
76

Specification and Abstraction

	 A problem is specified by given input
data, desired output data and a relation
between the input and the output data. An
algorithm starts execution with the input
data, executes the statements, and finishes
execution with the output data. When it
finishes execution, the specified relation
between the input data and the output
data should be satisfied. Only then has the
algorithm solved the given problem.

G Polya was a Hungarian
mathematician. He made
fundamental contributions to
combinatorics, number theory,

numerical analysis and probability theory.
He is also noted for his work in heuristics
and mathematics education, identifying
systematic methods of problem solving
to further discovery and invention in
mathematics for students and teachers.
In "How to Solve It", he
suggests the following
steps when solving a
mathematical problem: 1.
Understand the problem.
2. Devise a plan. 3. Carry
out the plan. 4. Review
your work.

	 An algorithm is a step by step sequence
of statements intended to solve a problem.
When executed with input data, it generates
a computational process, and ends with
output data, satisfying the specified relation
between the input data and the output data.

CHAPTER 6Unit II Algorithmic Problem
Solving

Learning Objectives
	 After learning the concepts in this
chapter, the students will be able
•	 To understand the concept of

algorithmic problem solving.
•	 To apply the knowledge of algorithmic

technique in problem solving.
A number of processes performed in our
daily life follow the step-by-step execution
of a sequence of instructions. Getting ready
to school in the morning, drawing "kolams",
cooking a dish, adding two numbers are
examples of processes. Pro-cesses are
generated by executing algorithms. In this
chapter, we will see how algorithms are
specified and how elements of a process are
abstracted in algorithms.

6.1 Algorithms

	 An algorithm is a sequence of
instructions to accomplish a task or solve a
problem. An instruction describes an action.
When the instructions are executed, a process
evolves, which accomplishes the intended
task or solves the given problem. We can
compare an algorithm to a recipe, and the
resulting process to cooking.
	 We are interested in executing our
algorithms in a computer. A computer can
only execute instructions in a programming
language. Instructions of a computer are also
known as statements.Therefore, ultimately,
algorithms must be expressed using
statements of a programming language.

Chapter 6 Page 076-087.indd 76 3/24/2020 9:14:09 AM

77

Example 6.1. Add two numbers: To add
two numbers, we proceed by adding the
right most digits of the two numbers, then
the next right most digits together with
carry that resulted from the previous (right)
position, and so on. The computational
process for adding 2586 and 9237 is
illustrated in Table 6.1.

Step 5 4 3 2 1

Carry 1 0 1 1 -

Number 1 2 5 8 6

Number 2 9 2 3 7

Sum 1 1 8 2 3

Table 6.1: The process for adding two
numbers

6.2 Algorithmic Problems
	 There are some principles and
techniques for constructing algorithms. We
usually say that a problem is algorithmic
in nature when its solution involves the
construction of an algorithm. Some types of
problems can be immediately recognized as
algorithmic.

Example 6.2. Consider the well-known
Goat, grass and wolf problem: A farmer
wishes to take a goat, a grass bundle and a
wolf across a river. However, his boat can take
only one of them at a time. So several trips are
necessary to across the river. Moreover, the
goat should not be left alone with the grass
(otherwise, the goat would eat the grass), and
the wolf should not be left alone with the goat
(otherwise, the wolf would eat the goat). How
can the farmer achieve the task? Initially, we
assume that all the four are at the same side of
the river, and finally, all the four must be in the
opposite side. The farmer must be in the boat
when crossing the river. A solution consists
of a sequence of instructions indicating who

or what should cross. Therefore, this is an
algorithmic problem. Instructions may be
like
Let the farmer cross with
the wolf.
or
Let the farmer cross alone.
	 However, some algorithmic problems
do not require us to construct algorithms.
Instead, an algorithm is provided and we are
required to prove some of its properties.

Example 6.3. Consider The Chameleons
of Chromeland problem: On the island
of Chromeland there are three different
types of chameleons: red chameleons,
green chameleons, and blue chameleons.
Whenever two chameleons of different
colors meet, they both change color to the
third color. For which number of red, green
and blue chameleons it is possible to arrange
a series of meetings that results in all the
chameleons displaying the same color? This
is an algorithmic problem, because there is
an algorithm to arrange meetings between
chameleons. Using some properties of the
algorithm, we can find out for which initial
number of chameleons, the goal is possible.

