 cos t2 sin t1 sin t2 ] (10.163)

or

[XH t1 PH t2 ] ih cos [ t1 t2 ] (10.164)

A similar calculation yields

[XH t1 XH t2 ] X cos t1
1

m
P sin t1 X cos t2

1

m
P sin t2

1

m
[X P] cos t1 sin t2

1

m
[P X] sin t1 cos t2

ih

m
[cos t1 sin t2 sin t1 cos t2 ] (10.165)

or

[XH t1 XH t2 ]
ih

m
sin [ t1 t2 ] (10.166)

Similarly, we have

[PH t1 PH t2 ] P cos t1 m X sin t1 P cos t2 m X sin t2

m [P X ] cos t1 sin t2 m [X P] sin t1 cos t2

ihm [sin t1 cos t2 cos t1 sin t2 ] (10.167)

or

[PH t1 PH t2 ] ihm sin [ t1 t2 ] (10.168)

Problem 10.3

Evaluate the quantity n XH t X n for the nth excited state of a one-dimensional harmonic
oscillator, where XH t and X designate the position operators in the Heisenberg picture and
the Schrödinger picture.

Solution

Using the expression of XH t calculated in (10.157), we have

n XH t X n n X2 n cos t
1

m
n PX n sin t (10.169)

Since, for a harmonic oscillator, X and P are given by

X
h

2m
a† a P i

mh

2
a† a (10.170)
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and a† n n 1 n 1 and a n n n 1 , we have

n X2 n
h

2m
n a† 2 a2 aa† a†a n

h

2m
2n 1 (10.171)

n PX n
ih

2
n a† 2 a2 aa† a†a n

ih

2
(10.172)

since n a† 2 n n a2 n 0, n a†a n n and n aa† n n 1. Inserting

(10.171) and (10.172) into (10.169), we obtain

n XH t X n
h

2m
2n 1 cos t i sin t (10.173)

Problem 10.4

The Hamiltonian due to the interaction of a particle of mass m, charge q, and spin S with a
magnetic field pointing along the z-axis is H qB mc Sz . Write the Heisenberg equations
of motion for the time-dependent spin operators Sx t , Sy t , and Sz t , and solve them to
obtain the operators as functions of time.

Solution

Let us write H in a lighter form H Sz where qB mc. The commutation of H
with the components of the spin operator can be inferred at once from [Sx Sz] ihSy and

[Sy Sz] ihSx :

[Sx H ] ih Sy [Sy H ] ih Sx [Sz H ] 0 (10.174)

The Heisenberg equations of motion for Sx t , Sy t , and Sz t can be obtained from

d AH t dt 1 ih [AH t H ] 1 ih ei t H h[A 0 H ]e i t H h which, using (10.174),

leads to

dSx t

dt

1

ih
[Sx t H ]

1

ih
ei t H h[Sx 0 H ]e i t H h

ih

ih
ei t H hSy 0 e

i t H h Sy t (10.175)

Similarly, we have

dSy t

dt

1

ih
ei t H h[Sy 0 H ]e i t H h ih

ih
ei t H hSx 0 e

i t H h Sx t (10.176)

dSz t

dt

1

ih
ei t H h[Sz 0 H ]e i t H h 0 (10.177)

To solve (10.175) and (10.176), we may combine them into two more conducive equations:

dS t

dt
i S t (10.178)
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where S t Sx t i Sy t . The solutions of (10.178) are S t S 0 e i t which, when

combined with Sx t
1
2
[S t S t ] and Sy t

1
2i [S t S t ], lead to

Sx t Sx 0 cos t Sy 0 sin t (10.179)

Sy t Sy 0 cos t Sx 0 sin t (10.180)

The solution of (10.177) is obvious:

dSz t

dt
0 Sz t Sz 0 (10.181)

Problem 10.5

Consider a spinless particle of mass m, which is moving in a one-dimensional infinite potential
well with walls at x 0 and x a.
(a) Find XH t and PH t in the Heisenberg picture.
(b) If at t 0 the particle is in the state x 0 [ 1 x 2 x ] 2, where 1 x and

2 x are the ground and first excited states, respectively, with n x 2 a sin n x a , find
the state vector x t for t 0 in the Schrödinger picture.

(c) Evaluate x t X x t and x t P x t as a function of time in the

Schrödinger picture.

(d) Evaluate x t XH t x t and x t PH t x t as a function of

time in the Schrödinger picture.

