CBSE Test Paper 01

CH-07 Permutations & Combinations

1. The greatest possible number of points of intersection of 8 straight lines and 4 circles

is

	a.	32
	b.	104
	c.	128
	d.	64
2.		mber of ways in which 10 different things can be divided into two groups ntaining 6 and 4 things respectively is
	a.	P(10,4)
	b.	P(10,2)
	c.	P(10,6)
	d.	C(10, 4)
3.		e number of arrangements of n different things taken r at a time which include a rticular thing is
	a.	P(n-1, r-1)
	b.	none of these
	c.	n P(n-1,r)
	d.	r P (n-1,r-1)
4.	qu is:	e number of all selections which a student can make for answering one or more estions out of 8 given questions in a paper, when each question has an alternative,
		2556561

- c. 6560
- d. 256
- 5. The number of ways in which 8 different flowers can be strung to form a garland so that 4 particular flowers are never separated is
 - a. 5!.4!
 - b. none of these
 - c. 4!.4!
 - d. 288
- 6. Fill in the blanks:

The continued product of first n natural numbers, is called the _____.

- 7. Fill in the blanks:
 - 6 different rings can be worn on the four fingers of hand in _____ ways.
- 8. If there are six periods in each working day of a school, then in how many ways we can arrange 5 subjects such that each subject is allowed at least one period?
- 9. Compute $\frac{8!}{6! \times 2!}$
- 10. Compute. $\frac{8!}{4!}$, is $\frac{8!}{4!} = 2!$?
- 11. How many 5-digit telephone numbers can be constructed using the digits 0 to 9, if each number starts with 67 (e.g., 67125 etc.) and no digit appears more than once?
- 12. Find the values of the following:
 - i. ⁵P₃
 - ii. P (15, 3)
- 13. In a small village, there are 87 families, of which 52 families have at most 2 children. In a rural development programme, 20 families are to be chosen for the assistance of which at least 18 families must have at most 2 children. In how many ways, can the

choice be made?

- 14. In how many ways, can the letters of the word 'HONESTY' be arranged? Do you like jumbled letters of word HONESTY? Why honesty is acquired in your life?
- 15. If P (15, r 1): P (16, r 2) = 3:4, find r.

CBSE Test Paper 01

CH-07 Permutations & Combinations

Solution

1. (b) 104 Explanation:

Every two straight lines can make one point of intersection.

Number of points of intersection= 8C_2 . 1=28

Every two circles can make two points of intersection.

Number of points of intersection $=^4 C_2 \quad .2 = 12$

Each circle can make two intersection points with each straight line

Number of points of intersection $=^4 C_1$. $^8 C_1$. $^2 = 64$

Therefore, required number of points of intersection

=28+12+64=104

2. (d) C(10, 4)

Explanation:

If there are 10 things and we have to make them in to two groups containing 6 things and 4 things respectively, you have to select 6 to form first group, then automatically another group would have formed of 4 remaining things.

Now 6 things can be selected from 10 things in $^{10}C_6$ — different ways

Also we have
$${}^{10}C_6 = {}^{10}C_4 \quad [::^n C_r = {}^n C_{n-r}]$$

3. (d) r P (n-1,r-1)

Explanation: The number of arrangements of n different things taken r at a time which include a particular thing is $r^{n-1}P_{r-1} = rP(n-1,r-1)$

4. (c) 6560 Explanation:

Since a student can solve every question in three ways- either he can attempt the first alternative , or the second alternative or he does not attemp that question

Hence the total ways in which a sudent can attempt one or more of 8 questions = 3^8

Therefore to find the number of all selections which a student can make for

answering one or more questions ou tof 8 given questions = $3^8-1=6560$ [we will have to exclude only the case of not answering all the 8 questions]

5. (d) 288

Explanation:

4 flowers which are always together can be considered as one SET, Therefore we have to arrange one SET (4 flowers) and 4 other flowers into a garland. Which means, 5 things to be arranged in a garland.

(5-1)!

And the SET of flowers can arrange themselves within each other in 4! ways.

Therefore (5-1)!*(4!)

But, Garland, looked from front or behind does not matter. Therefore the clockwise and anti clockwise observation does not make difference.

Therefore

$$(5-1)! * (4!)/2 = 288.$$

- 6. 'n factorial'
- 7. $(4)^6$
- 8. Six periods can be arranged for 5 subjects in 6P_5 ways

$$=rac{6!}{1!}=6 imes5 imes4 imes3 imes2 imes1$$
 = 720

One period is left, which can be arranged for any of the 5 subjects. One left period can be arranged in 5 ways.