6.3 Building Blocks of Algorithms
	 We construct algorithms using basic
building blocks such as
•	 Data
•	 Variables
•	 Control flow
•	 Functions

6.3.1 Data
	 Algorithms take input data,
process the data, and produce output data.
Computers provide instructions to perform
operations on data. For example, there are

Chapter 6 Page 076-087.indd 77 3/24/2020 9:14:09 AM

78

instructions for doing arithmetic operations
on numbers, such as add, subtract, multiply
and divide. There are different kinds of data
such as numbers and text.

6.3.2 Variables
	 Variables are named boxes for
storing data. When we do operations
on data, we need to store the results in
variables. The data stored in a variable is
also known as the value of the variable. We
can store a value in a variable or change
the value of variable, using an assignment
statement.
	 Computational processes in the
real-world have state. As a process evolves,
the state changes. How do we represent the
state of a process and the change of state,
in an algorithm? The state of a process
can be represented by a set of variables
in an algorithm. The state at any point
of execution is simply the values of the
variables at that point. As the values of the
variables are changed, the state changes.

Example 6.4. State: A traffic signal may
be in one of the three states: green, amber,
or red. The state is changed to allow a
smooth flow of traffic. The state may be
represented by a single variable signal
which can have one of the three values:
green, amber, or red.

6.3.3 Control flow
	 An algorithm is a sequence of
statements. However, after executing
a statement, the next statement to be
executed need not be the next statement
in the algorithm. The statement to be
executed next may depend on the state of
the process. Thus, the order in which the
statements are executed may differ from
the order in which they are written in

the algorithm. This order of execution of
statements is known as the control flow.
	 There are three important control
flow statements to alter the control flow
depending on the state.
•	 In sequential control flow, a sequence

of statements are executed one after
another in the same order as they are
written.

•	 In alternative control flow, a condition
of the state is tested, and if the condition
is true, one statement is executed; if
the condition is false, an alternative
statement is executed.

•	 In iterative control flow, a condition of
the state is tested, and if the condition
is true, a statement is executed. The
two steps of testing the condition and
executing the statement are repeated
until the condition becomes false.

6.3.4 Functions
	 Algorithms can become very
complex. The variables of an algorithm
and dependencies among the variables
may be too many. Then, it is difficult
to build algorithms correctly. In such
situations, we break an algorithm into
parts, construct each part separately, and
then integrate the parts to the complete
algorithm.

	 The parts of an algorithm are
known as functions. A function is like
a sub algorithm. It takes an input, and
produces an output, satisfying a desired
input output relation.

Example 6.5. Suppose we want to calculate
the surface area of a cylinder of radius r
and height h.

A = 2πr2 + 2πrh

Chapter 6 Page 076-087.indd 78 3/24/2020 9:14:09 AM

79

	 We can identify two functions, one
for calculating the area of a circle and the
other for the circumference of the circle.
If we abstract the two functions as circle_
area(r) and circle_circumference(r), then
cylinder_area(r, h) can be solved as

cylinder_area (r,h) = 2 X circle_area (r) +
circle_circumference (r) X h

6.4 Algorithm Design Techniques

	 There are a few basic principles and
techniques for designing algorithms.

1.	 Specification: The first step in problem
solving is to state the problem precisely.
A problem is specified in terms of the
input given and the output desired. The
specification must also state the properties
of the given input, and the relation
between the input and the output.

2.	 Abstraction: A problem can involve a
lot of details. Several of these details are
unnecessary for solving the problem.
Only a few details are essential. Ignoring
or hiding unnecessary details and
modeling an entity only by its essential
properties is known as abstraction.
For example, when we represent the
state of a process, we select only the
variables essential to the problem and
ignore inessential details.

3.	 Composition: An algorithm is
composed of assignment and control
flow statements. A control flow
statement tests a condition of the state
and, depending on the value of the
condition, decides the next statement
to be executed.

4.	 Decomposition: We divide the main
algorithm into functions. We construct
each function independently of the

main algorithm and other functions.
Finally, we construct the main
algorithm using the functions. When
we use the functions, it is enough to
know the specification of the function.
It is not necessary to know how the
function is implemented.

6.5 Specification

	 To solve a problem, first we must
state the problem clearly and precisely. A
problem is specified by the given input and
the desired output. To design an algorithm
for solving a problem, we should know
the properties of the given input and the
properties of the desired output. The goal
of the algorithm is to establish the relation
between the input and the desired output.