Solution

(a) Since the particle’s Hamiltonian is purely kinetic, H P2 2m, we have [H P] 0

and

[H X]
1

2m
[P2 X ]

ih

m
P (10.182)

Using these relations along with (10.155), we obtain

XH t ei t H hXe i t H h X
it

h
[H X ]

1

2!

i t

h

2

[H [H X ]] (10.183)

and since [H [H X ]] ih m [H P] 0, we end up with

XH t X
t

m
P (10.184)

On the other hand, since [H P] 0, we have

P PH t (10.185)

(b) Since the energy of the nth level is given by En n2 2h2 2ma2 , we have

x t
1

2
1 x e

i E1t h
2 x e

i E2t h

1

a
e i E1t h sin

x

a
e i E2t h sin

2 x

a
(10.186)
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(c) Using (10.186) we can write

x t X x t
1

2
1 X 1 2 X 2 1 X 2 e

i E2 E1 t h

2 X 1 e
i E2 E1 t h (10.187)

Since n X n a 2 (Chapter 4) and

1 X 2 2 X 1
2

a

a

0

x sin
x

a
sin

2 x

a
dx

16a

9 2
(10.188)

we can rewrite (10.187) as

x t X x t
1

2

a

2

a

2

16a

9 2
e i E2 E1 t h ei E2 E1 t h

a

2

16a

9 2
cos

3 2ht

2ma2
(10.189)

since E2 E1 3 2h2 2ma2 .
A similar calculation which uses n P n 0 and

1 P 2 ih
4

a

a

0

sin
x

a
cos

2 x

a
dx

8ih

3a
2 P 1 (10.190)

leads to

x t P x t
1

2
1 P 1 2 P 2 1 P 2 e

i E2 E1 t h

2 P 1 e
i E2 E1 t h (10.191)

or to

x t P x t
1

2

8ih

3a
e i E2 E1 t h

8ih

3a
ei E2 E1 t h

8h

3a
sin

3 2ht

2ma2
(10.192)

(d) From (10.184) we have

x t XH t x t x t X x t
t

m
x t P x t (10.193)

Inserting the expressions for x t X x t and x t P x t calculated in

(10.189) and (10.192), we obtain

x t XH t x t
a

2

16a

9 2
cos

3 2ht

2ma2
8ht

3ma
sin

3 2ht

2ma2
(10.194)

and x t PH t x t is given by (10.192):

x t PH t x t x t P x t
8h

3a
sin

3 2ht

2ma2
(10.195)

since, as shown in (10.185), we have PH t P .
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Problem 10.6

A particle, initially (i.e., t ) in its ground state in an infinite potential well whose walls

are located at x 0 and x a, is subject at time t 0 to a time-dependent perturbation

V t xe t2 where is a small real number. Calculate the probability that the particle will

be found in its first excited state after a sufficiently long time (i.e., t ).

Solution

The transition probability from the ground state n 1 (where t ) to the first excited

state n 2 (where t ) is given by (10.41):

P1 2
1

h2
2 V t 1 e

i 21tdt
2

(10.196)

where

21
E2 E1
h

4 2h

2ma2

2h

2ma2
3 2h

2ma2
(10.197)

2 V t 1
2

a
e t2

a

0

x sin
2 x

a
sin

x

a
dx

16 a

9 2
e t2 (10.198)

since En n2 2h2 2ma2 and n x 2 a sin n x a . Inserting (10.197) and (10.198)
into (10.196), we have

P1 2
16 a

9 2h

2

ei 21t t2dt
2

(10.199)

A variable change y t i
2 21 yields i 21t t2 2

21 4 y2 and dt dy:

P1 2
16 a

9 2h

2

e
2
21 4 e y2dy

2
16 a

9 2h

2

exp
9 4h2

8m2a4
(10.200)

since 21 3 2h 2ma2 .

Problem 10.7

A particle is initially (i.e., t 0) in its ground state in a one-dimensional harmonic oscillator

potential. At t 0 a perturbation V x t V0x3e t is turned on. Calculate to first order

the probability that, after a sufficiently long time (i.e., t ), the system will have made a

transition to a given excited state; consider all final states.

Solution

The transition probability from the ground state n 0 to an excited state n is given by (10.41):

P0 n
1

h2 0

n V t 0 ei n0tdt
2 V 20

h2
n x3 0

2

0

e 1 in tdt
2

(10.201)

where n0
En E0
h n (since En h n 1

2
) and the time integration was calculated in

(10.63):

0

e 1 in tdt
2

1

n2 2 1 2
(10.202)
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Since a n n n 1 and a† n n 1 n 1 , and since X3 h 2m 3 2 a†

a a2 a†2 2a†a 1 , the only terms that survive in n x3 0 are

n X3 0
h

2m

3 2

n a†3 aa†2 a† 0
h

2m

3 2

6 n 3 3 n 1

(10.203)

This implies that the particle can be found after a long duration only either in the first or in the

third excited state.