 \therefore Required number of arrangements =720 imes 5 = 3600

9.
$$\frac{8!}{6! \times 2!} = \frac{8 \times 7 \times 6!}{6!(2 \times 1)} = \frac{8 \times 7}{2} = 28$$

10. We have,

$$egin{aligned} rac{8!}{4!} &= rac{8 imes7 imes6 imes5 imes4!}{4!} \left[\because n! = n(n-1)(n-2)\dots 1
ight] \ &= 8 imes7 imes6 imes5 = 1680 \end{aligned}$$

Again,
$$2! = 2 \times 1 = 2 \neq 1680$$

 $\therefore \frac{8!}{4!} \neq 2!$

11. According to the problem, 2-digits i.e. 6 and 7 are fixed. Thus, 10 - 2 = 8-digits can be

used in constructing the telephone numbers. There are 8-digits 0, 1, 2, 3, 4, 5, 8, 9. The first number can be selected in 8 ways. After the selection of the first digit, we have 8 - 1 = 7-digits in hand, second digit can be selected in 7 ways and the third digit can be selected in 6 ways.

According to the fundamental principle of multiplication (FPM), the number of ways of selecting a digit for remaining three places:

$$= 8 imes 7 imes 6$$
 = 336 ways

12. We have,
$${}^{n}P_{r} = P(n, r) = \frac{n!}{(n-r)!}$$

i.
$${}^{5}P_{3} = \frac{5!}{(5-3)!} = \frac{5!}{2!} = \frac{5 \times 4 \times 3 \times 2!}{2!}$$
 [: n! = n(n - 1) (n - 2)!]
= $5 \times 4 \times 3 = 60$

ii.
$$P(15, 3) = {}^{15}P_3 = \frac{15!}{(15-3)!} = \frac{15!}{12!}$$

= $\frac{15 \times 14 \times 13 \times 12!}{12!}$
= $15 \times 14 \times 13$
= 2730

13. In choosing the families, there are the following cases:

Case I Selecting 18 families from 52 families and 2 families from 87 - 52 = 35 families.

Case II Selecting 19 families from 52 families and one from 35 families.

Case III Selecting all the 20 families from 52 families.

If P_1 , P_2 and P_3 are the respective selections in each case, then

$$P_1 = {}^{52}C_{18} \times {}^{35}C_2$$

$$P_2 = {}^{52}C_{19} \times {}^{35}C_1$$

$$P_3 = {}^{52}C_{20}$$

If P is the total number of choosing 20 families, then

$$P = P_1 + P_2 + P_3$$

=
$${}^{52}\text{C}_{18} \times {}^{35}\text{C}_2 + {}^{52}\text{C}_{19} \times {}^{35}\text{C}_1 + {}^{52}\text{C}_{20}$$

14. In a word 'HONESTY', there are 7 letters and these letters can be arranged is 7P_7 ways.

$$= 7! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$$

= 5040

I do not like jumbled words.

Honesty plays very important role in our life and people respect us for it.

15. We have,

$$p (15, r-1) = p (16, r-2) = 3 : 4$$

$$\Rightarrow \frac{P(15,r-1)}{P(16,r-2)} = \frac{3}{4}$$

$$\Rightarrow \frac{\frac{15!}{[15-(r-1)]!}}{\frac{16!}{[16-(r-2)]!}} = \frac{3}{4}$$

$$\Rightarrow \frac{\frac{15!}{[16-r]!}}{\frac{16!}{[18-r]!}} = \frac{3}{4}$$

$$\Rightarrow \frac{\frac{15!}{(16-r)!} \times \frac{(18-r)!}{16!} = \frac{3}{4}$$

$$\Rightarrow \frac{15! \times (18-r)(17-r)(16-r)!}{(16-r)! \times 16 \times 15!} = \frac{3}{4}$$

$$\Rightarrow \frac{(18-r)(17-r)}{16} = \frac{3}{4}$$

$$\Rightarrow 306 - 18r - 17r + r^2 = \frac{3}{4} \times 16$$

$$\Rightarrow r^2 - 35r + 306 = 12$$

$$\Rightarrow r^2 - 35r + 306 - 12 = 0$$

$$\Rightarrow r^2 - 35r + 294 = 0$$

$$\Rightarrow r^2 - 21r - 14r + 294 = 0$$

$$\Rightarrow r (r - 21) - 14 (r - 21) = 0$$

$$\Rightarrow (r - 21) (r - 14) = 0$$

$$\Rightarrow r - 14 = 0 \ [\because r = 21 \neq 0]$$

$$\Rightarrow r = 14$$
Hence, $r = 14$