Inputs

Algorithm

Outputs
Figure 6.1: Input-output relation

	 An algorithm is specified by the
properties of the given input and the relation
between the input and the desired output. In
simple words, specification of an algorithm
is the desired input-output relation.

	 The inputs and outputs are passed
between an algorithm and the user through
variables. The values of the variables when
the algorithm starts is known as the initial
state, and the values of the variables when
the algorithm finishes is known as the final
state.
	 Let P be the required property of the
inputs and Q the property of the desired
outputs. Then the algorithm S is specified as

Chapter 6 Page 076-087.indd 79 3/24/2020 9:14:09 AM

80

1.	 algorithm_name (inputs)
2.	 -- inputs : P
3.	 -- outputs: Q
This specification means that if the algorithm
starts with inputs satisfying P, then it will
finish with the outputs satisfying Q.
	 A double dash -- indicates that the
rest of the line is a comment. Comments
are statements which are used to annotate
a program for the human readers and not
executed by the computer. Comments at
crucial points of flow are useful, and even
necessary, to understand the algorithm. In
our algorithmic notation, we use double
dashes (—) to start a comment line. (In
C++, a double slash // indicates that the rest
of the line is a comment).
Example 6.6. Write the specification of
an algorithm to compute the quotient and
remainder after dividing an integer A by
another integer B. For example,

divide (22, 5) = 4, 2
divide (15, 3) = 5 , 0

	 Let A and B be the input variables.
We will store the quotient in a variable q and
the remainder in a variable r. So q and r are
the output variables.

	 What are the properties of the inputs
A and B?

1.	 A should be an integer. Remainder is
meaningful only for integer division, and

2.	 B should not be 0, since division by 0 is
not allowed.

	 We will specify the properties of the
inputs as

— inputs: A is an integer and B ≠ 0

	 What is the desired relation between
the inputs A and B, and the outputs q and r?

1.	 The two outputs q (quotient) and r
(remainder) should satisfy the property

	 A = q X B + r, and
2.	 The remainder r should be less than the

divisor B,
	 0 ≤ r < B
	 Combining these requirements, we
will specify the desired input-output relation
as
— outputs: A = q X B + r and 0 < r < B.

The comment that starts with — inputs:
actually is the property of the given inputs.
The comment that starts with — outputs:
is the desired relation between the inputs
and the outputs. The specification of the
algorithm is

1.	 divide (A , B)
2.	 -- inputs: A is an integer and B ≠ 0
3.	 -- outputs : A = q X B + r and 0 ≤ r < B

Specification format: We can write the
specification in a standard three part format:

•	 The name of the algorithm and the
inputs.

•	 Input: the property of the inputs.
•	 Output: the desired input-output

relation.

	 The first part is the name of the
algorithm and the inputs. The second part
is the property of the inputs. It is written
as a comment which starts with — inputs:
The third part is the desired input-output
relation. It is written as a comment which
starts with — outputs:. The input and
output can be written using English and
mathematical notation.

Example 6.7. Write the specification of an
algorithm for computing the square root of
a number.

Chapter 6 Page 076-087.indd 80 3/24/2020 9:14:09 AM

81

1.	 Let us name the algorithm square_root.
2.	 It takes the number as the input. Let

us name the input n. n should not be
negative.

3.	 It produces the square root of n as the
output. Let us name the output y. Then n
should be the square of y.

	 Now the specification of the
algorithm is

square_root(n)

-- inputs: n is a real number, n ≥ 0.

-- outputs: y is a real number such that
y 2= n.

6.5.1 Specification as contract
	 Specification of an algorithm
serves as a contract between the designer
of the algorithm and the users of the
algorithm, because it defines the rights and
responsibilities of the designer and the user.

	 Ensuring that the inputs satisfy the
required properties is the responsibility
of the user, but the right of the designer.
The desired input-output relation is the
responsibility of the designer and the right
of the user. Importantly, if the user fails
to satisfy the properties of the inputs, the
designer is free from his obligation to satisfy
the desired input-output relation.

Right

User

Input - output
relationship

Responsibility

Algorithm (designer)

Property of
inputs

Responsibility Right

Figure 6.2: Input property and the input-
output relation as rights and responsibilities

Example 6.8. Consider the specification of
the algorithm square_root.

square_root(n)

-- inputs: n is a real number, n ≥ 0.

--	 outputs : y is a real number such that
y2 = n.

	 The algorithm designer can assume
that the given number is non-negative, and
construct the algorithm. The user can expect
the output to be the square root of the given
number.