Inserting (10.202) and (10.203) into (10.201), we can verify that the probabilities corre-

sponding to the transitions from the ground state to the first, the second and the third excited

states are given, respectively, by

P0 1

V 20
h2

1 x3 0
2

0

e 1 i tdt
2 h

2m

3 9V 20
h 2 h2 2

(10.204)

P0 2 0 (10.205)

P0 3

V 20
h2

3 x3 0
2

0

e 1 3i tdt
2 h

2m

3 6V 20
3h 2 h2 2

(10.206)

Therefore the system cannot undergo transitions to the second excited state nor to excited states

higher than n 3; that is, P0 2 0, since 2 X3 0 0 and P0 n 0 when n 3, since

n X3 0 0 for n 3.

Problem 10.8

A hydrogen atom, initially (i.e., t ) in its ground state, is placed starting at time t 0

in a time-dependent electric field pointing along the z-axis E t E0 k 2 t2 , where is

a constant having the dimension of time. Calculate the probability that the atom will be found

in the 2p state after a sufficiently long time (i.e., t ).

Solution

Since the potential resulting from the interaction of the hydrogen’s electron with the external

field E t is V t er E t , we can use (10.41) to write the transition probability from the
1s state to 2p as

P1s 2p
1

h2
210 V t 100 ei f i tdt

2

(10.207)

where

210 V t 100 210 er E 100
eE0
2 t2

210 z 100 (10.208)

Since z r cos and

1s R10 r Y00
1

a30

e r a0
2p R21 r Y10

1

8 a30

r

2a0
e r 2a0 cos

(10.209)



10.6. SOLVED PROBLEMS 605

and using 0 sin cos2 d 1
1 x
2dx 2

3
, we have

210 z 100
0

r3R21 r R10 r dr
0

sin cos2 d
2

0

d

4

3

1

4 a40 2 0

r4e 3r 2a0dr
28a0

35 2
(10.210)

Inserting (10.208) and (10.210) into (10.207) we have

P1s 2p
215e2E20

2a20
310h2

ei f i t

2 t2
dt

2

(10.211)

We may calculate this integral using the method of residues by closing the contour in the upper

half of the t-plane. Since the infinite semicircle has no contribution to the integral, the pole at
t i gives

ei f i t

2 t2
dt 2 i Res

ei f i t

2 t2 t i
2 i lim

t i

ei f i t

2 t2
t i

2 i lim
t i

ei f i t t i

t i t i
e f i (10.212)

where

f i
1

h
E f Ei

1

h
E2p E1s

1

h

1

4
E1s E1s

3

4h
E1s

3Ry
4h

(10.213)

where Ry is the Rydberg constant: Ry 13 6 eV. Inserting (10.212) into (10.211), we obtain

the transition probability

P1s 2p
215e2 2E20a

2
0

310h2
exp 2 f i

215e2 2E20a
2
0

310h2
exp

3Ry
2h

(10.214)

Problem 10.9

A hydrogen atom is in its excited 2p state. Calculate the transition rate associated with the

2p 1s transitions (Lyman) and the lifetime of the 2p state.

Solution

The first expression of the total transition rate is given by (10.141):

W2p 1s
4 3
2p 1s

3hc3
d2p 1s

2
(10.215)

where

d2p 1s
2 e2 2p r 1s 2 e2

0

r3R21R10 r dr d Y1m rY00
2

(10.216)
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First, we need to calculate 2p r 1s . The radial integral is given by

0

r3R21 r R10 r dr
1

a40 6 0

r4e 3r 2a0dr
28a0

34 6
(10.217)

The angular part can be calculated from (10.127) as follows:

d Y1m rY00
4

3
Y1m

x i y

2
Y11

x i y

2
Y1 1 zY10 Y00d

1

3
Y1m

x i y

2
Y11

x i y

2
Y1 1 zY10 d

1

3

x i y

2
m 1

x i y

2
m 1 z m 0 (10.218)

since Y1m Ylimi d li 1 m mi . An insertion of (10.217) and (10.218) into

(10.216) leads to

d2p 1s
2 32

2

3

10

e2a20
1

2
2
x

2
y m 1 m 1

2
z m 0 (10.219)

which, when inserted into (10.215), leads to the total transition rate corresponding to a certain

value of the azimuthal quantum number m:

W2p 1s
4 3
2p 1s

3hc3
d f i

2 128e2a20
3

3hc3
2

3

10
1

2
2
x

2
y m 1 m 1

2
z m 0

(10.220)