	 The output could be the negative
square root of the given number. The
specification did not commit that the output
is the positive square root. If the user passes
a negative number as the input, then the
output need not be the square root of the
number.

6.6 Abstraction

	 To ride a bicycle, it is sufficient to
understand the functioning of the pedal,
handlebar, brakes and bell. As a rider, we
model a bicycle by these four features. A
bicycle has a lot more details, which the
rider can ignore. Those details are irrelevant
for the purpose of riding a bicycle.

	 A problem can involve a lot of
details. Several of these details are irrelevant
for solving the problem. Only a few details
are essential. Abstraction is the process of
ignoring or hiding irrelevant details and
modeling a problem only by its essential
features. In our everyday life, we use
abstractions unconsciously to handle
complexity. Abstraction is the most effective
mental tool used for managing complexity.
If we do not abstract a problem adequately,
we may deal with unnecessary details and
complicate the solution.

Chapter 6 Page 076-087.indd 81 3/24/2020 9:14:09 AM

82

Example 6.9. A map is an abstraction of
the things we find on the ground. We do
not represent every detail on the ground.
The map-maker picks out the details that
we need to know. Different maps are drawn
for different purposes and so use different
abstractions, i.e., they hide or represent
different features. A road map is designed
for drivers. They do not usually worry
about hills so most hills are ignored on a
road map. A walker's map is not interested
in whether a road is a one-way street, so
such details are ignored.

Example 6.10. In medicine, different
specialists work with different abstractions
of human body. An orthopaedician works
with the abstraction of skeletal system, while
a gastroenterologist works with digestive
system. A physiotherapist abstracts the
human body by its muscular system.

	 We use abstraction in a variety of
ways while constructing algorithms — in the
specification of problems, representing state
by variables, and decomposing an algorithm
to functions. An algorithm designer has to
be trained to recognize which features are
essential to solve the problem, and which
details are unnecessary. If we include
unnecessary details, it makes the problem
and its solution over-complicated.

	 Specification abstracts a problem by
the properties of the inputs and the desired
input-output relation. We recognize the
properties essential for solving the problem,
and ignore the unnecessary details.

State: In algorithms, the state of a
computation is abstracted by a set of
variables.
Functions: When an algorithm is very
complex, we can decompose it into

functions and abstract each function by its
specification.

6.6.1 State
	 State is a basic and important
abstraction. Computational processes have
state. A computational process starts with
an initial state. As actions are performed,
its state changes. It ends with a final state.
State of a process is abstracted by a set of
variables in the algorithm. The state at any
point of execution is simply the values of the
variables at that point.

Example 6.11. Chocolate Bars: A
rectangular chocolate bar is divided into
squares by horizontal and vertical grooves.
We wish to break the bar into individual
squares. 
	 To start with, we have the whole of
the bar as a single piece. A cut is made by
choosing a piece and breaking it along one
of its grooves. Thus a cut divides a piece into
two pieces. How many cuts are needed to
break the bar into its individual squares?

	 In this example, we will abstract the
essential variables of the problem. We solve
the problem in Example 8.6.

Essential variables: The number of pieces
and the number of cuts are the essential
variables of the problem. We will represent
them by two variables, p and c, respectively.
Thus, the state of the process is abstracted by
two variables p and c.

Irrelevant details:

1.	 The problem could be cutting a chocolate
bar into individual pieces or cutting a
sheet of postage stamps into individual
stamps. It is irrelevant. The problem
is simply cutting a grid of squares into
individual squares.

Chapter 6 Page 076-087.indd 82 3/24/2020 9:14:10 AM

83

2.	 The sequence of cuts that have been made
and the shapes and sizes of the resulting
pieces are irrelevant too. From p and c,
we cannot reconstruct the sizes of the
individual pieces. But, that is irrelevant
to solving the problem.

Example 6.12. Consider Example 6.2, Goat,
grass and wolf problem. In this example,

we will write a specification of the problem.
We will solve it in Example 7.1. The problem
involves four individuals, and each is at one
of the two sides of the river. This means that
we can represent the state by four variables,
and each of them has one of the two values.
Let us name the variables as farmer, goat,
grass and wolf, and their possible values
L and R. A value of L means "at the left
side". A value of R means "at the right side".
Since the boat is always with the farmer, it
is not important to introduce a variable to
represent its position.