Summing over the three possible m-states, m 1 0 1,

1

m 1

1

2
2
x

2
y m 1 m 1

2
z m 0

2
x

2
y

2
z 1 (10.221)

and since, as shown in (10.213), 2p 1s E2p E1s h 3Ry 4h 3e2 8ha0
(because the Rydberg constant Ry is equal to e2 2ha0 ), we can reduce (10.220) to

W2p 1s
128

3hc3
2

3

10

e2a20
3
2p 1s

2

3

8 e2

hc

4
c

a0

2

3

8 c 4

a0
(10.222)

where e2 hc 1 137 is the fine structure constant and a0 0 529 10 10m is the

Bohr radius. The numerical value of the transition rate is

W2p 1s
2

3

8 c 4

a0

2

3

8 3 108ms 1

1374 0 529 10 10m
0 628 109 s 1 (10.223)

The lifetime of the 2p state is then given by

1

W2p 1s

3

2

8 a0
c 4

1 58 1374 0 529 10 10m

3 108ms 1
1 6 10 9 s (10.224)
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This value is in very good agreement with experimental data.

Remark

Another way of obtaining (10.222) is to use the relation

W2p 1s
4e2 3

2p 1s

3hc3
1

3

1

m 1

21m r 100 2

4e2 3
2p 1s

9hc3

1

m 1

21m x 100 2 21m y 100 2 21m z 100 2

(10.225)

where we have averaged over the various transitions. Using the relations x r sin cos

2 3 r Y11 Y1 1 , y r sin sin i 2 3 r Y11 Y1 1 , and z r cos
4 3 rY10, we can show that

21m x 100
1

4

2

3 0

r3R21 r R10 r dr Y1m Y11 Y1 1 d

1

6

24

6

2

3

5

a0 m 1 m 1 (10.226)

21m y 100
i

4

2

3 0

r3R21 r R10 r dr Y1m Y11 Y1 1 d

i

6

24

6

2

3

5

a0 m 1 m 1 (10.227)

21m z 100
1

4

4

3 0

r3R21 r R10 r dr Y1mY10d

1

3

24

6

2

3

5

a0 m 0 (10.228)

A combination of the previous three relations leads to

1

m 1

21m r 100 2 96a20
2

3

10

m

1

6
m 1 m 1

2 1

6
m 1 m 1

2 1

3
2
m 0

96a20
2

3

10

m

1

6
m 1 m 1

1

6
m 1 m 1

1

3
m 0

96a20
3

2

3

10 1

m 1

m 1 m 1 m 0 96
2

3

10

a20

(10.229)

Finally, substituting (10.229) into (10.225) and using 2p 1s 3e2 8ha0 , we obtain

W2p 1s
128e2a20
3hc3

3 2

3

10
2

3

8 e2

hc

4
c

a0

2

3

8 c 4

a0
(10.230)
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Problem 10.10

(a) Calculate the transition rate from the first excited state to the ground state for an isotropic

(three-dimensional) harmonic oscillator of charge q.
(b) Find a numerical value for the rate calculated in (a) as well as the lifetime of the first

excited state for the case of an electron (i.e., mec2 0 511MeV) oscillating with a frequency

of an optical radiation 1015 rad s 1.

Solution

As mentioned in Chapter 6, the ground state of an isotropic harmonic oscillator is a 1s state,

n l m 0 0 0 , whose energy and wave function are E0 3h 2 and

000 r R00 r Y00
2 m

h

3 4

e m r2 2hY00 (10.231)

and the first excited state is a 1p state n l m 1 1 m whose energy and wave function

are E1 5h 2 and

11m r R11 r Y1m
8

3

m

h

5 4

re m r2 2hY1m (10.232)

Using 0 x4e x2dx 3
8

along with a change of variable x m h r , we have

0

r3R11 r R10 r dr 4
2

3

m

h

2

0

r4e m r2 h dr
3h

2m
(10.233)

(a) The transition rate for a 1p 1s transition is given by

W1p 1s
4q2 3

1p 1s

3hc3
1

3

1

m 1

11m r 000 2

4q2 3
1p 1s

9hc3

1

m 1

11m x 000 2 11m y 000 2 21m z 000 2

(10.234)

Since x r sin cos 2 3 r Y11 Y1 1 , y r sin sin i 2 3 r Y11 Y1 1 ,

and z r cos 4 3 rY10, and using (10.233), we can show by analogy with (10.226) to
(10.228) that