	 In the initial state, all four variables
farmer, goat, grass, wolf have the value L.

farmer, goat, grass, wolf = L, L, L, L

	 In the final state, all four variables
should have the value R.

farmer, goat, grass, wolf = R, R, R, R

The specification of the problem is

cross_river

-- inputs: farmer, goat, grass, wolf = L, L,
L, L

-- outputs: farmer, goat, grass, wolf = R, R,
R, R

subject to the two constraints that

1.	 the goat cannot be left alone with the
grass:

if goat = grass then farmer = goat

2.	 the goat cannot be left alone with the
wolf:

if goat = wolf then farmer = goat

6.6.2 Assignment statement
Variables are named boxes to store values.
Assignment statement is used to store a
value in a variable. It is written with the
variable on the left side of the assignment
operator and a value on the right side.

	 variable := value

	 When this assignment is executed,
the value on the right side is stored in the
variable on the left side. The assignment

	 m := 2

stores value 2 in variable m.	
m

2

	 If the variable already has a value
stored in it, assignment changes its value to
the value on the right side. The old value of
the variable is lost.

	 The right side of an assignment can
be an expression.
	 variable := expression

	 In this case, the expression is
evaluated and the value of the expression is
stored in the variable. If the variable exists
in the expression, the current value of the
variable is used in evaluating the expression,
and then the variable is updated. For
example, the assignment

	 m := m + 3

Chapter 6 Page 076-087.indd 83 3/24/2020 9:14:10 AM

84

	 evaluates the expression m + 3 using
the current value of m.
	 m + 3
	 = 2 + 3
	 = 5

and stores the value 5 in the variable m.
m

5

	 The two sides of an assignment
statement are separated by the symbol :=,
known as assignment operator, and read as
"becomes" or "is assigned". The assignment
statement
	 v := e
is read as v "becomes" e. Note that assignment
operator is not equality operator1. The
meanings of v := e and v = e are different.
Assignment does not state a mathematical
equality of a variable, but changes the value
of a variable. The assignment m := m +
3 does not state that m is equal to m + 3.
Rather, it changes the value of the variable m
to the value of the expression m + 3.
	 An assignment statement can
change the values of multiple variables
simultaneously. In that case, the number
of variables on the left side should match
the number of expressions on the right
side. For example, if we wish to assign to
three variables v1, v2 and v3, we need 3
expressions, say, el, e2, e3.
	 vl, v2, v3 := el, e2 , e3

	 The left side is a comma-separated
list of variables. The right side is a comma-
separated list of expressions. To execute

^Unfortunately, several programming languages,
including C++, use the symbol = as assignment
operator, and therefore, another symbol, == as
equality operator.

an assignment statement, first evaluate all
the expressions on the right side using the
current values of the variables, and then
store them in the corresponding variables
on the left side.

Example 6.13. What are the values of
variables m and n after the assignments in

line (1) and line (3)?

1.	 m, n := 2 , 5

2.	 -- m, n = ? , ?

3.	 m,n:=m+3,n-1

4.	 -- m, n = ? , ?

The assignment in line (1) stores 2 in variable
m, and 5 in variable n.

m n
2 5

The assignment in line (3) evaluates the
expressions m + 3 and n - 1 using the current
values of m and n as

	 m + 3 , n - 1

	 =2+3,5-1

	 = 5,4

and stores the values 5 and 4 in the variables
m and n, respectively.

m n
5 4

1.	 m, n := 2,5
2.	 -- m, n = 2 , 5
3.	 m, n := m + 3, n - 1
4.	 -- m, n = 2 + 3, 5-1 = 5, 4

Values of the variables after the two
assignments are shown in in line (2) and
line(4).

Example 6.14. In Example 6.11, we
abstracted the state of the process by two

Chapter 6 Page 076-087.indd 84 3/24/2020 9:14:10 AM

85

variables p and c. The next step is to model
the process of cutting the chocolate bar.
When we make a single cut of a piece, the
number of pieces (p) and the number of cuts

(c) both increase by 1. We can model it by an
assignment statement.

	 p, c := p + 1, c+1

Points to Remember:

which is read as p and c "become" p + 1 and
c + 1, respectively.
•	 A programming language provides

basic statements and a notation for
composing compound statements.

•	 An algorithm is a step-by-step sequence
of statements to solve a problem.

•	 As an algorithm is executed, a process
evolves which solves the problem.

•	 Algorithmic problem solving involves
construction of algorithms as well as
proving properties of algorithms.