11m x 000
1

4

2

3 0

r3R11 r R00 r dr Y1m Y11 Y1 1 d

1

6

3h

2m
m 1 m 1 (10.235)

11m y 000
i

4

2

3 0

r3R11 r R00 r dr Y1m Y11 Y1 1 d

i

6

3h

2m
m 1 m 1 (10.236)
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11m z 000
1

4

4

3 0

r3R11 r R00 r dr Y1mY10 d
1

3

3h

2m
m 0

(10.237)

A combination of the previous three relations leads to

1

m 1

11m r 000 2 3h

2m m

1

6
m 1 m 1

2 1

6
m 1 m 1

2 1

3
2
m 0

h

2m

1

m 1

m 1 m 1 m 0
3h

2m
(10.238)

Substituting (10.238) into (10.234), and using 1p 1s E1 E0 h 5
2

3
2

, we

obtain

W1p 1s
4q2 3

1p 1s

9hc3
3h

2m

2q2 2

3mc3
(10.239)

(b) In the case of an electron (q e and mec2 0 511MeV) which is oscillating with a

frequency of 1015 s 1, the transition rate is

W1p 1s
2e2 2

3mec3
2

3

hc

mec2

2

c

2

3

1

137

197MeV fm

0 511MeV

1030 s 2

3 108ms 1
0 64 107 s 1 (10.240)

where e2 hc 1 137 is the fine structure constant. The lifetime of the 1p state for the

oscillator is given by

1

W1p 1s

3mec3

2e2 2

1

0 64 107 s 1
1 56 10 7 s (10.241)

Problem 10.11

Show that free electrons can neither emit nor absorb photons.

Solution

If the electron is free both before and after it interacts with the photon, its initial and final wave

functions are given by plane waves: i r 2 3 2eiki r and f r 2 3 2eik f r . Let
us assume, for argument sake, that a free electron can absorb and emit a photon; the corre-

sponding absorption and emission transition rates would be given as follows (see (10.95) and

(10.96)):

abs
i f

4 2e2

m2e V
ki f eik r i

2
E f Ei h (10.242)

emi
i f

4 2e2

m2e V
ki f e ik r

i

2
E f Ei h (10.243)
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where we have used P i r ki i r . Since

f e ik r
i

1

2 2
d3r ei ki k f k r ki k f k (10.244)

the delta functions ki k f k give the conservation laws of the linear momentum for both
the absorption and emission processes.

Let us show first that a free electron cannot absorb a photon. For this, we are going to

show that the momentum conservation condition ki k f k is incompatible with the energy
conservation condition E f Ei h . Combining equations (10.242) and (10.244), we

see that the absorption rate is proportional to the product of two delta functions: abs
i f

ki k f k E f Ei h , one pertaining to the conservation of momentum

ki k f k pi p f pphoton 0 (10.245)

the other dealing with the conservation of energy

E f Ei h E f Ei cpphoton 0 (10.246)

where pi hki and Ei are the initial momentum and energy of the electron, p f hk f and E f
are its final momentum and energy, and pphoton hk and cpphoton are the linear momentum
and energy of the absorbed photon. We are now ready to show that the condition (10.245) is

incompatible with (10.246). If we work within the rest frame of the initial electron, we have

pi 0. Thus, on the one hand, (10.245) leads to pphoton p f and, on the other hand,
(10.246) leads to E f cpphoton or p2f 2me cpphoton . Indeed, conditions (10.245) and
(10.246) are contradictory since, inserting pi 0 and pphoton p f into (10.246), we end up
with p2f 2me cp f or p f 2mec. This suggests either that f 0 and this is meaningless

since, as pphoton p f , the speed of the photon would also be zero; or that f 2c and this is
impossible. So both results are impossible. In summary, having started with the assumption that

a free electron can absorb a photon (10.242), we have ended up with a momentum conservation

law and an energy conservation law that are contradictory. Thus, a free electron cannot absorb

a photon.

Following the same procedure, we can also show that the assumption of a free electron

emitting a photon leads to a momentum conservation law and an energy conservation law that

are incompatible; thus, a free electron cannot emit a photon.

Problem 10.12

A hydrogen atom in its ground state is placed in an oscillating electric field E t E0 sin t
of angular frequency with h mee4 2h2 .
(a) Find the transition rate (probability per unit time) that the atom will be ionized.

(b) Use the expression derived in (a) to find the maximum transition rate.

Solution

After ionization we assume the electron to be in free motion: its energy is purely kinetic Ek
h2k2 2me and its wave function is a plane wave k r 2 3 2eik r . Since the perturbation
resulting from the interaction of the hydrogen’s electron with the external field E t is harmonic,

V t er E t er E0 sin t
e

2i
r E0e

i t e

2i
r E0e

i t (10.247)
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we can infer, by analogy with the method that led to (10.54) from (10.50), the transition rate

for the ionization of the hydrogen atom:

0k
2

h

e

2i
k r E0 100

2
Ek E0 h

2

h

e

2i
k r E0 100

2
Ek E0 h (10.248)

where E0 mee4 2h
2 13 6 eV is the ground state energy and Ek h2k 2me is the final

energy of the electron. The first delta term, Ek E0 h , in (10.248) does not contribute,

since if h E0 Ek the ionization could not take place because the electric field would not
be strong enough to ionize the atom. The transition rate (10.248) then becomes

0k
e2

2h
k r E0 100

2
Ek E0 h (10.249)

To calculate k r E0 100 , let us take k along the z-axis and hence k r kr cos and

k r 2 3 2eikr cos . Taking and as the respective polar angles of r and E0,
we have r r sin cos i sin sin j cos k and E0 E0 sin cos i sin sin j
cos k ; hence

r E0 rE0 sin cos sin cos sin sin sin sin cos cos

rE0 sin sin cos cos cos (10.250)

Since 1s a30
1 2
e r a0 and d3r r2dr sin cos d d , we have

k r E0 100
1

2 3 2

1

a30

d3r r E0 e
ikr cos r a0

E0

8 4a30
0

r3e r a0dr
0

sin e ikr cos d
2

0

sin sin cos cos cos d

2 E0 cos

8 4a30
0

r3e r a0 dr
0

sin cos e ikr cos d (10.251)

where we have used
2
0 cos d 0, since

2
0 cos d 0 and

2
0 sin d 0. A

change of variable x cos and an integration by parts leads to

0

sin cos e ikr cos d
1

1

xe ikrxdx
1

ikr
xe ikrx

1

1

1

ikr 2
e ikrx

1

1

i

kr
e ikr eikr

1

k2r2
e ikr eikr (10.252)

When we insert this integral into (10.251), we still need to calculate four radial integrals which

can be carried out by parts:

0

re ikr r a0dr
1

ik 1 a0
re ikr r a0

0

1

ik 1 a0 2
e ikr r a0

0

a20
ia0k 1 2

(10.253)
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0

r2e ikr r a0dr
1

ik 1 a0
r2e ikr r a0

0

2

ik 1 a0 0

re ikr r a0dr

2

ik 1 a0 2
re ikr r a0

0

2

ik 1 a0 3
e ikr r a0

0

2a30
ia0k 1 3

(10.254)

Inserting (10.252) to (10.254) into (10.251), we obtain

k r E0 100
2 E0 cos

8 4a30

a20
k2 ia0k 1 2

a20
k2 ia0k 1 2

2ia30
k ia0k 1 3

2ia30
k ia0k 1 3

16E0 cos

2a50

ia60k

a20k
2 1 3

(10.255)

A substitution of this expression into (10.249) leads to

0k
e2

2h

128E20 cos
2

2a50

k2a120
a20k

2 1 6
Ek E0 h (10.256)

This relation gives the transition rate for a single final state k corresponding to a given k. We
need to sum over all final states of the electron. These represent a continuum; we must then

integrate over all directions of emission and over all possible momenta:

0 0k d
3k k2dk

0
0k sin d

2

0

d

2
64e2E20a

7
0

h

k4 Ek E0 h

a20k
2 1 6

dk
0

sin cos2 d

256e2E20a
7
0

3h

k4 Ek E0 h

a20k
2 1 6

dk (10.257)

where we have used 0 sin cos2 d 1
1 x
3dx 2

3
. The integration over k can be

converted into an integration over the final energy Ek : since Ek h2k2 2me , a change of

variable k 2meEk h2, and hence k dk me h2 dEk , reduces (10.257) to

0

256e2E20a
7
0

3h

k3 Ek E0 h

a20k
2 1 6

k dk

me

h2
256e2E20a

7
0

3h

2meEk h2 3 2 Ek E0 h

2mea20Ek h
2 1

6
dEk

256e2meE20a
7
0

3h3
2me h

2 3 2 E0 h 3 2

2mea20 E0 h h2 1
6

(10.258)
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This relation can be simplified if we use E0 mee4 2h2 h 0, which gives E0 h
h 0 h 0 0 1 . Since a0 h2 mee2 , we have h 0a20 mee4h4 2h2m2ee

4

h2 2me and hence 2mea20 E0 h h2 2meh 0a20 0 1 h2 0 1. Thus,

inserting the expressions E0 h h 0 0 1 and 2mea20 E0 h h2 1 0

into (10.258), we obtain

0

256e2meE20a
7
0

3h3
2me h2 3 2 h 0

3 2
0 1 3 2

0
6

(10.259)

Finally, since 2me h
2 3 2 h 0

3 2 2me h
2 3 2 mee4 2h

2 3 2 m3ee
6 h6 and using a40

h8 m4e8 , we can write (10.259) as

0

256E20a
3
0

3h
0 6

0
1

3 2

(10.260)

If the frequency of the oscillating electric field is smaller than or equal to 0, the atom will not

be ionized; at 0 the probability of ionization will be zero.