•	 The specification of an algorithm
consists of the name of the algorithm
(together with its inputs), the input

property, and the desired input-output
relation. 

•	 Specification of an algorithm is a
contract between the designer and
users of the algorithm.

•	 Abstraction is the process of hiding or
ignoring the details irrelevant to the
task so as to model a problem only by
its essential features.

•	 Specification abstracts a problem by the
essential variables of the problem.

•	 The values of the variables in an
algorithm define the state of the process.

•	 Assignment statement changes the
values of variables, and hence the state.

Evaluation

SECTION – A
Choose the correct answer
1.	 Which of the following activities is algorithmic in nature?

	 (a) Assemble a bicycle.		 (b) Describe a bicycle.
	 (c) Label the parts of a bicycle.	 (d) Explain how a bicycle works.

2.	 Which of the following activities is not algorithmic in nature?

	 (a) Multiply two numbers.		 (b) Draw a kolam.
	 (c) Walk in the park.		 (d) Swaping of two numbers.

3.	 Omitting details inessential to the task and representing only the essential 		
	 features of the task is known as
	 (a) specification	 (b) abstraction 	 (c) composition	 (d) decomposition

4.	 Stating the input property and the input-output relation a problem is known
	 (a) specification	 (b) statement	 (c) algorithm	 (d) definition

Chapter 6 Page 076-087.indd 85 3/24/2020 9:14:10 AM

86

5.	 Ensuring the input-output relation is
	 (a) the responsibility of the algorithm and the right of the user.
	 (b) the responsibility of the user and the right of the algorithm.
	 (c) the responsibility of the algorithm but not the right of the user.
	 (d) the responsibility of both the user and the algorithm.

6.	 If i = 5 before the assignment i := i-1 after the assignment, the value of i is

	 (a) 5			 (b) 4			 (c) 3			 (d) 2

7.	 If 0 < i before the assignment i := i-1 after the assignment, we can conclude that
	 (a) 0 < i		 (b) 0 ≤ i		 (c) i = 0		 (d) 0 ≥i

SECTION-B

Very Short Answers

1.	 Define an algorithm.

2.	 Distinguish between an algorithm and a process.

3.	 Initially,

	 farmer, goat, grass, wolf = L, L, L, L

	 and the farmer crosses the river with goat. Model the action with an assignment
statement.

4.	 Specify a function to find the minimum of two numbers.

5.	 If √2 = 1.414, and the square_root() function returns -1.414, does it violate the
following specification?

	 -- square_root (x)
	 -- inputs: x is a real number , x ≥ 0
	 -- outputs: y is a real number such that y2=x

SECTION-C
Short Answers

1.	 When do you say that a problem is algorithmic in nature?
2.	 What is the format of the specification of an algorithm?
3.	 What is abstraction?
4.	 How is state represented in algorithms?
5.	 What is the form and meaning of assignment statement?
6.	 What is the difference between assignment operator and equality operator?

Chapter 6 Page 076-087.indd 86 3/24/2020 9:14:10 AM

87

SECTION - D

Explain in detail

1.	 Write the specification of an algorithm hypotenuse whose inputs are the lengths of the
two shorter sides of a right angled triangle, and the output is the length of the third side.

2.	 Suppose you want to solve the quadratic equation ax2 + bx + c = 0 by an algorithm.

	 quadratic_solve (a, b, c)

	 -- inputs : ?

	 -- outputs: ?

	 You intend to use the formula and you are prepared to handle only real number roots.
Write a suitable specification.

x =
 — b ± √b2 — 4ac

 2a

3.	 Exchange the contents: Given two glasses marked A and B. Glass A is full of apple
drink and glass B is full of grape drink. For exchanging the contents of glasses A and B,
represent the state by suitable variables, and write the specification of the algorithm.

Books

1.	 Roland Backhouse, Algorithmic Problem Solving, John Wiley & Sons Ltd, 2011.

2.	 Krysia Broda, Susan Eisenbach, Hessam Khoshnevisan, Steve Vickers, Reasoned
Programming, Prentice Hall, 1994 

Chapter 6 Page 076-087.indd 87 3/24/2020 9:14:10 AM

	Introduction Folder
	Chapter 1 Page 001-013
	Chapter 2 Page 014-040
	Chapter 3 Page 041-049
	Chapter 4 Page 050-056
	Chapter 5 Page 057-075
	Chapter 6 Page 076-087