(b) The maximum transition rate is obtained by taking the derivative of (10.260):

d 0

d
0

2

0
1

1

2 0

4

3
0 (10.261)

Inserting 4
3 0 into (10.260) we obtain the maximum transition rate

0max
256E20a

3
0

3h

3

4

6
4

3
1

3 2 E20a
3
0

h

37 2

24
(10.262)

10.7 Exercises

Exercise 10.1

Consider a spinless particle of mass m in a one-dimensional infinite potential well with walls at
x 0 and x a which is initially (i.e., at t 0) in the state x 0 [ 1 x 3 x ] 2,

where 1 x and 3 x are the ground and second excited states, respectively, with n x
2 a sin n x a .
(a) What is the state vector x t for t 0 in the Schrödinger picture.

(b) Evaluate X , P , X2 , and P2 as functions of time for t 0 in the Schrödinger

picture.

(c) Repeat part (b) in the Heisenberg picture: i.e., evaluate X H , P H , X2 H , and P2 H
as functions of time for t 0.

Exercise 10.2

Evaluate the expectation value XH t P 3 for the third excited state of a one-dimensional har-

monic oscillator.

Exercise 10.3

Evaluate the expectation value X PH t n for the nth excited state of a one-dimensional har-
monic oscillator.
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Exercise 10.4

Consider a one-dimensional harmonic oscillator which is initially (i.e., at t 0) in the state

0 0 1 2, where 0 and 1 are the ground and first excited states,

respectively.

(a) What is the state vector t for t 0 in the Schrödinger picture?

(b) Evaluate X , P , X2 , and P2 as functions of time for t 0 in the Schrödinger

picture.

(c) Repeat part (b) in the Heisenberg picture.

Exercise 10.5

(a) Calculate the coordinate operator XH t for a free particle in one dimension in the
Heisenberg picture.

(b) Evaluate the commutator [XH t XH 0 ].

Exercise 10.6

Consider the Hamiltonian H eB mc Sx Sx .
(a)Write down the Heisenberg equations of motion for the time-dependent operators Sx t Sy t ,

and Sz t .
(b) Solve these equations to obtain Sx Sy Sz as functions of time.

Exercise 10.7

Evaluate the quantity n PH t P n for the nth excited state of a one-dimensional harmonic
oscillator, where PH t and P designate the momentum operators in the Heisenberg picture
and the Schrödinger picture, respectively.

Exercise 10.8

The Hamiltonian due to the interaction of a particle of massm, charge q (the charge is negative),
and spin S with a magnetic field pointing along the y-axis is H qB mc Sy .

(a) Use the Heisenberg equation to calculate dSx dt , dSy dt , and dSz dt .
(b) Solve these equations to obtain the components of the spin operator as functions of time.

Exercise 10.9

A particle is initially (i.e., when t 0) in its ground state in a one-dimensional harmonic

oscillator potential. At t 0 a perturbation V x t V0x2e t is turned on. Calculate to

first order the probability that, after a sufficiently long time (i.e., t ), the system will have

made a transition to a given excited state; consider all final states.

Exercise 10.10

A particle, initially (i.e., when t 0) in its ground state in an infinite potential well whose

walls are located at x 0 and x a, is subject, starting at time t 0, to a time-dependent

perturbation V t V0x2e t2 where V0 is a small parameter. Calculate the probability that the
particle will be found in its second excited state at t .

Exercise 10.11

Find the intensity associated with the transition 3s 2p in the hydrogen atom.
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Exercise 10.12

A hydrogen atom in its ground state is placed in a region where, at t 0, a time-dependent

electric field is turned on:

E t E0 i j k e t

where is a positive real number. Using first-order time-dependent perturbation theory, calcu-

late the probability that, after a sufficiently long time (i.e., t ), the atom is to be found in

each of the n 2 states (i.e., consider the transitions to all the states in the n 2 level). Hint:

You may use: 0 r3R21 r R10 r dr 24a0 6 2
3

5
.

Exercise 10.13

(a) Calculate the reduced matrix element 1 Y1 2 . Hint: For this, you may need to
calculate 1 0 Y10 2 0 directly and then from the Wigner–Eckart theorem.

(b) Using the Wigner–Eckart theorem and the relevant Clebsch–Gordan coefficients from

tables, calculate 1 m Y1m 2 m for all possible values of m, m , and m .

(c) Using the results of part (b), calculate the 3d 2p transition rate for the hydrogen

atom in the dipole approximation; give a numerical value. Hint: You may use the integral

0 r3R21 r R32 r dr 64a0 15 5 6
5

5
and the following Clebsch–Gordan coefficients:

j 1 m 0 j 1 m j m j m [ j 2 j 1 ],

j 1 m 1 1 j 1 m j m j m 1 [2 j 2 j 1 ], and

j 1 m 1 1 j 1 m j m j m 1 [2 j 2 j 1 ].

Exercise 10.14

A particle is initially in its ground state in an infinite one-dimensional potential box with sides

at x 0 and x a. If the wall of the box at x a is suddenly moved to x 10a, calculate
the probability of finding the particle in

(a) the fourth excited (n 5) state of the new box and

(b) the ninth (n 10) excited state of the new box.

Exercise 10.15

A particle of mass m in the ground state of a one-dimensional harmonic oscillator is placed in
a perturbation V t V0xe t . Calculate to first-order perturbation theory the probability

of finding the particle in its first excited state after a long time.

Exercise 10.16

A particle, initially (i.e., when t 0) in its first excited state in an infinite potential well whose

walls are located at x 0 and x a, is subject, starting at time t 0, to a time-dependent

perturbation V t V0 x t2 2 where V0 is a small real number. Calculate the probability
that the particle will be found in its second excited state at t .

Exercise 10.17

A one-dimensional harmonic oscillator has its spring constant suddenly reduced by half.

(a) If the oscillator is initially in its ground state, find the probability that the oscillator

remains in the ground state.

(b) Find the work associated with this process.

Exercise 10.18

(a) Find the total transition rate associated with the decay of a harmonic oscillator, of charge

q and mass m, from the nth excited state to the state just below.
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(b) Find the power radiated by this oscillator as a result of its decay.

(c) Find the lifetime of the nth excited state.
(d) Estimate the order of magnitudes for the transition rate, the power, and the lifetime of

the fifth excited state (n 5) in the case of a harmonically oscillating electron (i.e., q e) for
the case of an optical radiation 1015 rad s 1.

Exercise 10.19

Assuming that f r i is roughly equal to the size of the system under study, use a crude

calculation to estimate the mean lifetime of

(a) an electric dipole transition in an atom where h 10 eV and

(b) an electric dipole transition in a nucleus where h 1MeV.

Exercise 10.20

A particle is initially (i.e., when t 0) in its ground state in the potential V x V0 x
with V0 0.

(a) If the strength of the potential is changed slowly to 3V0, find the energy and wave func-
tion of the particle in the new potential.

(b) Calculate the work done with this process. Find a numerical value for this work in MeV

if this particle were an electron and V0 200 MeV fm.

(c) If the strength of the potential is changed suddenly to 3V0, calculate the probability of
finding the particle in the ground state of the new potential.

Exercise 10.21

A hydrogen atom in its ground state is placed at time t 0 in a uniform electric field in the

y-direction, E t E0 je t2 2
. Calculate to first-order perturbation theory the probability that

the atom will be found in any of the n 2 states after a sufficiently long time (t ).

Exercise 10.22

A particle, initially (i.e., when t 0) in its ground state in an infinite potential well with its

walls at x 0 and x a, is subject, starting at time t 0, to a time-dependent perturbation

V t V0x x 3a 4 e t where V0 is a small parameter. Calculate the probability that the
particle will be found in its first excited state (n 2) at t .

Exercise 10.23

Consider an isotropic (three-dimensional) harmonic oscillator which undergoes a transition

from the second to the first excited state (i.e., 2s 1p).

(a) Calculate the transition rate corresponding to 2s 1p.

(b) Find the intensity associate with the 2s 1p transition.

Exercise 10.24

Consider a particle which is initially (i.e., when t 0) in its ground state in a three-dimensional

box potential

V x y z
0 0 x a 0 y 2a 0 z 4a

elsewhere

(a) Find the energies and wave functions of the ground state and first excited state.

(b) This particle is then subject, starting at time t 0, to a time-dependent perturbation

V t V0xze t2 where V0 is a small parameter. Calculate the probability that the particle will
be found in the first excited state after a long time t .


